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The genetic architecture of brain structure and function is largely unknown. To investigate this, we carried out genome-
wide association studies of 3,144 functional and structural brain imaging phenotypes from UK Biobank (discovery  
dataset 8,428 subjects). Here we show that many of these phenotypes are heritable. We identify 148 clusters of associations 
between single nucleotide polymorphisms and imaging phenotypes that replicate at P < 0.05, when we would expect 
21 to replicate by chance. Notable significant, interpretable associations include: iron transport and storage genes, 
related to magnetic susceptibility of subcortical brain tissue; extracellular matrix and epidermal growth factor genes, 
associated with white matter micro-structure and lesions; genes that regulate mid-line axon development, associated 
with organization of the pontine crossing tract; and overall 17 genes involved in development, pathway signalling and 
plasticity. Our results provide insights into the genetic architecture of the brain that are relevant to neurological and 
psychiatric disorders, brain development and ageing.

Brain structure and function vary between individuals and can 
be measured non-invasively using magnetic resonance imaging 
(MRI). The effects of neurological and psychiatric disorders such as 
Alzheimer’s disease, Parkinson’s disease, schizophrenia, bipolar disor-
der and autism can be seen in MRI data1. MRI can therefore provide 
intermediate endophenotypes that can be used to assess the genetic 
architecture of such disorders.

Structural MRI measures of brain anatomy include tissue and 
structure volumes, such as total grey matter volume and hippocampal 
volume, while other MRI modalities allow the mapping of different bio-
logical markers such as venous vasculature, microbleeds and aspects of 
white matter microstructure. Brain function is typically measured using 
task-based functional MRI (fMRI), in which subjects perform tasks or 
experience sensory stimuli; task-based fMRI uses imaging sensitive 
to local changes in blood oxygenation and flow caused by brain activ-
ity in grey matter. Brain connectivity can be divided into functional 
connectivity, where spontaneous temporal synchronizations between 
brain regions are measured using fMRI with subjects scanned at rest, 
and structural connectivity, measured using diffusion MRI (dMRI), 
which images the physical connections between brain regions based 
on how water molecules diffuse within white matter tracts. For those 
not familiar with the neuroimaging field, we have provided a glossary 
in Supplementary Note 1.

A new resource for relating neuroimaging to genetics is UK 
Biobank, a rich, long-term prospective epidemiological study of 
500,000 volunteers2. Participants were 40–69 years old at recruit-
ment, with one aim being to acquire as rich data as possible before 
disease onset. Identification of disease risk factors and early markers 
will increase over time with emerging clinical outcomes3. A brain 
and body imaging extension will scan 100,000 participants by 2020, 
with brain imaging including three structural modalities, resting and 
task-based fMRI, and diffusion MRI4 (Supplementary Table 1). An 
automated image processing pipeline removes artefacts and renders 
images comparable across modalities and participants; it also gener-
ates thousands of image-derived phenotypes (IDPs), distinct measures 

of brain structure and function5. Example IDPs include the volume 
of grey matter in distinct brain regions, and measures of functional 
and structural connectivity between specific pairs of brain areas. The 
combination of large subject numbers with multimodal imaging data 
acquired using homogeneous hardware and software is a unique  
feature of UK Biobank.

Another key component of the UK Biobank resource has been the 
collection of genome-wide genetic data using a purpose-designed geno-
typing array. A custom quality control, phasing and imputation pipeline 
was developed to address the challenges specific to the experimental 
design, scale, and diversity of the UK Biobank dataset. The genetic 
data were publicly released in July 2017 and consist of about 96 million 
genetic variants in almost 500,000 participants6.

Joint analysis of the genetic and brain imaging datasets produced by 
UK Biobank presents a unique opportunity for uncovering the genetic 
bases of brain structure and function, including genetic factors that 
are related to brain development, ageing and disease. In this study, we 
carried out genome-wide association studies (GWASs) for 3,144 IDPs, 
covering the entire brain and including ‘multimodal’ information on 
grey matter volume, area and thickness, white matter connections and 
functional connectivity, at 11,734,353 single-nucleotide polymor-
phisms (SNPs) in up to 8,428 individuals with both genetic and brain 
imaging data. We used two separate sets of data from UK Biobank to 
evaluate replication of significant genetic associations from the discov-
ery phase. We also carried out multi-trait GWAS, SNP heritability anal-
ysis, genetic correlation analysis of IDPs with brain-related traits and 
an analysis of enrichment of genomic regions with different functions. 
Previous large-scale GWAS imaging studies have focused on narrower 
ranges of phenotypes including studies of: grey matter volume in seven 
subcortical regions by combining data across more than fifty studies7,8; 
whole-brain grey matter volumes and thicknesses by combining data 
from 59 acquisition sites9; and white matter connectivity in healthy 
young adult twins10. We expect that the homogeneous image acqui-
sition and genetic data assay in UK Biobank will boost the power of 
our study.
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The UK Biobank has approval from the North West Multi-centre 
Research Ethics Committee (MREC) to obtain and disseminate data 
and samples from the participants (http://www.ukbiobank.ac.uk/ 
ethics/), and these ethical regulations cover the work in this study. 
Written informed consent was obtained from all participants.

All results are available on the Oxford Brain Imaging Genetics 
(BIG) web browser (http://big.stats.ox.ac.uk/), which allows users to 
browse associations by SNP, gene or phenotype. This was built from the 
PheWeb code base (https://github.com/statgen/pheweb/) and extended 
to allow easier searching of phenotypes. In addition to the brain IDP 
GWAS results, the browser also includes GWAS results from more than 
2,500 other traits and diseases.

Heritability and genetic correlations of IDPs
Figure 1 shows the estimated SNP heritability (h2) of all IDPs and 
whether h2 is significantly different from 0 at the nominal 5% signifi-
cance level (Supplementary Table 2, Supplementary Fig. 1). Out of 3,144 
IDPs, 1,578 show significant SNP heritability. Of the structural MRI 
IDPs, volumetric measures are the most heritable and cortical thick-
nesses the least. Of the diffusion MRI measures, the tractography-based 
IDPs show lower heritability than the tract-skeleton-based IDPs. The 
resting-state fMRI functional connectivity edges show the lowest levels 
of SNP heritability, with just 235 of 1,771 IDPs being significant, which 
is consistent with additive heritability estimates from twin studies of 
network edges from fMRI and magnetoencephalography in the Human 
Connectome Project11. However, four of the six resting fMRI features 
identified by independent component analysis (ICA; estimated as data-
driven reductions of this full set of fMRI edges) are much more highly 
heritable. By contrast, most of the resting-state node amplitude IDPs 
show significant evidence of SNP heritability; the task-related fMRI 
IDPs do not.

We found lower levels of SNP heritability for subcortical volumes 
than previously estimated in twin studies12–14 (Supplementary Fig. 2). 
This is typical of many traits in the literature15 and may result from 

upward bias in twin study estimates due to gene–gene and gene– 
environment interactions16,17, or downward bias of SNP heritability  
due to uncaptured rare genetic variation. We also compared the 
GWAS results for seven subcortical volumes with those obtained 
by the ENIGMA consortium (http://enigma.ini.usc.edu/research/
download-enigma-gwas-results/), via a genetic correlation analysis 
(Supplementary Table 3). There was a strong correlation between the 
studies, suggesting that there were no major differences in how these 
phenotypes were measured. In all cases a perfect genetic correlation of 
1 lies within the 95% confidence intervals.

Supplementary Fig. 3 shows the genetic correlations, together with 
the raw phenotype correlations, for several groups of analysed IDPs. 
There is a range of both strong and weak, positive and negative genetic 
correlations between the IDPs.

