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Rice (Oryza sativa L.) is a staple food for more than half of the 

world population. Rice landraces have evolved from their wild pro-

genitor under natural and human selection, leading to the main-

tenance of high genetic diversity1,2. These cultivated varieties also 

have a high capacity to tolerate biotic and abiotic stress, resulting 

in highly stable yields and an intermediate yield under a low-input 

agricultural system. Identifying the genetic basis of these diverse 

varieties will provide important insights for breeding elite varieties 

for sustainable agriculture.

GWAS have emerged as a powerful approach for identifying 

genes underlying complex diseases at an unprecedented rate3–6. 

However, despite their promise, GWAS have largely not been 

applied to the dissection of complex traits in crop plants7–9. This 

is due mainly to the lack of effective genotyping techniques for 

plants and the limited resources for developing high-density hap-

lotype maps like those seen in other well-developed systems, such 

as the human genome HapMap project3,4. Rice is an ideal candidate 

system for the application of GWAS because it is self-fertilizing 

and has a high-quality reference genome sequence10 and pheno-

typing resources. Such a system should permit the identification of 

high-quality haplotypes necessary to accurately associate molecu-

lar markers with phenotypes.

Here we have genotyped rice landraces through direct resequencing 

of their genomes by adopting sequencing-by-synthesis technology, 

which represents a step forward from the oligonucleotide array 

technology widely used for GWAS11–13. More than 500 diverse rice 

landraces, representing a large collection of rice accessions, were 

sequenced at approximately onefold genome coverage. The resulting 

data set captures more of the common sequence variation in culti-

vated rice than any other data set to date. Using a highly accurate 

imputation method, we constructed a high-density rice haplotype 

map and performed GWAS for 14 agronomic traits to identify a sub-

stantial number of loci potentially important for rice production and 

improvement. Some loci were mapped at close to gene resolution,  

indicating that GWAS of rice landraces could provide an effective 

approach for gene identification.

RESULTS
Genome sequencing and SNP identification
From a collection of ~50,000 rice accessions originating in China, 

we have undertaken an effort to build a large sample of morphologi-

cally, genetically and geographically diverse landraces for genetic 

studies. In this study, a total of 517 landraces were selected and 

comprehensively phenotyped (see Online Methods). We genotyped 
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these landraces with approximate onefold-coverage genome 

sequencing using a barcoded multiplex sequencing approach14 on 

the Illumina Genome Analyzer II (Supplementary Table 1 and 

Supplementary Fig. 1). Three additional cultivars with accurate 

genome sequences were also sequenced as internal controls for 

evaluating sequence accuracy (Supplementary Note). More than 

2.7 billion 73-bp paired-end reads were generated. In total, all 

sequences used for SNP calling comprised ~508-fold coverage of 

the rice genome.

Sequence reads were aligned to the rice reference genome for SNP 

identification. We used the alignment of reads to build consensus 

genome sequences for each rice accession, with a series of filtering 

criteria that eliminated sequencing and mapping errors (see Online 

Methods and Supplementary Note for details). The resulting consen-

sus sequence of each rice accession covered 27.4% of the reference 

genome on average (ranging from 12.0% to 46.7%). Comparisons 

of the consensus sequence against bacterial artificial chromosome 

(BAC) sequences and high-coverage Illumina data showed that the  

sequence specificity reached 99.9% (Supplementary Table 2).  

The SNP calling procedure was then based on discrepancies between 

the consensus sequence and the reference genome. After exclusion of 

singleton SNPs, the SNP calling error rate was 

reduced to 2.7% (Supplementary Fig. 2 and 

Supplementary Table 3). A total of 3,625,200 

nonredundant SNPs were identified, resulting 

in an average of 9.32 SNPs per kb, with 87.9% 

of the SNPs located within 0.2 kb of the near-

est SNP (Supplementary Fig. 3a). About 78% 

of all SNPs were found in intergenic regions; 

of the remaining SNPs, the largest number 

were in introns of annotated genes, followed 

by coding regions and untranslated regions 

of annotated genes (Supplementary Fig. 3b). 

The chromosomal distribution of the SNPs 

is shown in Supplementary Figure 3c.  

