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Genome‑wide association studies 
of polygenic risk score‑derived 
phenotypes may lead to inflated 
false positive rates
Emil Uffelmann 1*, Danielle Posthuma 1,2 & Wouter J. Peyrot 1,3

arising from: C. Gouveia et al.; Scientific Reports https:// doi. org/ 10. 1038/ s41598- 022- 12391-2 (2022).

Gouveia and colleagues (2022)1 conducted a genome-wide association study (GWAS) of a polygenic risk score 
(PRS)-derived phenotype (N = 37,784), in which they identified 246 independent loci and 473 lead SNPs. This is 
an enormous increase compared to the most recent and largest GWAS of  AD2 (N = 1,126,563), which identified 38 
loci. Here we show that the applied approach by Gouveia and colleagues may lead to an inflated false positive rate.

In this approach, beta-estimates from a recent GWAS of Alzheimer’s disease (AD)3 were used to construct 
PRSs in the European UK  Biobank4 sample, using pruning and  thresholding5 with a p-value threshold of 5%. 
Next, a new case–control phenotype was constructed based on the bottom and top 5% of the PRS distribution, 
removing 90% of their initial sample. Lastly, a GWAS was conducted on this new PRS-derived phenotype. The 
authors reasoned that by enriching the sample for individuals with known AD-associated variants, you may 
also enrich for unknown AD-associated variants. Our major concern is that the applied approach used the same 
single-nucleotide polymorphisms (SNPs) to construct, as well as to predict the phenotype. In other words, the 
phenotype was partly regressed on itself, which can inflate test statistics.

We performed simulations roughly emulating the approach (see Methods). In short, we simulated individual 
phenotypes under a liability threshold model and genotypes that loosely reflect the genetic architecture of  AD2,3,6 
(excluding the APOE locus) including 170,000 independent SNPs of which 1200 were causal and 168,800 were 
non-causal (null-SNPs). We then simulated a discovery sample such that the PRS explains approximately 5% of 
the phenotypic variance on the liability scale (N = 366,771). We ran a GWAS of AD in this discovery sample and 
used the estimated betas to construct a PRS in a target sample (N = 300,000). We then selected individuals in 
the top and bottom 5% of the PRS distribution (N = 30,000) and ran a second GWAS on this new PRS-derived 
case–control phenotype. The target cohort overlapped to varying degrees with the discovery cohort (i.e. 0%, 50%, 
and 100%), noting the AD GWAS summary statistics used by Gouveia and colleagues (2022)1 also contained 
the UK Biobank.

Our results show highly inflated false positive rates in the GWAS of the PRS-derived phenotype (see Fig. 1 
and Supplementary Table). Across all null-SNPs and when there is no overlap between discovery and target 
cohort, the false positive rate was 0.0024 (s.e.m. = 1 ×  10–5), which constitutes a 48,000-fold increase compared 
to a well-controlled false positive rate of 5 ×  10–8 (see Supplementary Fig. 1 for α = 0.05). This inflation is driven 
by null-SNPs that were used to construct the PRS-derived phenotype. The false positive rate of these null-SNPs 
was equal to 0.05 (s.e.m. = 0.0002, a 1 ×  106-fold increase) when there was no overlap, while null-SNPs which 
were not used to construct the PRS-derived phenotype did not show any inflation. We also looked at the num-
ber of false positive associations per study (i.e. false positive rate times the number of null-SNPs considered), 
which was 402 on average when there was no overlap and was fully driven by SNPs used to construct the PRS-
derived phenotype. Decreasing the significance threshold does not protect from inflation in false positive rates. 
At a significance threshold of 1 ×  10–15, we observe a mean false positive rate of 9.48 ×  10–6 (s.e.m. = 8.7 ×  10–7), 
a 9.5 ×  109-fold increase.

Overlap between the discovery and target cohort exacerbated false positive rate inflation, increasing the false 
positive rate to 0.004 (s.e.m. = 1.5 ×  10–5) across all null-SNPs when there was complete overlap. Similarly, the 
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number of false positive associations increased to 659 (s.e.m. = 2.6). Interestingly, overlap between the discovery 
and target cohort inflated the false positive rate for null-SNPs used to construct the PRS-derived phenotype but 
deflated it for all other null-SNPs (see Supplementary Fig. 1). The reason for this is that p-values for null-SNPs 
will be correlated between the GWAS for AD and the GWAS for the PRS-derived phenotype when there is sample 
overlap (because AD and the PRS-derived phenotype are correlated and the same individuals are used). Select-
ing SNPs with p-values smaller than 0.05 for the PRS similarly selects SNPs not part of the PRS with p-values 
larger than 0.05. As a consequence, the GWAS of the PRS-derived phenotype will have deflated test statistics at 
null-SNPs not included in the PRS.

Next, we varied the p-value threshold for inclusion in the PRS (i.e. varying the threshold from 0.05 to 1 and 
5 ×  10–8, thus including either all SNPs or only genome-wide significant SNPs, respectively). We found that using 
all SNPs in constructing the PRS-derived phenotype reduced the inflation of false positive rates (as well as the 
number of false positives, see Supplementary Fig. 2). This reduction is observed because the bias is diluted across 
all null-SNPs and so the mean false positive rate decreases. Reducing the p-value threshold to 5 ×  10–8 resulted 
in false positive rates that are not inflated. This is because almost no null-SNP had such a low p-value for AD, 
and thus almost no null-SNPs were used to construct the PRS-derived phenotype.