Significant associations between IDPs and SNPs
In all analyses we estimated genetic effects with respect to the number of 
copies of the non-reference allele. Using a minor allele frequency filter  
of 1% and a –log10(P value) threshold of 7.5, we found 1,262 signifi-
cant associations between SNPs and the 3,144 IDPs. These associations 
spanned all classes of IDPs, except task-related fMRI (Supplementary 
Table 4), with the swMRI T2* group showing a relatively large number 
of associations. The –log10(P value) threshold of 7.5 controls for the 
number of tests carried out across SNPs and accounts for the correlation  
structure between genetic variants. Of these 1,262 associations, 844 
and 455 replicated at the 5% significance level using our two smaller 
replication datasets (see Methods and Supplementary Table 5). Some 
associated genetic loci overlapped across IDPs; we estimate that there 
are approximately 427 distinct associated genetic regions (clusters). 
One hundred and forty-eight of these clusters have a lead SNP that 
replicates at the 5% level in our replication set of 3,456 participants, and 
91 below a 5% false discovery rate (FDR) threshold. We would expect 
about 21 of the lead SNPs in the 148 clusters to replicate under a null 
hypothesis of no association.

Structural MRI

T1 global volumes
T1 subcortical volumes
T1 subcortical volumes (L + R)
T1 FAST ROIs
T1 Freesurfer volume
T1 Freesurfer cortical area
T1 Freesurfer cortical thickness
T2 FLAIR WM hyperintensities
T2* subcortical
T2* subcortical (L + R)
Not significant at 0.05 level

Diffusion MRI

Diffusion MRI FA (TBSS)
Diffusion MRI FA (Probtrack)
Diffusion MRI MD (TBSS)
Diffusion MRI MD (Probtrack)
Diffusion MRI MO (TBSS)
Diffusion MRI MO (Probtrack)
Diffusion MRI L1 (TBSS)
Diffusion MRI L1 (Probtrack)
Diffusion MRI L2 (TBSS)
Diffusion MRI L2 (Probtrack)
Diffusion MRI L3 (TBSS)
Diffusion MRI L3 (Probtrack)
Diffusion MRI ICVF (TBSS)
Diffusion MRI ICVF (Probtrack)
Diffusion MRI OD (TBSS)
Diffusion MRI OD (Probtrack)
Diffusion MRI ISOVF (TBSS)
Diffusion MRI ISOVF (Probtrack)
Not significant at 0.05 level

Functional MRI
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Task fMRI
Resting fMRI—parcel 25 (nodes) 
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Resting fMRI—ICA features
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Not significant at 0.05 level

a

b

c

Fig. 1 | Estimated heritability of IDPs. Estimated heritability (y-axis) of 
all of the IDPs analysed (n = 8,428 subjects; see Methods for heritability 
calculation details). IDPs were split into three broad groups. a, Structural 
MRI. b, Diffusion MRI. c, Functional MRI. Points are coloured according 

to IDP groups. Circles and inverted triangles, respectively, are used to 
identify IDPs that do and do not have heritability significantly different 
from 0 at the 5% significance level. The mean 95% confidence interval (CI) 
error bar size is indicated at the bottom right.
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At a threshold of −log10(P) > 11, which additionally corrects for 
all 3,144 GWAS carried out (see Methods), we found 368 significant 
associations between genetic regions and distinct IDPs (Supplementary 
Table 6, Supplementary Fig. 4). These associations with 78 unique SNPs 
can be grouped together into 38 distinct clusters by grouping across 
IDPs (Extended Data Table 1). Taking our lead SNP in each of the 
38 regions, we found that all 38 had P < 0.05 in our replication set of 
3,456 participants, and all 38 were significant at 5% FDR. We found 
no appreciable change in these GWAS results when we included a set 
of potential body confound measures in addition to the main set of  
imaging confound measures (see Methods and Supplementary 
Fig. 5). We also carried out a winner’s curse corrected post-hoc power 
analysis that agreed well with the results of our replication studies 
(Supplementary Note 2).

Supplementary Figs. 6 and 7 provide genome-wide association plots 
(also known as Manhattan plots) and QQ-plots for all 3,144 IDPs 
and the subset of IDPs listed in Extended Data Table 1, respectively. 
Having identified a SNP as being associated with a given IDP, it can be  
useful then to explore the association with all other IDPs via a PheWAS 
(phenome-wide association study) plot. Supplementary Fig. 8 shows 
the PheWAS plots for all 78 SNPs listed in Supplementary Table 6 
with −log10(P) > 11. The Oxford Brain Imaging Genetics (BIG) web 
browser (http://big.stats.ox.ac.uk/) allows researchers to view the 
PheWAS for any SNP of interest. We found that 4 of the 78 SNPs were 
associated (P < 0.05/3,144; that is, −log10(P) > 4.79) with all 3 classes 
of structural, dMRI and functional measures, and these were all SNPs 
in cluster 31 of Extended Data Table 1 (Supplementary Fig. 8, pages 
62–65). This genetic locus is associated with the volume of the precu-
neus and cuneus, dMRI measures for the forceps major (a fibre bundle 
that connects the left and right cuneus), and two functional connec-
tions (parcellation 100 edges 614 and 619, which connect the precu-
neus to other cognitive networks). Supplementary Fig. 9 illustrates the 
sharing of association signal across IDPs at the 615 unique SNPs listed 
in Supplementary Table 5. Supplementary Fig. 10 shows the relation-
ship between the number of associations found and the estimated SNP 
heritability for each IDP.

Overall, our results clearly replicate the majority of the loci identified 
by the ENIGMA consortium in two separate GWASs of seven brain 
subcortical volume IDPs in up to 13,171 subjects7, and of hippocampal  
volume in 33,536 subjects (although not all reached genome-wide 
significance, probably owing to the smaller sample size in our study; 
Supplementary Fig. 11). We also replicate an association between  
volume of white matter hyperintensities (‘lesions’) and SNPs in TRIM47 
(for example, rs3744017, P = 1.4 × 10−12, cluster 37)18.

It can be challenging to interpret precisely the function of SNPs  
identified in a GWAS. Most of the SNPs in the 38 loci in Extended 
Data Table 1 are either in genes, including 7 missense SNPs and 2 SNPs 
in untranslated regions (UTRs), or in high linkage disequilibrium 
with SNPs that are themselves in the genes of interest, and many are  
significant expression quantitative trait loci (eQTLs) in the GTEx  
database19. In total, we found 17 genetic loci that can be linked to genes 
that broadly contribute to brain development, patterning and plasticity 
(out of the 38 clusters reported in Extended Data Table 1; for more 
details, see Supplementary Note 3). Below we focus on some of the 
most compelling examples.

A major source of cross-subject differences seen in T2* data are 
microscopic variations in magnetic field, often associated with iron 
deposition in ageing and pathology20. We identified many associ-
ations between T2* in the caudate nucleus, putamen and pallidum 
and SNPs in genes (TF, rs4428180, P = 2.23 × 10−22; HFE, rs1800562, 
P = 6.6 × 10−20; SLC25A37, rs35469695, P = 2.22 × 10−12) or near 
genes (FTH1, rs11230859, P = 2.31 × 10−17) that are known to affect 
iron transport and storage, or neurodegeneration with brain iron 
accumulation (NBIA)21 (COASY, rs668799, P = 1.43 × 10−17). In 
addition, we identified four SNPs that either encode or are eQTLs 
of genes involved in transport of nutrients and minerals: SLC44A5 
(rs76934732, P = 8.51 × 10−13), SLC39A8 (also known as ZIP8; 

rs13107325, P = 1.04 × 10−42), SLC20A2 (rs2923405, P = 3.31 × 10−17) 
and SLC39A12 (also known as ZIP12; rs10764176, P = 3.3 × 10−21). For 
more details, see Supplementary Note 3.