Despite the high density of our SNP map, 

however, the recall rate (the rate at which all 

actual SNPs are recalled) was 20.1%. This was probably due to uneven 

sampling of short reads from low-coverage sequencing and the com-

plexity and repetitiveness of the rice genome.

To gain insights into potential functional effects of the detected SNPs, 

we further analyzed the SNPs in coding regions. A total of 167,514 SNPs 

were found in the coding regions of 25,409 annotated genes with transcript  

support (RAP2 database). We also found 3,625 large-effect SNPs 

(SNPs representing mutations predicted to cause large effects). 

Supplementary Table 4 lists the types of predicted effects of annotated 

SNPs. Among the annotated genes, 107 genes were over-represented 

for large-effect changes, which may indicate that these are incorrect 

gene annotations or pseudogenes (Supplementary Table 5). Moreover, 

we observed that 11 gene families showed significantly higher ratios of 

nonsynonymous to synonymous changes (P < 0.01), which may reflect 

positive or relaxed selection (Supplementary Fig. 4). These include 

genes encoding NB-LRR proteins, which are known to be involved in 

disease resistance.

Population structure and geographic differentiation
The phylogenetic relationships of the 517 selected Chinese rice 

landraces were determined using the genetic distances calculated 
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Figure 1 Divergence and geographic origins of 517 rice landraces. (a) Neighbor-joining tree 

constructed from simple matching distance of all SNPs. Red, indica; blue, japonica; purple, 

intermediate. (b) Comparison of allele frequencies between indica and japonica. For each SNP,  

we identified the minor allele across all landraces and then calculated the frequency of this allele in 

indica and japonica. Color index indicates the number of SNPs with each set of allele frequencies.  

(c) Genome-wide average LD decay estimated from 373 indica (red) and 131 japonica (blue) landraces.
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Figure 2 Population structures of Chinese landraces of both subspecies. (a) Neighbor-joining tree of 373 indica landraces. The three indica subgroups 

identified from the tree are color-coded in a–c. (b) PCA plots of the first two components of 373 indica landraces. (c) Geographic origins of landraces of 

each indica subgroup. (d) Neighbor-joining tree of 131 japonica landraces. The three japonica subgroups identified from the tree are color-coded in d–f. 

(e) PCA plots of the first two components of 131 japonica landraces. (f) Geographic origins of landraces of each japonica subgroup.

©
 2

0
1
0

 N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.



NATURE GENETICS VOLUME 42 | NUMBER 11 | NOVEMBER 2010 963

A RT I C L E S

from the SNPs (Fig. 1). The resulting neighbor-joining tree showed 

two divergent groups belonging to the two subspecies of cultivated 

rice, Oryza sativa ssp. indica and ssp. japonica. On the basis of the 

neighbor-joining tree, we were able to identify 373 typical indica and 

131 typical japonica landraces (Fig. 1a). The geographic distribution 

of japonica landraces extends further north than that of indica 

(Supplementary Fig. 5). There are 13 intermediate landraces, which 

may have resulted from occasional historical hybrids between indica 

and japonica that experienced partial reproductive isolation.

From the SNP data, sequence diversity (π) was estimated at 

0.0024 for all sampled landraces, and 0.0016 and 0.0006 for indica 

and japonica, respectively. These estimates suggest that the overall 

genetic variation of the landraces we studied represents at least 80% 

of the world’s rice cultivars, and the indica landraces have much 

higher genetic diversity than the japonica 

landraces15,16. The population-differentiation 

statistic (FST) between the indica and japonica 

landraces was estimated at 0.55, indicating 

a very strong population differentiation. 

After screening all SNPs that were highly 

differentiated in frequency between indica 

and japonica, we found a total of 367,081 

(~10%) SNPs that were nearly fixed (with 

an allele frequency >0.95 in one subspe-

cies and <0.05 in the other) and a total of 

127,729 (~3.5%) SNPs that were completely 

fixed (Fig. 1b). These subspecies-specific 

signatures may reflect, as well as affect, 

the strong indica-japonica differentiation. 

