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ORIGINAL ARTICLE

Genome-wide association study across European and African

American ancestries identifies a SNP in DNMT3B contributing

to nicotine dependence
DB Hancock1, Y Guo2, GW Reginsson3, NC Gaddis4, SM Lutz5, R Sherva6, A Loukola7, CC Minica8, CA Markunas1, Y Han9, KA Young10,

DF Gudbjartsson3,11, F Gu12, DW McNeil13,14, B Qaiser7, C Glasheen1, S Olson15, MT Landi12, PAF Madden16, LA Farrer6,17,18,19,20,

J Vink8,21, NL Saccone22, MC Neale23,24, HR Kranzler25,26, J McKay27, RJ Hung28, CI Amos9, ML Marazita29, DI Boomsma8, TB Baker30,

J Gelernter31,32,33,34, J Kaprio7,35, NE Caporaso12, TE Thorgeirsson3, JE Hokanson10, LJ Bierut16, K Stefansson3 and EO Johnson36

Cigarette smoking is a leading cause of preventable mortality worldwide. Nicotine dependence, which reduces the likelihood of

quitting smoking, is a heritable trait with firmly established associations with sequence variants in nicotine acetylcholine receptor

genes and at other loci. To search for additional loci, we conducted a genome-wide association study (GWAS) meta-analysis of

nicotine dependence, totaling 38,602 smokers (28,677 Europeans/European Americans and 9925 African Americans) across 15

studies. In this largest-ever GWAS meta-analysis for nicotine dependence and the largest-ever cross-ancestry GWAS meta-analysis

for any smoking phenotype, we reconfirmed the well-known CHRNA5-CHRNA3-CHRNB4 genes and further yielded a novel

association in the DNA methyltransferase gene DNMT3B. The intronic DNMT3B rs910083-C allele (frequency = 44–77%) was

associated with increased risk of nicotine dependence at P= 3.7 × 10− 8 (odds ratio (OR) = 1.06 and 95% confidence interval

(CI) = 1.04–1.07 for severe vs mild dependence). The association was independently confirmed in the UK Biobank (N= 48,931) using

heavy vs never smoking as a proxy phenotype (P= 3.6 × 10− 4, OR = 1.05, and 95% CI = 1.02–1.08). Rs910083-C is also associated with

increased risk of squamous cell lung carcinoma in the International Lung Cancer Consortium (N= 60,586, meta-analysis P= 0.0095,

OR= 1.05, and 95% CI = 1.01–1.09). Moreover, rs910083-C was implicated as a cis-methylation quantitative trait locus (QTL) variant

associated with higher DNMT3B methylation in fetal brain (N= 166, P= 2.3 × 10− 26) and a cis-expression QTL variant associated with

higher DNMT3B expression in adult cerebellum from the Genotype-Tissue Expression project (N= 103, P= 3.0 × 10− 6) and the

independent Brain eQTL Almanac (N= 134, P= 0.028). This novel DNMT3B cis-acting QTL variant highlights the importance of

genetically influenced regulation in brain on the risks of nicotine dependence, heavy smoking and consequent lung cancer.

Molecular Psychiatry advance online publication, 3 October 2017; doi:10.1038/mp.2017.193

INTRODUCTION

Cigarette smoking is a leading cause of preventable death,

resulting annually in nearly 6 million premature deaths

worldwide.1 Smoking-related deaths are most often attributed to

increased rates of cancer, cardiovascular disease and chronic

obstructive pulmonary disease.2 Despite the well-known adverse

health effects, an estimated 45.3 million US adults smoke

cigarettes, of whom over 68% report wanting to quit.3,4
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Cigarette smoking is a complex multi-step behavior involving
initiation, regular smoking, nicotine dependence, cessation and
relapse. Some regular smokers maintain low-level smoking
without developing symptoms of dependence,5 while others
become heavily dependent smokers and experience the most
difficulty with cessation and the highest risk of relapse.6,7 Nicotine
dependence has high heritability (estimates up to 75%),8,9 and
besides reducing the likelihood of quitting smoking, it is predictive
of withdrawal severity,10 response to treatment11 and smoking-
related health outcomes.12,13