Interrogating images at a voxel-wise level can provide further insight 
about the detailed spatial localization of SNP associations and can 
possibly identify additional associated areas not already well captured 
by IDPs (while keeping in mind the statistical dangers of potential 
circularity22). For instance, by looking at the difference between the 
average T2* image from subjects with no copies versus one copy of 
the rs4428180 (TF) non-reference allele, we found effects of this SNP 
not just in the putamen and pallidum, but also in additional, smaller 
regions of subcortical structures not included as IDPs (Fig. 2). We sim-
ilarly created in Fig. 2 the voxelwise differences associated with three 
additional SNPs, from the most significant GWAS associations with 
T2* in the putamen as seen in the Manhattan plot. This approach also 
allowed us to observe grey matter volume effects across the entire brain 
associated with rs13107325 (SLC39A8; Extended Data Fig. 1), which 
has been linked in previous (non-imaging) GWASs to intelligence23, 
schizophrenia24, blood pressure25 and higher risk of cardiovascular 
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Fig. 2 | Manhattan plot and spatial mapping of the associations between 
T2* in the putamen and four SNPs. a, The Manhattan plot relates to the 
original GWAS for the IDP T2* in the bilateral putamen. The lower grey 
line indicates the –log10(P value) threshold of 7.5 and the upper line the 
threshold of 11 (see main text). b, The spatial maps show that the four 
SNPs (one per row) most strongly associated with T2* in the putamen 
have distinct voxelwise patterns of effect across the whole brain: the effect 
of rs4428180 (TF) is found in the dorsal putamen and body of the caudate 
nucleus, but also in the right subthalamic nucleus and substantia nigra, red 
nucleus, lateral geniculate nucleus of the thalamus and dentate nucleus; 
rs144861591 (HFE) in the dorsal striatum, subthalamic nucleus, dentate 
nucleus and Crus I/II of the cerebellum; rs10430578 (SLC39A12) in the 
whole dorsal striatum and pallidum; and rs668799 (COASY) in the whole 
dorsal striatum, subgenual cingulate cortex and entorhinal cortex. The 
standard MNI152 T1 image is used as background for the spatial maps 
(left is right). All group difference images (colour overlays) are thresholded 
at a T2* difference of 0.6 ms. These voxelwise SNP association maps were 
calculated from the discovery sample of 8,428 subjects (see main text).
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death26. These effects could now be observed in a relevant brain region, 
the anterior cingulate cortex, which has multifaceted roles including in 
fluid intelligence27, schizophrenia28 and modulating autonomic states 
of cardiovascular arousal29.

Notably, three SNPs related to our white matter IDPs were in genes 
or eQTLs of genes encoding three proteins of the extracellular matrix 
(ECM): rs2365715 (P = 5.38 × 10−12), an eQTL of BCAN, is associated 
with one dMRI microstructural measure in the genu of the corpus  
callosum; rs3762515 (P = 4.27 × 10−13), in the 5′ UTR of EFEMP1, with 
the volume of white matter lesions; and rs67827860 (P = 4.06 × 10−37, 
Fig. 3), located in an intron of VCAN, with multiple dMRI measures 
of most white matter tracts (199 IDPs in total). Overall, the vast major-
ity of forebrain white matter-related dMRI IDPs were associated with 
SNPs related to genes that encode proteins involved in the extracellular 
matrix and epidermal growth factor signalling. These proteins have 
key roles in synaptic plasticity and myelin repair, and are associated 
with multiple sclerosis, stroke, amyotrophic lateral sclerosis and major 
depressive disorder (Supplementary Note 3).

Two additional examples further illustrate meaningful correspond-
ences between the locations of our brain IDPs and significantly asso-
ciated genes. First, the volume of the fourth ventricle, which develops 
from the central cavity of the neural tube, was found to be signifi-
cantly associated with a SNP in, and eQTL of, ALDH1A2 (rs2642636, 
P = 5.2 × 10−16). This gene encodes an enzyme that facilitates posterior 
organ development and prevents human neural tube defects, includ-
ing spina bifida30. Second, we found two SNPs associated with dMRI 
IDPs of the crossing pontine tract (the part of the pontocerebellar 
fibre bundle that arises from the pontine nuclei and decussates across 
the brain midline to project to the contralateral cerebellar cortex) in 
genes that regulate axon guidance and fasciculation during develop-
ment (SEMA3D, rs2286184, P = 5.31 × 10−17 and ROBO3, rs4935898 
(missense), P = 1.76 × 10−19; Fig. 4). The exact location of our IDP in 
the crossing fibres of the pons coincides with the function of ROBO3, 
which is specifically required for axons to cross the midline in the hind-
brain (pons, medulla oblongata and cerebellum); mutations in ROBO3 
result in horizontal gaze palsy, a disorder in which the corticospinal and 
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Fig. 3 | Manhattan plot, spatial mapping and PheWAS plot relating 
to the association between the dMRI ICVF measure and rs67827860 
(VCAN). a, The Manhattan plot relates to the original IDP GWAS with the 
strongest association (ICVF in the right inferior longitudinal fasciculus 
using tractography, associated with rs67827860). The ICVF parameter, 
estimated from the NODDI modelling36, aims to quantify predominantly 
intra-axonal water in white matter, by estimating where water diffusion is 
restricted. Summary details of SNP rs67827860 are given in the top right 
box. The lower grey line indicates the –log10(P value) threshold of 7.5 
and the upper line the threshold of 11. b, Spatial mapping of rs67827860 
against voxelwise ICVF in white matter (ICVF was averaged across 
all 4,957 subjects with zero copies of the non-reference allele, and the 
average from all 2,304 subjects that had one copy was subtracted from 
that, for display in colour here; the difference was thresholded at 0.005 

(unitless fractional measure)). Unlike the examples of (spatially) very 
focal effects in T2* and grey matter volume in Fig. 2 and Extended Data 
Fig. 1, the effects of this SNP are extremely widespread across most of the 
white matter tracts (associated with 45 out of the 199 IDPs in cluster 11, 
Supplementary Table 5). c, The PheWAS plot for SNP rs67827860 shows 
the association (−log10(P)) on the y-axis for the SNP with each of the 3,144 
IDPs. The IDPs are arranged on the x-axis in the three panels: structural 
MRI IDPs (top), dMRI IDPs (middle) and fMRI IDPs (bottom). Points are 
coloured to delineate subgroups of IDPs. Grey lines show the Bonferroni 
multiple testing threshold of 4.79. In addition to the IDP of white matter 
hyperintensities volume, there is a notable association with numerous 
dMRI IDPs (especially diffusion tensor-derived measures of fractional 
anisotropy, mean diffusivity and L1, L2 and L3 eigenvalues of the diffusion 
tensor, as well as additional ICVF measures).
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somatosensory axons fail to cross the midline in the medulla31. Notably, 
all three significant associations with the IDP of the crossing pontine 
tract were found using the tensor mode of anisotropy (MO), a measure 
that is particularly useful in regions of crossing fibres32.

Multi-phenotype association tests
One alternative strategy for analysing large numbers of IDPs is to use 
multi-trait tests that fit joint models of associations to groups of IDPs. 
Such approaches can use estimates of genetic correlation to boost 
power. In addition, by analysing P traits in one GWAS, these tests can 
avoid the need to correct for multiple genome-wide scans. We used a 
multi-trait test (see Methods) to analyse 23 groups of IDPs with up to 
243 IDPs per group. These IDP groups were chosen to cover the major-
ity of the IDP classes with significant IDP correlations in each grouping 
(Supplementary Table 7). Supplementary Fig. 12 shows the Manhattan 
plots for these genome-wide scans. Overall, across these 23 groups, 
we found 278 SNPs at about 160 loci associated with –log10(P) > 7.5 
(Supplementary Table 8). Of these 278 SNPs, 170 survived a correction 
for 23 scans with –log10(P) > 8.86 and 138 of these 170 SNPs had a  

P value < 0.05 in the larger replication set of 3,456 samples. There can 
be large differences in P values between the multi-trait tests and the 
individual IDP tests (Supplementary Fig. 13), especially when taking 
account of the smaller number of tests carried out by the multi-trait 
approach (Supplementary Fig. 14). We found 25 loci that showed both 
a significant and replicated multi-trait association for an IDP group, 
while showing no genome-wide significance in the flanking region 
for any individual IDP in the corresponding group (Supplementary 
Table 9, Supplementary Note 3).

Three of these loci showed associations with the dMRI tensor mode 
of anisotropy measures (rs62073157, P = 4.07 × 10−11; rs35884657, 
P = 1.04 × 10−9; rs9939914, P = 1.15 × 10−11) and all were eQTLs of 
microtubule-related genes (MAPT, TUBA1B and TUBB3, respec-
tively). The extended MAPT region has been repeatedly associated 
with Alzheimer’s and Parkinson’s diseases, frontotemporal dementia, 
and progressive supranuclear palsy (Supplementary Note 3).