We observed that the subset of complete-

 differentiation SNPs had a smaller propor-

tion of coding-region SNPs (P < 0.0001) and a 
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Figure 3 Influence of populational and 

experimental factors on the performance of the 

KNN-based imputation method. Performance 

of the imputation was evaluated by specificity 

and filling rate. The specificity of the genotype 

data set after imputation of missing genotypes 

was assessed against BAC sequences and high-

coverage Illumina data. Filling rate was defined 

as the non–missing data rate of the genotype data 

set after imputation. Gray horizontal dashed lines 

indicate 95%, highlighting different scales used 

on different panels. (a) Genomic regions with 

LD decay range varying from <10 kb to >150 kb 

in 10-kb intervals. (b) Sequencing error rates. 

Various higher error rates were introduced for the 

simulation. (c) Sequencing coverage. Sequences 

were removed to simulate data sets derived from 

lower sequencing coverage. (d) Population size. 

Individuals were randomly removed to create a 

series of smaller populations for simulation.
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Figure 4 Genome-wide association studies of 

grain width and heading date. (a) Manhattan 

plots of the simple model for grain width. 

Negative log10-transformed P values from a 

genome-wide scan are plotted against position 

on each of 12 chromosomes. Blue horizontal 

dashed line indicates the genome-wide 

significance threshold. (b) Quantile-quantile 

plot of the simple model for grain width.  

(c) Manhattan plots of compressed MLM for 

grain width, as in a. (d) Quantile-quantile plot of 

compressed MLM for grain width. (e) Manhattan 

plots of the simple model for heading date,  

as in a. (f) Quantile-quantile plot of the simple 

model for heading date. (g) Manhattan plots  

of compressed MLM for heading date, as in a. 

(h) Quantile-quantile plot of compressed MLM 

for heading date.
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lower nonsynonymous-to-synonymous ratio  

(P < 0.0001) than did the set of all SNPs 

detected in this study. Furthermore, across the 

whole genome we identified 53 genes that con-

tained large-effect complete-differentiation 

SNPs; among these might be genes involved 

in the differentiation of the two subspecies  

(Supplementary Table 6).

We then investigated the population 

structure within subspecies. According 

to the neighbor-joining tree as well as the 

 principal-component analysis (PCA)17, both 

indica and japonica had three subgroups, 

designated 1, 2 and 3 (Fig. 2). It has previ-

ously been suggested that the photoperiod 

and temperature clines along latitudes may 

have been the primary factors driving dif-

ferentiation of cultivated rice in China1. We 

tested the difference in latitude distribution 

and found that indica group 3 was signifi-

cantly more northern than indica group 1 

(P < 0.0001) or indica group 2 (P < 0.05) 

(Fig. 2c). A similar pattern was observed 

in japonica, whose group 3 was signifi-

cantly more northern than the other two  

(P < 0.0001) (Fig. 2f). The measure of popu-

lation differentiation, FST, was estimated at 

0.17 among the three subgroups of indica, 

suggesting a moderate level of differen-

tiation within indica. The genetic differ-

entiation within japonica was slightly less  

(FST = 0.14) but still higher than that between 

different human populations (FST = 0.12)3. 

The fine-scale maps for the sequence diver-

sity π and the population differentiation  

FST of the two subspecies showed great vari-

ation along chromosomes (Supplementary 

Fig. 6 and Supplementary Fig. 7). We 

observed that some regions had a high FST, 

including a total length of 2.1 Mb in japonica 

and 0.6 Mb in indica with an FST > 0.5, indi-

cating that they contain loci that may be 

involved in the geographic adaptation.

Whole-genome patterns of linkage disequilibrium
We then analyzed LD for indica and japonica landraces using the 

SNP data. The LD decay rate was measured as the chromosomal 

distance at which the average pairwise correlation coefficient (r2) 

dropped to half its maximum value. Genome-wide LD decay rates of 

indica and japonica were estimated at ~123 kb and ~167 kb, where 

the r2 drops to 0.25 and 0.28, respectively (Fig. 1c). This is in agree-

ment with the previous estimation that cultivated rice has a long-

range LD from close to 100 kb to over 200 kb13,18, which might be 

a result of self-fertilization coupled with a relatively small effective 

population size.

We further examined whole-genome patterns of LD in the two 

subspecies. LD varied widely across the genomes of both indica and 

japonica (Supplementary Fig. 8), which would presumably lead to 

differential resolutions of association mapping at different genomic 

regions. It is noteworthy that the LD decay rates of indica and 

japonica were only weakly correlated across the genome (Spearman 

correlation coefficient is 0.01). This is markedly different from what 

has been observed for human, where both local and global patterns 

of LD vary little among different human populations3. The differ-

ences between indica and japonica rice may have accumulated from 

a relatively long history of partial reproductive isolation of these 

self-fertilized subspecies.