Genome-wide association study (GWAS) analyses of nicotine
dependence phenotypes14–24 have firmly established associations
with several loci, including nicotinic acetylcholine receptor genes
on chromosomes 15q25 (CHRNA5-CHRNA3-CHRNB4), 8p11
(CHRNB3-CHRNA6) and 20q13 (CHRNA4). The largest GWAS meta-
analyses relied on widely ascertained phenotypes such as
cigarettes per day (CPD),16–18 which represents only one of
several components of nicotine dependence.25 Focusing GWAS on
nicotine dependence rather than CPD may improve statistical
power for identifying variants that influence the broader construct
of dependence.19 This idea is supported by our prior nicotine
dependence GWAS meta-analysis (total N= 17,074 ever-smokers
of European/European American ancestry (EUR)]) that discovered
associations with CHRNA4 single-nucleotide polymorphisms
(SNPs) that were driven by time to first cigarette in the morning
(TTFC) and had not been detected in GWAS meta-analyses of CPD
with much larger sample sizes.23 To improve statistical power
further and to search for additional loci, we more than doubled
our sample size to perform the largest GWAS meta-analysis of
nicotine dependence to date, including 38,602 ever-smokers
(28,677 of EUR and 9925 of African American (AA) ancestries)
across 15 studies. We extended our study to include correlations
with DNA methylation (DNAm) and RNA expression (RNAexp) of
nearby genes across human brain tissues and evaluated associa-
tions with a critical smoking-related outcome: lung cancer (total
N= 81,821 cases and controls).

MATERIALS AND METHODS

Study protocols received institutional review board approval at their
respective sites. All study participants provided written informed consent.
We included the five studies from our prior GWAS meta-analysis23 and

10 additional studies. Details of their study design, genotyping, quality
control, 1000 Genomes (1000G) imputation and analysis are provided in
Supplementary Methods and Supplementary Table 1.

Nicotine dependence phenotype

We included studies with SNP genotypes and Fagerström Test for Nicotine
Dependence (FTND) data26 collected among smokers. FTND scores range
from 0 (no dependence) to 10 (highest dependence level). As before,23 we
used FTND to categorize nicotine dependence as mild (scores 0–3),
moderate (scores 4–6) or severe (scores 7–10). Two of the 15 studies
additionally included low-intensity smokers who reported CPD as ⩽ 10 but
had no data available on the other FTND items and were defined as mildly
dependent. Concordance rates between these FTND and CPD categories
showed minimal phenotype misclassification (Supplementary Methods).

Nicotine dependence GWAS meta-analysis and independent
follow-up

We used linear regression to test SNP/indel associations with categorical
nicotine dependence (mild = 0/moderate = 1/severe = 2) in each separate
study and ancestry group. Covariates included age, sex, principal
components and study-specific covariates (as needed); additional adjust-
ment for family structure was made in studies with relatives included
(Supplementary Methods).
We combined GWAS results, using METAL27 with fixed-effects inverse

variance-weighting meta-analysis, across all studies with FTND data to
maximize statistical power. Genomic control was applied to the deCODE
results to adjust for inflation due to relatedness among participants; all

other studies had low inflation values (λ⩽ 1.02). We excluded SNPs/indels
with minor allele frequency o1% in 1000G EUR or African (AFR) panels,
depending on the ancestry group analyzed. The standard threshold
(Po5 × 10− 8), originally based on 1 million independent tests genome-
wide as computed using HapMap-based imputation for EUR studies,28 has
been validated for 1000G-imputed GWAS of common variants.29 Rather
than imposing a more stringent, yet to be consistently determined,
threshold when analyzing common variants across EUR and AA
studies,29–32 we carried forward novel variation implicated at Po5 ´ 10− 8

and relied on confirmation in an independent study to declare genome-
wide significance. For this confirmation step, we utilized UK Biobank
(N= 48,931 EUR participants) results with heavy, defined as pack-years
([CPD/20 cigarettes per pack] × years smoked) ⩾ 10, vs never smoking as a
proxy phenotype.24 This prior GWAS was designed as a nested case-control
analysis that sampled the extremes of smoking behavior, and thus did not
encompass light smoking.
Regional association plots were created using LocusZoom33 with linkage

disequilibrium (LD) estimates of r2 and D′ based on 1000G EUR and AFR
panels. Allele frequencies were weighted by sample size. Odds ratio (OR)
estimates were computed using the β estimate from the SNP term in the
linear regression model (e[2 × β] for severe vs mild dependence) and then
compared across studies using the Forest Plot Viewer.34 Heterogeneity
across studies was assessed using the I2 index.35

SNP associations with DNAm and RNAexp

The top novel nicotine dependence-associated variant was assessed for cis-
acting regulatory effects, using previously published methylation quanti-
tative trait locus (meQTL) and expression QTL (eQTL) studies of
postmortem brain tissues (Supplementary Methods). We used meQTL
results from 166 fetal brain samples in the Human Developmental Biology
Resource and UK Medical Research Council Brain Banks network; these
samples were not dissected further into different tissues.36 SNP genotypes
were imputed using 1000G, and DNAm was measured using the Illumina
HumanMethylation450 BeadChip. The QTL results were obtained at http://
epigenetics.essex.ac.uk/mQTL/.
We assessed SNP associations with RNAexp of nearby genes (±1 Mb

around the transcription start sites) across adult brain tissues from the
Genotype-Tissue Expression (GTEx; https://gtexportal.org) project37 with
1000G-imputed genotypes and RNA sequencing measures from up to 103
deceased persons. We followed up cis-eQTL SNP results in the Brain eQTL
Almanac data set (N=134 EUR deceased persons, http://www.braineac.
org/), using RNAexp probes measured on Affymetrix Human Exon 1.0 ST
arrays across brain tissues, many of which overlap with tissues available in
GTEx.38