Another example of the value of multi-trait testing can be seen in the 
association between IDPs of global brain volume measurements and an 
SNP located between BANK1 and SLC39A8, which was previously iden-
tified in a GWAS of schizophrenia33 (rs35518360, P = 4.07 × 10−12). 
This locus is also part of a multimodal cluster from our single-trait 
GWAS that includes subcortical and cerebellar grey matter volumes, 
pallidum T2* and dMRI in midbrain white matter tracts (cluster 10 
in Supplementary Table 6). The multi-trait test thus made it possible 
to uncover this additional association between global brain volume 
measurement and this locus, which might prove relevant for better 
understanding observations of smaller brain volume in (particularly 
first episode or drug-naive) patients with schizophrenia34.

Genetic correlation with clinically relevant traits
We measured the genetic correlation between a subset of heritable 
IDPs and ten neurodegenerative, psychiatric and personality traits 
(see Methods). We found suggestive evidence of genetic correlation for 
amyotrophic lateral sclerosis (ALS), schizophrenia and stroke, mainly 
with dMRI measures in white matter tracts (Supplementary Fig. 15). 
Supplementary Table 10 contains genetic correlation estimates for all 
IDP–trait combinations; see Supplementary Note 4 for further details.

Partitioning heritability by functional annotation
We applied a statistical approach that partitions the additive genetic 
heritability of a set of common variants for each of the 3,144 IDPs 
according to 24 functional annotations of the genome35. Extended 
Data Fig. 2 summarizes which functional annotations show enrich-
ment stratified by 23 groups of IDPs (Supplementary Table 11). We 
find that regions of the genome annotated as super enhancers and 
several histone modifications show enrichment across many of the 
structural and diffusion IDP groups. Regions of the genome enriched 
for trimethylation of lysine 27 on histone H3 (H3K27me3) (and indi-
cating strong evidence for silenced genes) show depletion of heritabil-
ity across many of the IDP classes (Supplementary Fig. 16). IDP groups 
such as T1 subcortical volumes, dMRI fractional anisotropy (FA) and 
intracellular volume fraction (ICVF) show the strongest evidence of 
enrichment across multiple categories. The resting fMRI connectivity 
edge IDPs show no elevated enrichment, consistent with these traits 
showing low heritability (Fig. 1). Supplementary Fig. 17 shows this 
partitioning analysis for each IDP.

Conclusions
Bringing together researchers with backgrounds in brain imaging and 
genetic association was key to this work. We have uncovered a large 
number of associations at the nominal level of GWAS significance 
(−log10(P) > 7.5) and at a more stringent threshold (−log10(P) > 11) 
designed to (probably over-conservatively) control for the number of 
IDPs tested. Our use of multi-trait tests uncovered further novel loci. 
We find associations with all the main IDP groups except the task fMRI 
measures (despite these measures containing usable signal, for example 
having unique cognitive associations4).

–
lo

g
1
0
 P

0

5

10

15

0

5

10

15

rs1427685

rs2286184

rs16958048

Chromosome

rs2928990

rs4935898

rs11658219

1 2 3 4 98765 10 11 12 13 14 1918171615 20 21 22

a

b

c

d

Fig. 4 | Manhattan plot and spatial mapping of the association between 
the dMRI tensor mode measure and SNP rs4935898 (ROBO3). a, The 
Manhattan plot relates to the original GWAS for the IDP of tensor mode 
in the crossing pontine tract associated with rs4935898. b–d, Tensor mode 
was averaged across all 6,807 subjects with approximately zero copies of 
the non-reference allele, and the average from all 703 subjects that had 
approximately one copy was subtracted from that, for display in red/
yellow–blue/light blue here, thresholded at 0.05 (b, d). b, Results are shown 
overlaid on the MNI152 T1 structural image; by contrast, background in c 
and d is the UK Biobank average fractional anisotropy image, which shows 
clear tract structure within the brainstem. c, Orientation of the fibre tracts 
(in red, running left to right). The spatial distribution (not shown) for the 
effects of rs2286184 (SEMA3D) on tensor mode is almost identical to that 
of rs4935898, being again extremely spatially specific, with no extended 
effect elsewhere in the brain. These voxelwise SNP association maps were 
calculated from the discovery sample of 8,428 subjects (see main text).
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We mainly found associations between MRI measures and genes 
involved in brain development and plasticity, as well as genes contrib-
uting to the transport of iron, nutrients and minerals (Supplementary 
Note 3). The genes linked to brain development and plasticity tended 
to be related to mental health disorders, including major depression 
disorder and schizophrenia, whereas those that encoded iron-related 
proteins tended to be related to neurodegenerative disorders, such as 
amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s dis-
ease. We also uncovered enrichments of functional annotations for 
many of the structural and diffusion IDPs.

A valuable aspect of this work has been to link the associated SNPs 
back to spatial properties of the voxel-level brain imaging data. For 
example, we have linked SNPs associated with IDPs to both highly 
spatially localized and widely spatially distributed effects, restricting 
these voxelwise analyses to the same imaging modality from which 
the original phenotypic association was found (though of course other 
modalities could also be tested in the same way). In addition, looking 
at PheWAS plots has been useful when working with so many pheno-
types. It has allowed us to investigate the overall patterns of association 
and has led to the identification of SNP associations that span multiple 
modalities.

We used two additional sets of 930 and 3,456 samples to replicate 
a large number of the associations uncovered at the discovery phase. 
Over coming years, the number of UK Biobank participants for whom 
imaging data are available will increase to 100,000, allowing more com-
plete discovery of the genetic basis of human brain structure, function 
and connectivity. Combining the discovery and replication samples is 
also likely to lead to novel associations, as will the use of methods that 
can analyse the huge IDP × SNP matrix of summary statistics of asso-
ciation. A potential avenue of research will involve attempts to uncover 
causal pathways that link genetic variants to IDPs and then to a range 
of neurological, psychiatric and developmental disorders.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0571-7.
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METHODS
Imaging data and derived phenotypes. The UK Biobank brain imaging protocol 
consists of six distinct modalities covering structural, diffusion and functional 
imaging, summarized in Supplementary Table 1. For this study, we primarily used 
data from the February 2017 release of ~10,000 participants’ imaging data (and 
an additional ~5,000 subjects’ data released in January 2018 provided the larger 
replication sample).

The raw data from these six modalities have been processed for UK Biobank to 
create a set of IDPs4,5. These are available from UK Biobank, and it is these IDPs 
from the 2017–2018 data releases that we used in this study.

In addition to the IDPs directly available from UK Biobank, we created two extra 
sets of IDPs. First, we used FreeSurfer v6.0.037,38 (https://surfer.nmr.mgh.harvard.
edu) to model the cortical surface (inner and outer 2D surfaces of cortical grey 
matter), as well as modelling several subcortical structures. We used both the T1 
and T2 FLAIR images as inputs to the FreeSurfer modelling (or just the T1 when 
the T2 was not available). FreeSurfer estimates a large number of structural pheno-
types, including volumes of subcortical structures, surface area of parcels identified 
on the cortical surface, and grey matter cortical thickness within these areas. The 
areas are defined by mapping an atlas containing a canonical cortical parcellation 
onto an individual subject’s cortical surface model, thus achieving a parcellation 
of that surface. Here we used two atlases in common use with FreeSurfer: the 
Desikan-Killiany–Tourville atlas (denoted DKT39) and the Destrieux atlas (denoted 
a2009s40). The DKT parcellation is gyrus-based, whereas Destrieux aims to model 
both gyri and sulci based on the curvature of the surface. Cortical thickness is 
averaged across each parcel from each atlas, and the cortical area of each parcel 
is estimated, to create two IDPs for each parcel. Finally, subcortical volumes are 
estimated, to create a set of volumetric IDPs.