Constructing a high-density haplotype map of the rice genome
Onefold genome sequencing of more than 500 landraces allowed 

identification of a large number of SNPs with high accuracy. However, 

the genotype data set contained numerous missing genotype calls, 

making it insufficient for GWAS. Data-imputation methods have 

not been developed to deal specifically with low-coverage genome 

sequencing data. Of the available imputation models, the k-nearest 

neighbor algorithm (KNN) seemed effective for handling a relatively 

large number of missing genotypes without a reference haplotype 

map19,20. We adopted the KNN algorithm to explore local haplotype 

Table 1 Genome-wide significant association signals of agronomic traits using the 

compressed MLM

Trait Chromosome

Position  

(IRGSP 4)

Major  

allele

Minor  

allele

Minor  

allele  

freq.

P value  

(compressed MLM)a Known locib

Tiller number 4 3,760,194 A T 0.20 3.2 × 10−7

9 23,332,559 A G 0.34 1.5 × 10−7

10 15,239,407 T A 0.10 4.1 × 10−7

Grain width 5 4,907,158 C G 0.21 2.7 × 10−9

5 5,341,575 G A 0.17 7.2 × 10−18 qSW5 (ref. 29)

Grain length 3 17,371,398 G C 0.06 1.3 × 10−10 GS3 (ref. 30)

3 17,637,475 C A 0.08 2.7 × 10−11

3 23,349,781 A C 0.13 3.3 × 10−7

5 5,343,949 A G 0.20 1.7 × 10−7

11 3,072,370 C T 0.11 3.8 × 10−7

Spikelet number 7 18,005,615 C T 0.44 7.1 × 10−8

10 5,976,140 C T 0.06 1.3 × 10−7

Gelatinization  

temperature

6 6,726,252 C T 0.20 7.1 × 10−9 ALK (ref. 26)

Amylose content 6 1,770,929 T C 0.14 5.0 × 10−26 Waxy (refs. 27,28)

6 6,189,558 A T 0.11 3.0 × 10−8

6 6,709,537 C T 0.19 7.4 × 10−12

Apiculus color 6 5,335,519 A G 0.33 5.6 × 10−27 OsC1 (ref. 23)

6 7,671,184 T C 0.32 9.4 × 10−9

Pericarp color 2 27,066,598 A G 0.24 2.2 × 10−9

7 6,123,504 A G 0.34 2.1 × 10−52 Rc (ref. 24)

8 12,483,076 T G 0.21 1.3 × 10−11

Hull color 6 10,378,142 T C 0.06 3.8 × 10−7

9 7,366,211 T C 0.20 3.3 × 10−13 Ibf (ref. 25)c

Heading date 2 1,439,288 G A 0.42 3.9 × 10−7

2 30,818,552 G C 0.07 3.8 × 10−7

4 18,773,995 A T 0.25 3.0 × 10−7

6 11,083,237 G A 0.05 6.6 × 10−8

9 10,738,885 C A 0.06 2.8 × 10−10

11 28,247,391 C T 0.12 4.2 × 10−9

12 18,324,888 G A 0.06 1.4 × 10−7

Drought tolerance 1 5,536,395 G T 0.11 4.1 × 10−7

5 2,275,357 A C 0.06 2.5 × 10−8

6 28,243,628 C T 0.09 3.4 × 10−9

11 21,161,361 G C 0.08 8.5 × 10−12

Degree of seed  

shattering

2 25,025,325 C T 0.16 4.7 × 10−8

5 948,266 T C 0.38 2.5 × 10−7

10 2,319,249 T G 0.06 2.2 × 10−7

aP values of the association signals from the simple model are listed in Supplementary Table 7. bDetails of the known loci are 

provided in Figure 4 and the Supplementary Note. cThe causal gene has not yet been identified and confirmed.
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similarity and further developed an algo-

rithm that provided sufficient imputation 

accuracy and efficiency by optimizing a set 

of genomic and populational parameters 

(Online Methods and Supplementary Note). 