Lastly, we evaluated a potential power gain for causal SNPs that were not included in the PRS. We calculated 
the difference in test statistics between the two GWAS (i.e.  ZPRS-derived phenotype –  ZAD) and found a strong power 
decrease (mean difference = − 0.14, p < 2.2 *  10–16) in the GWAS of the PRS-derived phenotype. This can be 
explained by the reduction in sample size and only a partial phenotypic correlation between AD and the PRS-
derived phenotype. Thus, an increase in power can only be observed for causal SNPs included in the PRS. But 
because it is not known which SNPs are causal, true associations cannot be distinguished reliably from false 
positives.

To summarize, Gouveia and colleagues (2022)1 used a new study design with the aim to improve the power 
for a GWAS of Alzheimer’s disease. Based on simulations, we showed that this approach may lead to inflated false 
positive rates of 80,000-fold increases at a genome-wide significance threshold of 5 ×  10–8. The reason for this is 
that the same SNPs used to construct the PRS-derived phenotype were subsequently tested for association with 
this newly constructed phenotype. We found the false positive rate inflation was more pronounced in the case of 
sample overlap between the discovery and target cohort. Our results show that false positive rates are not inflated 
when the GWAS of the PRS-derived phenotype is performed on SNPs that were not also used to construct the 
PRS. However, we note that when there is linkage disequilibrium between SNPs included in the PRS and null-
SNPs not included in the PRS this could still result in an inflated false positive rate. An appealing approach may 
be to use a leave-one-chromosome-out approach, where the PRS is constructed using 21 chromosomes, and the 
GWAS of the PRS-derived phenotype only uses the 22nd left-out chromosome (repeated 22 times so that all 
chromosomes are left out once). However, in our simulations we found a power decrease for causal SNPs that 
were not included in the PRS. Moreover, we note SNPs can also be correlated across chromosomes due to e.g. 
non-random  mating7 which could in theory also lead to inflated false positive rates for this approach, but we are 
not certain about the extent of this inflation which could well be negligible. See the Supplementary Note for a 
short discussion of some other approaches analyzing (partly) PRS-derived phenotypes, including an approach 
to improve  power8,9.

Figure 1.  Inflated false positive rates in GWAS of PRS-derived phenotype. The false positive rates (a–c) are 
displayed for varying degrees of sample overlap between discovery and target cohort in a GWAS of a PRS-
derived phenotype. Across 100 simulation runs, we observe highly inflated false positive rates. For all null-SNPs, 
the mean false positive rate ranges between 0.0024 (0% overlap) and 0.0039 (100% overlap) at a significance 
threshold of 5 ×  10–8 (a). Null-SNPs used to construct the PRS-derived phenotype show the highest inflation 
(b), while all other null-SNPs do not show any inflation (c). As such, the inflation in all null-SNPs is driven 
by SNPs used to construct the PRS-derived phenotype. Increasing overlap between the target and discovery 
cohort exacerbates the inflation. We additionally plot the number of false positive associations per study (i.e. 
false positive rate per SNP times the number of SNPs considered). The mean number of false positives ranged 
between 402 and 659, and is driven by null-SNPs used to construct the PRS-derived phenotype. The error-bars 
show the 99.9%-confidence interval of the mean. See Supplementary Table for descriptive statistics.
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To conclude, phenotype definitions based on PRSs require careful consideration in subsequent GWAS. While 
excluding any SNP (and those in linkage disequilibrium) from the GWAS that was used to construct the PRS-
derived phenotype prevents inflation of false positive rates, it also leads to a loss of power for causal SNPs.

Methods
Simulation. We simulated individual genotype and phenotype data based on the liability threshold model. 
Our chosen parameters were loosely based on Alzheimer’s  disease2,3,6, with a population and sample prevalence 
of 5%, SNP-heritability (h2

SNP) of 10% on the liability scale, and a PRS that explains 5% of the variance (R2) on 
the liability scale. We simulated a total of 170,000 SNPs in linkage equilibrium with a minimum minor allele 
frequency of 0.1%, as this was the number of pruned SNPs used by Gouveia et al. (2022)1. Out of these, 1200 
SNPs were causal, as previously estimated for Alzheimer’s  disease6, and 168,800 were non-causal. We used the 
avengeme R package to calculate the number of individuals required for the discovery cohort to produce a PRS 
that explains the desired R2 value on the liability  scale10. We simulated individuals and their liabilities, such that 
individuals with liabilities larger than the liability-threshold are designated cases, and otherwise controls. We 
repeatedly simulated individuals until we reached the desired number of individuals (N = 366,771 discovery, 
N = 300,000 target). We repeated the simulation for three target cohorts. That is, within the same simulation 
run, one target cohort was fully independent of the discovery cohort (0% sample overlap), in the other 50% (and 
100%) of individuals were also present in the discovery cohort. Next, we ran a GWAS in the discovery cohort 
using plink version 1.911. Using the estimated betas, we calculated PRS in the target cohorts to determine the 
top and bottom 5% of the PRS distribution to define the PRS extremes (i.e. the PRS-derived phenotype), and 
thus removed 90% of the sample. Lastly, we ran a second GWAS of the PRS-derived phenotype (N = 30,000) 
and recorded the false positive rate and the variance of test statistics. We repeated the simulation 100 times. We 
performed several model checks to ensure our simulations have the desired characteristics; specifically, we veri-
fied that the false positive rate and test statistics are not inflated for the primary GWAS of Alzheimer’s disease.

Data availability
All code used for this manuscript is available at https:// doi. org/ 10. 5281/ zenodo. 75015 20. Simulation results can 
be downloaded from https:// doi. org/ 10. 5281/ zenodo. 73304 90.
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