Second, we applied a dimension reduction approach to the large number of 
functional connectivity IDPs. Functional connectivity IDPs represent the network 
edges between many distinct pairs of brain regions, comprising in total 1,695 dis-
tinct region-pair brain connections (http://www.fmrib.ox.ac.uk/ukbiobank/). In 
addition to this being a very large number of IDPs from which to interpret associ-
ation results, these individual IDPs tend to be substantially noisier than most of the 
other, more structural, IDPs. Hence, while we did carry out GWAS for each of these 
1,695 connectivity IDPs, we also reduced the full set of connectivity IDPs into just 
six new summary IDPs using data-driven feature identification. We performed this 
dimensionality reduction by applying ICA41, applied to all functional connectivity 
IDPs from all subjects, to find linear combinations of IDPs that are independent 
between the different features (ICA components) identified42. We carried out the 
ICA feature estimation without any use of the genetic data, and we maximized 
independence between component IDP weights (as opposed to subject weights). 
We used split-half reproducibility (across subjects) to optimize both the initial 
dimensionality reduction (14 eigenvectors from a singular value decomposition 
was found to be optimal) and also the final number of ICA components (6 ICA 
components was optimal, with reproducibility of ICA weight vectors greater than 
r = 0.9). The resulting six ICA features were then treated as new IDPs, representing 
six independent sets (or, more accurately, linear combinations) of the original func-
tional connectivity IDPs. These six new IDPs were added into the GWAS analyses. 
The six ICA features explain 4.9% of the total variance in the full set of network 
connection features, and are visualized in Supplementary Fig. 18. More details of 
the ICA analysis of the resting state data, together with browsing functionality of 
the highlighted brain regions can be found on the FMRIB UK Biobank Resource 
web page (http://www.fmrib.ox.ac.uk/ukbiobank/).

We organized all 3,144 IDPs into 9 groups (Supplementary Table 12), each with 
a distinct pattern of missing values (not all subjects have usable, high-quality data 
from all modalities4). For the GWAS in this study we did not try to impute missing 
IDPs owing to the low levels of correlation observed across groups.

The distributions of IDP values varied considerably between phenotype classes, 
with some phenotypes exhibiting substantial skew (Supplementary Fig. 19) that 
would probably invalidate the assumptions of the linear regression used to test for 
association. To ameliorate this, we quantile-normalized each of the IDPs before 
association testing. This transformation also helped to avoid undue influence of 
outlier values. We also (separately) tested an alternative process in which an outlier 
removal process was applied to the untransformed IDPs; this gave very similar 
results for almost all association tests, but was found to reduce the significance 
of a very small number of associations. This possible alternative method for IDP 
preprocessing was therefore not followed through (data not shown).

No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Genetic data processing. We used the imputed genetic dataset made available by 
UK Biobank in its July 2017 release6. This consists of >92 million autosomal vari-
ants imputed from the Haplotype Reference Consortium (HRC) reference panel43 
and a merged UK10K + 1000 Genomes reference panel. We first identified a set of 

12,623 participants who had also been imaged by UK Biobank. We then applied 
filters to remove variants with minor allele frequency (MAF) below 0.1% and with 
an imputation information score below 0.3, which reduced the number of SNPs to 
18,174,817. We then kept only those samples (subjects) estimated to have recent 
British ancestry using the sample quality control information provided centrally 
by UK Biobank6 (using the variable in.white.British.ancestry.subset in the file  
ukb_sqc_v2.txt); population structure can be a serious confound to genetic asso-
ciation studies44, and this type of sample filtering is standard. This reduced the 
number of samples to 8,522. The UK Biobank dataset contains a number of close 
relatives (third cousins or closer). We therefore created a subset of 8,428 nominally 
unrelated subjects following procedures similar to those described previously6. 
After running GWAS on all the (SNP) variants in the 8,428 samples we applied 
three further variant filters to remove variants with a Hardy–Weinberg equilibrium 
P value <10−7, remove variants with MAF <0.1% and keep only those variants in 
the HRC reference panel. This resulted in a dataset with 11,734,353 SNPs.

We used two separate datasets to replicate the associated variants found in this 
study. The first set of 930 subjects was a subset of the 1,279 subjects with imaging 
data that we did not use for the main GWAS, who had primarily been excluded 
because they were not in the recent British ancestry subset. An examination of 
these samples according the genetic principal components (PCs) revealed that 
many of those samples are mostly of European ancestry (Supplementary Fig. 20). 
We selected 930 samples with a first genetic PC <14 from Supplementary Fig. 20 
and these constituted the replication sample. In January 2018 a further tranche 
of 4,588 samples with imaging data was released by UK Biobank. Of these sub-
jects, we selected 3,956 subjects that both had genetic data available and also had 
been imaged in the same imaging centre as the discovery sample. We applied the 
same pre-processing pipeline as for the discovery set. We then restricted this to 
3,456 subjects that were of recent British ancestry and replication tests were then  
conducted on these 3,456 subjects.
Potential confounds for brain IDP GWAS. There are a number of potential con-
founding variables when carrying out GWASs of brain IDPs. We used three sets of 
covariates in our analyses relating to (a) imaging confounds (b) measures of genetic 
ancestry, and (c) non-brain imaging body measures.

We identified a set of variables that were likely to represent imaging confounds, 
for example those associated with biases in noise or signal level, corruption of data 
by head motion or overall head size changes. For many of these we generated vari-
ous versions (for example, using quantile normalization and also outlier removal, 
to generate two versions of a given variable, as well as including the squares of 
these to help model nonlinear effects of the potential confounds). This was done 
in order to generate a rich set of covariates and hence reduce as much as possible 
potential confounding effects on analyses such as the GWAS, which are particularly 
of concern when the subject numbers are so high4,45.

Age and sex are can be variables of biological interest, but can also be sources 
of imaging confounds, and here were included in the confound regressors. Head 
motion is summarized from resting and task-based fMRI as the mean displacement 
(in mm) between one time point and the next, averaged over all time points and 
across the brain. Head motion can be a confounding factor for all modalities and 
not just those comprising timeseries of volumes, but is readily estimable only from 
the timeseries modalities. Nevertheless, the amount of head motion is expected to 
be reasonably similar across all modalities (for example, correlation between head 
motion in resting and task fMRI is r = 0.52) and so it is worth using fMRI-derived 
head motion estimates as confound regressors for all modalities.

The exact location of the head and the radio-frequency receiver coil in the 
scanner can affect data quality and IDPs. To help to account for variations in posi-
tion in different scanned participants, several variables have been generated that 
describe aspects of the positioning (see http://biobank.ctsu.ox.ac.uk/showcase/
field.cgi?id=25756, http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25757, 
http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25758, and http://biobank.
ctsu.ox.ac.uk/showcase/field.cgi?id=25759). The intention is that these can be 
useful as ‘confound variables’; for example, these might be regressed out of brain 
IDPs before carrying out correlations between IDPs and non-imaging variables. 
TablePosition is the Z-position of the coil (and the scanner table on which the 
coil sits) within the scanner (the Z axis points down the centre of the magnet). 
BrainCoGZ is somewhat similar, being the Z-position of the centre of the brain 
within the scanner (derived from the brain mask estimated from the T1-weighted 
structural image). BrainCoGX is the X-position (left–right) of the centre of the 
brain mask within the scanner. BrainBackY is the Y-position (front–back relative 
to the head) of the back of brain mask within the scanner.

UK Biobank brain imaging aims to maintain as fixed an acquisition protocol as 
possible during the 5–6 years that the scanning of 100,000 participants will take. 
There have been a number of minor software upgrades (the imaging study seeks to 
minimize any major hardware or software changes). Detailed descriptions of every 
protocol change, along with thorough investigations of the effects of these on the 
resulting data, will be the subject of a future paper. Here, we attempted to model 
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any long-term (over scan date) changes or drifts in the imaging protocol or soft-
ware or hardware performance, by generating a number of data-driven confounds. 
The first step was to form a temporary working version of the full subjects × IDPs 
matrix with outliers limited (see below) and no missing data, using a variant of 
low-rank matrix imputation with soft thresholding on the eigenvalues46. Next, the 
data were temporally regularized (approximate scale factor of several months with 
respect to scan date, see https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=53, 
Instance 2) with spline-based smoothing. We then applied PCA and kept the top 
10 components, to generate a basis set that reflects the primary modes of slowly 
changing drifts in the data.