The improved algorithm was then used to 

impute the missing calls of the genotype data 

set from onefold-coverage genome sequenc-

ing (Supplementary Fig. 9). The imputation 

of the genotypes of all 517 landraces reduced 

missing genotypes from 61.7% to 2.9%, with 

an accuracy above 98% (Supplementary 

Table 3). It would require more than 20-fold 

sequencing coverage of the rice genome to 

yield such a low missing-data rate with a 

slightly higher accuracy (Supplementary 

Fig. 10). Therefore, our approach, combining 

second-generation sequencing technology 

with an effective imputation procedure, per-

mits the quick construction of a high-density 

haplotype map at a markedly lower cost than 

microarray-based genotyping.

We then examined the influence of various biological and experi-

mental factors on the performance of the data imputation (Fig. 3). 

Notably, this method performed well even when LD decayed within 

10 kb; with this LD decay, the missing-data rate was below 5%, with 

an accuracy above 95%. This suggests that our imputation method 

for low-coverage genome sequencing data is also applicable to other 

genomes with short-range LD.

Genome-wide association studies for 14 agronomic traits
The high-density haplotype map enabled genome-wide association map-

ping in rice. The strong population structure, along with a slow LD decay 

rate, makes GWAS in this species not straightforward. To evaluate the 

performance of GWAS, we carried out GWAS on 14 agronomic traits, 

which can be divided into five categories: morphological characteristics 

(tiller number and leaf angle), yield components (grain width, grain 

length, grain weight and spikelet number), grain quality (gelatinization 

temperature and amylose content), coloration (apiculus color, pericarp 

color and hull color) and physiological features (heading date, drought 

tolerance and degree of seed shattering) (Supplementary Fig. 11).

Given the strong population differentiation between the two sub-

species of cultivated rice, we did not look for associations across 

both subspecies. We conducted GWAS for 373 indica lines. The 

sequencing-based genotype data set contained an average density of 

~1.7 common SNPs per kb in indica (with a minor allele frequency 

of >0.05). Both the simple model and the compressed mixed linear 

model (MLM)21,22 were used to identify association signals. The com-

pressed MLM approach, which took genome-wide patterns of genetic 

relatedness into account, greatly reduced false positives, as shown 

in quantile-quantile plots (Fig. 4 and Supplementary Figs. 12–23).  

A total of 37 association signals were identified with P < 5 × 10−7 

from the compressed MLM (Table 1). We also identified strong asso-

ciation signals with P < 10−8 from the simple model, discarding all 

but the top five most significant signals for each trait if there was an 

excess of strong associations (Supplementary Table 7). In total, we 

identified 80 associations for the 14 agronomic traits. The Manhattan 

plots for both models of all the traits are shown in Supplementary  

Figures 12–23, and detailed information about all significant associa-

tions is summarized in Supplementary Table 8.

Association signals for six traits were located close to known 

genes that have been identified previously using mutants or studies 

of recombinant populations23–30 (Fig. 5 and Supplementary Note). 

Although the association resolution varies among loci, mostly owing 
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Figure 5 Regions of the genome showing 

strong association signals near previously 

identified genes. Top of each panel shows a 
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(SNP with the lowest P value), whose position 

is indicated by a vertical red line. Negative 

log10-transformed P values from the compressed 

MLM are plotted on the vertical axis; axis 

scales are slightly different across panels. Blue 
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wide significance threshold. Bottom of each 
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to local LD, the resolutions were all less than 26 kb (within about  

1–3 genes). Notably, the peak signals of the GWAS loci often appeared 

near (but not within) the known genes.

We then screened the causal polymorphisms of three known 

genes by direct PCR amplification and sequencing, and found that 

all of them showed a slightly weaker association than peak signals 

nearby (Supplementary Table 9). These results were consistent 

with similar findings in Arabidopsis thaliana8 and may result from 

multiple causal polymorphisms of a gene coupled with complex 

population structure.

Together, the data show that the degree to which population strati-

fication confounds associations varies markedly across traits (Fig. 4). 

An extreme example was observed for heading date (flowering time), 

a trait that is strongly affected by population structure and control-

led by numerous small-effect loci8,31. We found that heading date 

strongly correlated with both population structure and geographic 

distribution (R2 = 0.5 with the first principle component and R2 = 0.3 

with the latitude for the indica landraces). Hence, the simple model 

yielded overwhelming association peaks across the genome (Fig. 4e,f). 