To describe the full set of imaging confounds we use a notation where subscript i 
indicates quantile normalization of variables, and m indicates median-based outlier 
removal (discarding values greater than five times the median absolute deviation 
from the overall median). If no subscript is included, no normalization or outlier 
removal was carried out. Certain combinations of normalization and powers were 
not included, either because of very high redundancy with existing combinations, 
or because a particular combination was not well-behaved. The full set of variables 
used to create the confounds matrix are: a, age at time of scanning, demeaned 
(cross-subject mean subtracted); s, sex, demeaned; q, four confounds relating to 
the position of the radio-frequency coil and the head in the scanner (see above), 
all demeaned; d, ten drift confounds (see above); m, two measures of head motion 
(one from resting fMRI, one from task-based fMRI); and h, volumetric scaling 
factor needed to normalize for head size47.

The full matrix of imaging confounds is then:

× × × ×a a a s a s a a a s a s m m h q q d m

h q q d

[

]

i i i i m m m m m m i

i i i i

2 2 2 2 2 2

2

Any missing values in this matrix are set to zero after all columns have had 
their mean subtracted. This results in a full-rank matrix of 53 columns (ratio of 
maximum to minimum eigenvalues is 42.6). Additional discussion on the dangers 
and interpretation of imaging confounds in big imaging data studies, particularly 
in the context of disease studies, has been published45.

Genetic ancestry is a well-known potential confound in GWAS. We ameliorated 
this by filtering out samples that were not of recent British ancestry. However, a 
set of 40 genetic principal components (PCs) has been provided by UK Biobank6, 
and we used these PCs as covariates in all of our analyses. The matrix of imaging  
confounds, together with a matrix of 40 genetic principal components, was 
regressed out of each IDP before the analyses reported here.

There exist a number of substantial correlations between IDPs and non- 
genetic variables collected on the UK Biobank subjects4. We therefore also car-
ried out some analyses involving variables relating to blood pressure (diastolic 
and systolic), height, weight, head bone mineral density, head bone mineral 
content and two principal components from the broader set of bone mineral 
variables available (https://biobank.ctsu.ox.ac.uk/crystal/docs/DXA_explan_
doc.pdf). Supplementary Fig. 21 shows the association of these eight variables 
against the IDPs and shows significant associations. These are variables that 
are likely to have a genetic basis, at least in part. Genetic variants associated 
with these variables might then produce false positive associations for IDPs. 
To investigate this possibility, we ran GWASs for these eight traits (conditioned 
on the imaging confounds and genetic PCs) (Supplementary Fig. 22). We also 
ran a parallel set of IDP GWASs with these ‘body confounds’ regressed out of 
the IDPs.
Heritability and genetic correlation of IDPs. We used a linear mixed model 
implemented in the SBAT (sparse Bayesian association test) software (https://
jmarchini.org/sbat/) to calculate additive genetic heritabilities for the P = 3,144 
traits. To estimate genetic correlations we used a multi-trait mixed model. If Y is 
an N × P matrix of P phenotypes (columns) measured on N individuals (rows) 
then we use the model:

ε= +Y U (1)

where U is an N × P matrix of random effects and ε is an N × P matrix of residuals, 
and these are modelled using Matrix normal distributions as follows:

~U MN K B(0, , )

ε~MN I E(0, , )N

In this model, K is the N × N kinship matrix between individuals, B is the P × P 
matrix of genetic covariances between phenotypes and E is the P × P matrix of 
residual covariances between phenotypes. We estimate the covariance matrices 
B and E using a new C++ implementation of an EM algorithm48 included in the 
SBAT software (https://jmarchini.org/sbat/).

For the marginal heritabilities and genetic correlation analysis we used a realized 
relationship matrix (RRM) for the kinship matrix (K). This RRM was calculated 
from the 8,428 nominally unrelated individuals using fastLMM (https://github.
com/MicrosoftGenomics/FaST-LMM). We used the subset of imputed SNPs 
that were both assayed by the genotyping chips and included in the HRC refer-
ence panel, and so will essentially be hard-called genotypes. In addition, all SNPs 
with duplicate rsids (reference SNP cluster IDs) were removed. PLINK (http://
www.cog-genomics.org/plink/2.0/) was used for file conversion before input into 
fastLMM.

To estimate genetic correlations, we fit the model to several of the groupings of 
IDPs detailed in Supplementary Table 12. The estimated covariance matrices B and 
E were used to estimate the genetic correlation of pairs of IDPs. The genetic correla-
tion between the ith and jth IDPs in a jointly analysed group of IDPs is estimated as

=r
B

B B
ij

ij

ii jj

Multi-trait association tests. We used a multi-trait mixed model to test each SNP 
for association with different groupings of traits (Supplementary Table 7). The 
model has the form Y = Gα + U + ε, where G is an N × 1 vector of SNP dosages 
and α is a 1 × P vector of effect sizes. We fit the model using estimates of B and 
E from the ‘null’ model with α = 0 and a leave one chromosome out (LOCO) 
approach for RRM calculation. We ran this test on the main set of 8,428 samples 
and on the replication samples. For the replication analysis we used the estimates 
of B and E from the main set of 8,428 samples. This test was implemented in SBAT 
software.
Genetic association of IDPs. We used BGENIE v1.2 (https://jmarchini.org/ 
bgenie/) to carry out GWASs of imputed variants against each of the processed IDPs. 
This program was designed to carry out the large number of IDP GWAS required 
in this analysis. It avoids repeated reading of the genetic data file for each IDP and 
uses efficient linear algebra libraries and threading to achieve good performance.  
The program has already been used by several studies to analyse genetic data from 
the UK Biobank49,50. We fit an additive model of association at each variant, using 
expected genotype count (dosage) from the imputed genetic data. We ran associated  
tests on the main set of 8,428 samples and the replication samples.
Identifying associated genetic loci. Most GWAS analyse only one or a few different  
phenotypes, and often uncover just a handful of associated genetic loci, which can be 
interrogated in detail. Owing to the large number of associations uncovered in this 
study, we developed an automated method to identify, distinguish and count indi-
vidual associated loci from the 3,144 GWASs (one GWAS for each IDP). For each 
GWAS we first identified all variants with –log10(P) > 7.5. We applied an iterative  
process that starts by identifying the most strongly associated variant, storing it as 
a lead variant, and then removing it, and all variants within 0.25 cM from the list 
of variants (equivalent to approximately 250 kb in physical distance). The process 
was then repeated until the list of variants was empty. We applied this process to 
each GWAS using two filters on MAF: (a) MAF > 0.1%, and (b) MAF > 1%. We 
grouped associated lead SNPs across phenotypes into clusters. This process first 
grouped SNPs within 0.25 cM of each other, and this mostly produced sensible 
clusters, but some hand curation was used to merge or split clusters based on visual 
inspection of cluster plots and levels of linkage disequilibrium between SNPs. For 
some clusters in Extended Data Table 1, we report coding SNPs that were found 
to be in high linkage disequilibrium with the lead SNPs.
Accounting for multiple IDPs. We adjusted the genome-wide significance threshold  
(−log10(P) > 7.5) by a Bonferroni factor (–log10(3,144) = 3.5) that accounts for 
the number of IDPs tested, giving a threshold of –log10(P) > 11. This assumes 
(incorrectly) that the IDPs are independent and so is likely to be conservative, but 
we preferred to be cautious when analysing so many IDPs.
Genetic correlation analysis. We used linkage disequilibrium score regression51 
to estimate the genetic correlation between the IDPs studied in our analysis and 
ten disease-, personality- or brain-related traits. We gathered summary statistics 
for GWASs of the neuroticism personality trait (https://www.thessgac.org/data), 
autism spectrum (https://www.med.unc.edu/pgc/) and sleep duration (http://www.
t2diabetesgenes.org/data/) and also seven disease traits: attention deficit hyper-
activity disorder, schizophrenia, major depressive disorder and bipolar disorder 
(https://www.med.unc.edu/pgc/), Alzheimer’s disease (http://web.pasteur-lille.
fr/en/recherche/u744/igap/igap_download.php), stroke (PMC4818561 from 
http://cerebrovascularportal.org/informational/downloads) and amyotrophic 
lateral sclerosis (http://databrowser.projectmine.com/). The number of samples 
in each of these studies and the DOIs for the corresponding studies are provided 
in Supplementary Table 13.