Among the peaks, modest association signals were observed around 

three known genes controlling heading date32, but these signals did 

not stand out on the whole-genome scale (Supplementary Fig. 24). 

Although the compressed MLM approach reduced the number of 

false positives (Fig. 4g,h), there was too much structure for it to yield 

substantial statistical power; essentially, there were no statistical 

solutions that could detect the quantitative trait loci (QTL) affecting 

structure by GWAS.

We further inspected the genetic architecture of the 14 agronomic 

traits. Peak SNPs at the identified loci explained ~36% of the phe-

notypic variance, on average (from 6% to 68% for different traits; 

Fig. 6), which is much higher than for SNPs in GWAS of human5,6. 

Six of the traits had one or two strong peaks of association with 

relatively large effects; these were traits for colors, grain quality and 

grain width (Fig. 4a–d). We observed that most of the major loci 

controlling these six traits had causal genes identified previously. Of 

the six known genes mentioned above, five underlie these traits, and 

these five show the strongest associations (Fig. 5 and Supplementary 

Note). For other traits, our results suggest that multiple loci with 

relatively small effects contribute to the phenotypic variance. The 

new loci identified here are attractive candidates for follow-up stud-

ies that could further our understanding of the genetic architecture 

of these traits.

DISCUSSION
These studies demonstrate that GWAS of rice landraces can be used 

for genetic mapping of multiple traits simultaneously at a fine resolu-

tion. Furthermore, direct resequencing of rice landraces provides a 

wealth of sequence polymorphisms and high association resolution 

in GWAS, despite modest rates of LD decay in rice.

Direct resequencing can also enable the detection of structural 

variation, which will greatly facilitate follow-up studies to determine 

 functional variation. Future studies could identify structural variation 

from low-coverage genome sequencing data partly by combining infor-

mation across landraces whose haplotypes are similar. However, for 

the comprehensive identification of structural-variation events, it will 

be more effective to deep sequence and assemble a small number of 

landraces with maximal genetic diversity. Such an approach will soon 

be feasible, as second-generation sequencing technology continues to 

improve in terms of both read length and paired-end insert size.

More information will be gained through GWAS of rice landraces 

as additional phenotypes are evaluated, especially in different envi-

ronments, and as a larger number of broadly representative landraces 

are sampled. Several follow-up steps could be taken to pinpoint candi-

date genes via application of rice functional-genomics approaches33. 

Moreover, for the clinal adaptive traits (for example, flowering time), 

association mapping will require biparental populations from specific 

crosses. Constructing collaborative recombinant-mapping popula-

tions selected from the sequenced landraces may help to control for 

population structure, as well as identifying alleles with small effects  

or low frequency in the population7,31,34,35. Joint mapping with 

this association panel and multiple biparental crosses is likely to be 

extremely powerful.

In this study, we chose to conduct GWAS for only the indica 

 landrace population because its larger sample size and higher genetic 

diversity provided sufficient power for association analysis. The 

smaller population size and low genetic diversity from the japonica 

samples within China would limit the power of GWAS. A worldwide 

effort to collect rice accessions for whole-genome resequencing and 

comprehensive phenotyping is under way, and associations from this 

broader sampling can be investigated in the future. For studies aiming 

to improve map resolution and new-allele identification through  

continuous population expansion, genome sequencing is an effec-

tive genotyping approach for GWAS because it allows new SNPs to 

be added and imputation efficiency to be improved even at lower 

sequence coverage. This study therefore lays the foundation for a 

long-term collective effort to discover valuable genes and alleles from 

the world germplasm collection for cultivar improvement.

URLs. Annotation of rice SNPs, http://www.ncgr.ac.cn/RiceHapMap/

Download; Rice Haplotype Map Project database, http://www.ncgr.

ac.cn/RiceHapMap; RAP2 database, http://rapdb.dna.affrc.go.jp/

archive/build4.html; EBI European Nucleotide Archive, ftp://ftp.era.

ebi.ac.uk/; SEG-Map pipeline, http://www.ncgr.ac.cn/software/SEG/; 

IRGSP 4.0, http://rgp.dna.affrc.go.jp/IRGSP/Build4/build4.html; Ssaha2 

version 2.3, http://www.sanger.ac.uk/Software/analysis/SSAHA2/.