For each IDP–trait pair, we used the LDSCORE regression software (v1.0.0; 
https://github.com/bulik/ldsc) to compute the genetic correlation between the 
IDP and the trait, with linkage disequilibrium measurements taken from the 
1000 Genomes Project (provided by the maintainers of the LDSCORE regression  
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software). We filtered the SNPs to include only those with imputation INFO ≥ 0.9 
and MAF ≥ 0.1%. Only INFO scores for major depressive disorder, schizophrenia 
and attention deficit hyperactivity disorder were provided by the source studies, 
and so for these three analyses we applied the INFO threshold to both the SNPs 
from our study and also the source study. For the remaining six studies, an INFO 
filter was applied to the SNPs from our own study. Owing to low levels of herit-
ability of the functional edge IDPs, all of these were removed from this analysis. 
As calculation of genetic correlation between traits only really makes sense if both 
traits are themselves heritable, we only used those IDPs with z-scores for signifi-
cantly non-zero heritability greater than 4. In total, we used 897 IDPs. To account 
for correlations between IDPs, we used the raw phenotype correlation matrix to 
simulate z-scores (and associated tail probabilities) using samples from a multi-
variate normal distribution with that same correlation matrix.
Analysis of enrichment of functional categories. We used the LDSCORE regres-
sion software to carry out the heritability enrichment partitioning analysis into dif-
ferent functional categories (https://github.com/bulik/ldsc). We used 24 functional 
categories: coding, UTR, promoter, intron, histone marks H3K4me1, H3K4me3, 
H3K9ac5 and two versions of H3K27ac, open chromatin DNase I hypersensitivity 
site (DHS) regions, combined chromHMM/Segway predictions, regions conserved 
in mammals, super-enhancers and active enhancers from the FANTOM5 panel of 
samples. For each IDP, the enrichment of each functional category was summarized 
as the proportion of h2 explained by the category divided by the proportion of 
common variants in the category. For each IDP and each annotation we used the 
two-sided enrichment P value as reported by the LDSCORE regression software.  
We labelled those P values as enriched or depleted depending on whether the 
enrichment estimate was greater or less than 1. We stratified these P values  
accordingly into 23 groups of IDPs.
Code availability. Most of the software and code used in this study are publicly 
available, including custom Matlab scripts used to prepare IDPs for GWAS (http://
www.fmrib.ox.ac.uk/ukbiobank/gwaspaper/). Pre-compiled binaries for the latest 
version of BGENIE and SBAT are available at https://jmarchini.org/software/. This 
software is currently licensed free for use by researchers at academic institutions. 
Commercial organizations wishing to use these packages must enquire about a 
licence from the University of Oxford. Brain image processing was largely carried 
out with FSL (FMRIB’s Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and 
further Matlab-based preparation of IDPs and imaging confounds utilized code 
from FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets).

Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The full set of GWAS results from this study is available on the Oxford BIG web 
browser (http://big.stats.ox.ac.uk/), which allows users to browse associations by 
SNP, gene or phenotype.
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Extended Data Fig. 1 | Manhattan plot and spatial mapping of the 
associations between grey matter volume and rs13107325 (SLC39A8). 
a, The Manhattan plot relates to the original GWAS for the IDP of grey 
matter volume in the left ventral striatum. b, c, Spatial mapping of 
rs13107325 against voxelwise local grey matter volume (grey matter was 
averaged across all 1,181 subjects with one copy of the non-reference allele, 
and the average from all 7,215 subjects that had zero copies was subtracted 

from that, for display in colour here; the difference was thresholded at 
0.015 (unitless relative measure of local grey matter volume)). The maps 
show that the effect of rs13107325 is found more generally bilaterally in 
the ventral caudate, putamen, ventral striatum, anterior cingulate cortex, 
and with a strong cerebellar contribution (lobules VI–X), particularly 
in the prefrontal-projecting Crus I/II, which are selectively expanded in 
humans.
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#IDPs with p−value < 0.05

Coding UCSC (0.015)
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Enhancer Hoffman (0.063)

FetalDHS Trynka (0.085)

H3K27ac Hnisz (0.391)

H3K27ac PGC2 (0.269)

H3K4me1 Trynka (0.427)

H3K4me3 Trynka (0.133)

H3K9ac Trynka (0.126)

Intron UCSC (0.387)

Promoter UCSC (0.031)

PromoterFlanking Hoffman (0.008)

Repressed Hoffman (0.461)

SuperEnhancer Hnisz (0.168)

TFBS ENCODE (0.132)

Transcribed Hoffman (0.345)

TSS Hoffman (0.018)

UTR 3 UCSC (0.011)

UTR 5 UCSC (0.005)

WeakEnhancer Hoffman (0.021)
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[0.8 − 1.0)

[0.6 − 0.8)

[0.4 − 0.6)

[0.2 − 0.4)

[0.1 − 0.2)

[0.05 − 0.1)

[0 − 0.05)

Extended Data Fig. 2 | Partitioning of heritability by functional 
category. The plot shows the proportion of IDPs in each of the 23 IDP 
groupings (x-axis) that show a nominal enrichment P value <0.05  
(two-sided tests, uncorrected P values, see Methods) for the 24 functional 
categories (y-axis). The total number of such IDPs for each category is 

given on the right edge of the plot. The number of IDPs in each IDP group 
is given in parentheses in the x-axis labels. The proportion of the genome 
annotated by each functional category is given in parentheses in the y-axis 
labels.
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Extended Data Table 1 | Summary of most highly associated SNP–IDP clusters

The table summarizes the 38 clusters of SNP–IDP associations (n = 8,428 subjects, see main text and Methods for details). For each cluster, the most signi�cant association between an SNP and an IDP 
is detailed by the chromosome, rsID, base-pair position, SNP alleles, non-reference allele frequency, P value in the discovery sample and the replication P values. The locus column details a gene if the 
SNP is in that gene. If we found a coding SNP or eQTL in high linkage disequilibrium with the lead SNP, then this is reported instead.

© 2018 Springer Nature Limited. All rights reserved.
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Software and code

Policy information about availability of computer code
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 Oxford BIG server http://big.stats.ox.ac.uk/ 

 BGENIE v1.2 https://jmarchini.org/bgenie/ 

 SBAT https://jmarchini.org/sbat/ 

 fastLMM https://github.com/MicrosoftGenomics/FaST-LMM 

 PLINK v2.0 http://www.cog-genomics.org/plink/2.0/ 

 LDSCORE v1.0.0 regression software https://github.com/bulik/ldsc 

 PheWeb https://github.com/statgen/pheweb/ 

 FSL v5.0 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 

 FSLNets v0.6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets 

 FreeSurfer v6.0.0 https://surfer.nmr.mgh.harvard.edu 

 Matlab code for working with IDPs is available at http://www.fmrib.ox.ac.uk/ukbiobank/gwaspaper/

Data analysis Please see above.
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upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Data Availability 

 

Full details of availability of source data and results data are covered in the main text and are re-summarised here. The data used in this work was obtained from UK 

Biobank under Data Access Application 8107 and (as with all UK Biobank data) are available to any bona fide researcher upon data access application to UK Biobank. 

  

A custom quality control, phasing and imputation pipeline was developed to address the challenges specific to the experimental design, scale, and diversity of the 

UK Biobank dataset. The genetic data was publicly released in July 2017 and consists of ~96 million genetic variants in ~500,000 participants. 

 

The UK Biobank Brain imaging protocol consists of 6 distinct modalities covering structural, diffusion and functional imaging, summarised in Supplementary Table 1. 

For this study, we primarily used data from the February 2017 release of ~10,000 participants’ imaging data (and an additional ~5,000 subjects’ data released in 

January 2018 provided the larger replication sample). The raw data from these 6 modalities has been processed for UK Biobank to create a set of imaging derived 

phenotypes (IDPs). These are available from UK Biobank, and it is these IDPs from the 2017/18 data releases that we used in this study. 

 

The full set of GWAS results from this study are available on the Oxford Brain Imaging Genetics (BIG) web browser, that allows users to browse associations by SNP, 

gene or phenotype.  