METHODS
Methods and any associated references are available in the online 

 version of the paper at http://www.nature.com/naturegenetics/.

Accession codes. Raw sequences have been deposited in the EBI 

European Nucleotide Archive with accession numbers ERP000106 

for 517 rice landraces, ERP000235 for indica cv. Guangluai-4 and 

ERP000236 for japonica cv. Nongken-58.
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Figure 6 Contributions of identified loci to phenotypic variance of each 

of 14 agronomic traits. Numbers of loci used to assign contributions 
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compressed MLM are listed in Table 1, and loci from the simple model 

are listed in Supplementary Table 7. Joint loci from both models, with 

redundancy excluded, are listed in Supplementary Table 8.
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ONLINE METHODS
Sampling. We sampled Chinese rice landraces from a collection of ~50,000 

rice accessions preserved at the China National Rice Research Institute in 

Hangzhou, Zhejiang Province. From the germplasm database records of  

phenotypic variation and geographic origins, we generated a data matrix and 

conducted a cluster analysis. On the basis of the resulting cluster tree, we 

sampled accessions to represent the entire range of phenotypic diversity and 

geographic distribution of the Chinese rice landraces. Depending on avail-

ability, 20–30 seeds of each accession were germinated and the seedlings were 

planted in the experimental field at the China National Rice Research Institute 

in Hangzhou for phenotypic evaluation.

DNA isolation and genome sequencing. Total genomic DNA was extracted 

from leaf tissues using the DNeasy Plant Mini Kit (Qiagen). For each lan-

drace, a single individual was used for genome sequencing on the Illumina 

Genome Analyzer II. Library construction and sample indexing was done 

as described14. Indexed libraries of five landraces were mixed with an 

equal molar concentration and loaded on 2% agarose gels. Fragments of  

300–400 bp were recovered and purified, and then enriched by nine cycles of 

PCR. The library was loaded into one lane of the Illumina Genome Analyzer 

II for 2 × 76 bp paired-end sequencing. Image analysis and base calling were 

done using the Illumina Genome Analyzer processing pipeline (v1.4). PERL 

scripts in the SEG-Map pipeline were applied to sort raw sequences on the 

basis of the 5′ indexes. 73-mer reads were obtained after the three-base indexes 

were trimmed.

Sequence alignment and genotype calling. The 73-bp paired-end reads were 

mapped to the rice reference genome (IRGSP 4.0) using the software Ssaha2 

version 2.3. Aligned reads were picked up with a cutoff of minimum 96% iden-

tity over 92% consecutive nucleotides of a read. Only uniquely aligned reads 

(reads mapped to unique locations in the reference genome) were retained. 

These reads were used to call the single–base pair genotypes of the consensus 

sequences across the whole genome by the Ssaha Pileup package (version 

0.5). The low-quality bases (base-quality Q score in Phred scale <25) were 

removed, and those called sites with conflicting genotypes among different 

reads were further excluded. Additionally, we required that the overall depth 

in each site be <15 to avoid mapping to regions with copy-number variation. 

Next, the single–base pair genotypes of 520 rice accessions were integrated 

together for SNP identification. The detailed procedure is provided in the 

Supplementary Note. The consensus sequences of each line at the SNP sites 

were further retrieved for genotype calling. Four sets of sequencing data, 

which included BAC-based Sanger sequencing data10,36 and high-coverage 

resequencing data of both indica and japonica, were used to assess genotyping 

accuracy (Supplementary Note).

Phylogenetic and population genetic analyses. Neighbor-joining trees and 

principal-component analysis plots were used to infer population structure of 

the rice landraces. A pairwise distance matrix derived from the simple matching 

distance for all SNP sites was calculated to construct unweighted neighbor-

 joining trees using the software PHYLIP version 3.66 (ref. 37). Principal-

 component analysis was done using the software EIGENSTRAT17. To minimize 

the contribution from regions of extensive strong LD, if a pair of SNPs within 

the 50-kb region had r2 greater than 0.8, we removed one of them. The first two 

principal components were plotted against each other for the indica population 

and the japonica population, respectively. LD was calculated using the software 

Haploview with default settings38. Pairwise r2 was calculated for all SNPs in 

a 500-kb window and averaged across the whole genome. Sequence diversity  

(π) was calculated in a 100-kb window as the average number of pairwise differ-

ence per site for all pairs of total sampled landraces, all pairs of indica landraces 

or all pairs of japonica landraces39. The population-differentiation statistics (FST) 

were computed as described40, using a 100-kb window, between the indica and 

japonica landraces, among the three subgroups of indica and among the three 

subgroups of japonica.

Missing genotype imputation. A data-imputation method based on a KNN 

algorithm was developed for inferring a large number of missing genotypes 

generated from low-coverage genome sequencing (Supplementary Fig. 25). 

The imputation is performed in a chromosomal region defined by a given 

number of SNPs—that is, in a window size of w SNPs. The window size is 

allowed to vary according to the size of chromosomal regions in which LD is 

reasonably strong. The window then slides along a chromosome at a step size 

of one SNP until the missing data are inferred for the entire chromosome. The 

detailed algorithm is provided in the Supplementary Note.

SNP sites with too much missing data should be excluded for use in impu-

tation. To ensure imputation quality, SNPs with more than 80% missing data 

and SNPs with minor allele frequency less than 5% were excluded in this study. 

This method can be more widely applied when haplotype phasing procedure 

is incorporated to impute heterozygous genotypes.

The specificity of the genotype data set before and after imputation of missing 

genotypes was assessed using four sets of sequencing data (Supplementary 

Note). The missing-data rate of the genotype data set was calculated as the 

average proportion of missing calls of the SNP sites. A detailed list of these 

assessments is provided in Supplementary Table 3.

Genome-wide association analysis. Association analyses were conducted 

using the simple model and the compressed MLM. The genotype data  

set for indica were generated after imputation of missing genotypes, with a 

total of 671,355 common SNP sites (minor allele frequency > 0.05 in 373 

indica lines).

 For the simple model analysis, we used the following equation: 

y = Xα฀+฀e.

For the compressed MLM analysis, we used the equation21,22 

y = Xα฀+฀Pβ฀+฀Kµ฀+฀e.

In these equations, y represents phenotype, X represents genotype, P is the 

PCA matrix instead of the Q matrix and K is the relative kinship matrix. Xα 

and Pβ represent fixed effects, and Kμ and e represent random effects. The top 

five principal components were used to build up the P matrix for population-

structure correction. The matrix of simple matching coefficients was used 

to build up the K matrix, and this step was followed by compression22. The 

analyses were performed using PROC MIXED in SAS (SAS Institute).

Phenotyping. For each landrace, five randomly chosen plants were evaluated 

and their mean was calculated. Tiller number was evaluated when grains fully 

ripened. On the main tiller, flag leaf angle was measured.

Grain length and width were measured at the maximal values for each 

grain using an electronic digital caliper. Grain weight was initially obtained by 

weighing a total of 200 grains, then converting it to 1,000-grain weight, a scale 

commonly used for yield evaluation. The total number of spikelets produced 

per panicle was counted manually.

Amylose content was determined according as described41. Milled rice  

flour (50 mg ± 0.5 mg) was digested with 0.5 ml of 95% (vol/vol) ethanol 

and 4.5 ml of 1 N NaOH overnight, mixed with 0.2 ml 0.2% (wt/vol) I2 in 

2% (wt/vol) KI solution and diluted with 0.1 ml 1 N acetic acid to 10 ml. The 

 amylose-iodine color was measured at 608 nm using a spectrophotometer 

(Bausch and Lomb Spectronic 20). Gelatinization temperature was determined 

by an alkali digestion test42. The degree of alkali spreading was measured in 

1.7% (wt/vol) KOH solution for 23 h in a 30 °C oven.

Heading date was recorded as the number of days from sowing to the time 

when inflorescences had emerged above the flag leaf sheath for more than half 

of the individuals of a landrace. The degree of drought tolerance was scored on 

the basis of the ratio of the burliness rate of the rice landraces in the dry field 

to that in the wet field. The degree of seed shattering was scored on a scale of 

1–3 (easy, medium and hard) when grains fully ripened.

Software and data release. The SNP data set can be found at the Rice 
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