 

For the genetic correlation analysis we used summary statistic data from several GWAS of brain related conditions as follows: the ISGC Cerebrovascular Disease 

Knowledge Portal, International Genomics of Alzheimer's Project (IGAP), the Project MinE GWAS Consortium, the Social Science Genetic Association Consortium 

(SSGAC), the University of Exeter research group on Type 2 Diabetes, Obesity, Growth & Reproductive Ageing Genetics, the Psychiatric Genomics Consortium (PGC) 

and the ENIGMA consortium.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences

Study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Please see next question for sample size.  No power calculation was needed in advance and we used all samples available (see below).

Data exclusions We used the imputed genetic dataset made available by UK Biobank in its July 2017 

 release[6]. This consists of >92 million autosomal variants imputed from the Haplotype 

 Reference Consortium (HRC) reference panel[79] and a merged UK10K + 1000 

 Genomes reference panel. We first identified a set of 12,623 participants who had also 

 been imaged by UK Biobank. We then applied filters to remove variants with minor 

 allele frequency (MAF) below 0.1% and with an imputation information score below 

 0.3, which reduced the number of SNPs to 18,174,817. We then kept only those 

 samples (subjects) estimated to have recent British ancestry using the sample quality 

 control information provided centrally by UK Biobank[6] (using the variable 

 in.white.British.ancestry.subset in the file ukb_sqc_v2.txt); population structure can be 

 a serious confound to genetic association studies[80], and this type of sample filtering is 

 standard. This reduced the number of samples to 8,522. The UK Biobank dataset 

 contains a number of close relatives (3rd cousin or closer). We therefore created a 

 subset of 8,428 nominally unrelated subjects following similar procedures in Bycroft 

 et al. (2017). After running GWAS on all the (SNP) variants in the 8,428 samples we 

 applied three further variant filters to remove variants with a HWE (Hardy-Weinberg 

 equilibrium) p-value less than 10-7, remove variants with MAF<0.1% and to keep 

 only those variants in the HRC reference panel. This resulted in a dataset with 

 11,734,353 SNPs. Subjects were aged 40-69y at the point of original recruitment and 

45-79y at the time of MRI scanning; 52% female.

Replication Two successful replication-sample analyses were carried out:  
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In all analyses we estimated genetic effects with respect to the number of copies of the non-reference allele. In the discovery dataset, using a 

minor allele frequency filter of 1% and a –log10 p-value threshold of 7.5, we found 1,262 significant associations between SNPs and the 3,144 

IDPs. These associations span all classes of IDPs, except task fMRI (Supplementary Table 4), with the swMRI T2* group showing a relatively 

large number of associations. The –log10 p-value threshold of 7.5 controls for the number of tests carried out across SNPs and accounts for 

the correlation structure between genetic variants. 844 and 455 of these 1,262 associations replicated at the 5% significance level using our 

two smaller replication datasets (Methods and Supplementary Table 5). Some associated genetic loci overlap across IDPs; we estimate that 

there are approximately 427 distinct associated genetic regions (“clusters”), and 148 of these “clusters” have a lead SNP that replicates at the 

5% level in our replication set of 3,456 participants, and 91 below a 5% False Discovery Rate (FDR) threshold. We would expect ~21 of the lead 

SNPs in the 148 clusters to replicate under a null hypothesis of no association. 

 

At a threshold of -log10 p-value > 11, which additionally corrects for all 3,144 GWAS carried out (see Methods), we find 368 significant 

associations between genetic regions and distinct IDPs (Supplementary Table 6, Supplementary Fig. 4). These associations with 78 unique 

SNPs can be grouped together into 38 distinct clusters by grouping across IDPs (Extended Data Table 1). Taking our lead SNP in each of the 38 

regions, we find that all 38 have p<0.05 in our replication set of 3,456 participants, and all 38 are significant at 5% FDR. We found no 

appreciable change in these GWAS results when we included a set of potential body confound measures in addition to the main set of imaging 

confound measures (see Methods and Supplementary Fig. 5). We also carried out a Winner’s Curse corrected post-hoc power analysis that 

agrees well with the results of our replication studies. (Supplementary Note 2). 

Randomization UK Biobank is an observational prospective epidemiological study, and the GWAS and heritability analyses in our study use all available 

subjects that fulfil the criteria described above. Hence there is no equivalent process of randomization that comes into this analysis (this is not 

a controlled randomised study).

Blinding For exactly the same reasons (this is not a controlled randomised study), there is no step equivalent to blinding involved.

Materials & experimental systems

Policy information about availability of materials

n/a Involved in the study

Unique materials

Antibodies

Eukaryotic cell lines

Research animals

Human research participants

Human research participants

Policy information about studies involving human research participants

Population characteristics We used the imputed genetic dataset made available by UK Biobank in its July 2017 

 release[6]. This consists of >92 million autosomal variants imputed from the Haplotype 

 Reference Consortium (HRC) reference panel[79] and a merged UK10K + 1000 

 Genomes reference panel. We first identified a set of 12,623 participants who had also 

 been imaged by UK Biobank. We then applied filters to remove variants with minor 

 allele frequency (MAF) below 0.1% and with an imputation information score below 

 0.3, which reduced the number of SNPs to 18,174,817. We then kept only those 

 samples (subjects) estimated to have recent British ancestry using the sample quality 

 control information provided centrally by UK Biobank[6] (using the variable 

 in.white.British.ancestry.subset in the file ukb_sqc_v2.txt); population structure can be 

 a serious confound to genetic association studies[80], and this type of sample filtering is 

 standard. This reduced the number of samples to 8,522. The UK Biobank dataset 

 contains a number of close relatives (3rd cousin or closer). We therefore created a 

 subset of 8,428 nominally unrelated subjects following similar procedures in Bycroft 

 et al. (2017). After running GWAS on all the (SNP) variants in the 8,428 samples we 

 applied three further variant filters to remove variants with a HWE (Hardy-Weinberg 

 equilibrium) p-value less than 10-7, remove variants with MAF<0.1% and to keep 

 only those variants in the HRC reference panel. This resulted in a dataset with 

 11,734,353 SNPs. Subjects were aged 40-69y at the point of original recruitment and 

45-79y at the time of MRI scanning; 52% female.

Method-specific reporting
n/a Involved in the study

ChIP-seq

Flow cytometry

Magnetic resonance imaging
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Magnetic resonance imaging

Experimental design

Design type Please see "Methods" for full details. Our analyses include data from Structural MRI (T1 and T2FLAIR), susceptibility-

weighted MRI, diffusion MRI, task functional MRI and resting-state functional MRI.

Design specifications MRI data processing (to generate imaging-derived phenotypes) was done previously and is full described in references 4 

(Miller) and 5 (Alfaro-Almagro).

Behavioral performance measures Behavioral performance in the MRI scanner was not used in this study.

Acquisition

Imaging type(s) Please see "Methods" for full details. Our analyses include data from Structural MRI (T1 and T2FLAIR), susceptibility-

weighted MRI, diffusion MRI, task functional MRI and resting-state functional MRI.

Field strength 3T

Sequence & imaging parameters MRI data acquisition for these 6 modalities covers several pages of full detail, which is fully provided previously in 

reference 4 (Miller).

Area of acquisition Siemens' auto-align was used to include the full brain in the imaged field-of-view; this was checked (and corrected if 

necessary) by the radiographer.

Diffusion MRI Used Not used

Parameters Please see above for information about full details. Summary:  100 distinct directions spread over two b shells (1000 and 2000). 2mm 

isotropic voxels.

Preprocessing

Preprocessing software See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Normalization See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Normalization template See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Noise and artifact removal See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Volume censoring See above (covered previously in full detail in Miller and in Alfaro-Almagro). No volume censoring.

Statistical modeling & inference

Model type and settings See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Effect(s) tested See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Inference was not carried out when generating IDPs, but within this study inference was applied at the level of the 

combined imaging-genetics modelling (see above).

Correction See above (Statistic type for inference).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Partial correlation.

Multivariate modeling and predictive analysis New features were generated using independent component analysis applied to partial correlation edge 

strengths - see text around line ~500 in main paper.
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