SNP associations with lung cancer

The top novel nicotine dependence-associated variant was tested for
association with lung cancer using 27,349 cases and 54,472 controls from
430 EUR studies in the Transdisciplinary Research for Cancer in Lung of
the International Lung Cancer Consortium (TRICL-ILCCO). Their genotyping,
quality control, 1000G imputation and statistical analyses were previously
described.39 Briefly, the SNP associations were derived from a meta-
analysis of logistic regression model results that compared lung cancer
cases and controls, adjusting for age, sex and the first two principal
components. Histological subtypes of adenocarcinoma and squamous cell
lung carcinoma cases were compared, separately, to controls. We removed
the EAGLE study from the original set of lung cancer studies to avoid
overlap in the nicotine dependence and lung cancer meta-analyses. All
lung cancer analyses included ever- and never-smokers; our follow-up
association testing made additional adjustments for smoking history (ever
vs never) and pack-years.

RESULTS

We performed GWAS analyses across 15 studies, totaling 38,602
(28,677 EUR and 9925 AA) ever-smokers (Supplementary Table 2),
with nicotine dependence defined as mild (N= 17,796; 46.1%),
moderate (N= 13,527; 35.0%) or severe (N= 7279; 18.9%). More
than 99% of the participants were 418 years old. Males
constituted 53.2% of the total sample size.
Our GWAS meta-analysis tested nearly 18 million genotyped

and 1000G-imputed SNPs/indels for association with mild/
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moderate/severe dependence (λ= 1.027, Supplementary
Figure 1A). We observed SNP/indel associations at meta-analysis
Po5 × 10− 8 at two loci (Figure 1): the well-known chromosome
15q25 locus spanning CHRNA5-CHRNA3-CHRNB4 (smallest meta-
analysis P= 1.3 × 10− 25) and a novel chromosome 20q11 locus
spanning the DNA (cytosine-5-)-methyltransferase 3 beta
(DNMT3B) gene (smallest meta-analysis P= 3.7 × 10− 8). No addi-
tional loci were identified at Po5 × 10− 8 in the ancestry-specific
GWAS meta-analyses (Supplementary Figures 1B–C and 2A–B).

DNMT3B SNP associations with nicotine dependence

Rs910083, an intronic DNMT3B SNP, was identified across both
ancestries: meta-analysis P= 3.7 × 10− 8 and β (standard error) =
0.032 (0.0057) for the C allele (Table 1), corresponding to OR (95%
confidence interval (CI)) of 1.06 (1.04–1.07) for severe vs mild
dependence (Supplementary Figure 3). Rs910083 was imputed
well (quality scores = 0.98–1), and it showed no evidence of
heterogeneity across studies (P= 0.71).
Rs910083-C, the minor allele for EUR (frequency = 44%) but the

major allele for AA (frequency = 77%), is associated with increased
nicotine dependence risk (Table 1): EUR-specific meta-analysis
P= 4.1 × 10− 5 and OR (95% CI) = 1.06 (1.03–1.08); and AA-specific
meta-analysis P= 7.3 × 10− 5 and OR (95% CI) = 1.10 (1.05–1.15).
Many SNPs/indels were in moderate to high LD (r240.4) with
rs910083 in 1000G EUR, spanning 220 kb (chr20:31,268,924–
31,488,466) and including DNMT3B and its neighboring genes,
microtubule-associated protein, RP/EB family, member 1 (MAPRE1)
and COMM domain containing 7 (COMMD7). However, in 1000G
AFR, SNPs in LD (r240.4) with rs910083 were localized to a 47 kb

region (chr20:31,356,560–31,403,394) including only DNMT3B
(Figures 2A–B, NCBI build 37 positions).
No DNMT3B variants have been implicated previously for any

substance use disorder (SUD) phenotype. Upstream of DNMT3B,
chromosome 20q11 also harbors the nucleolar protein 4-like
(NOL4L) gene, which was reported at genome-wide significance
for heavy vs never smoking in the UK Biobank for the indel
rs57342388.24 This indel was associated at meta-analysis
P= 0.0017 in our study (Table 1): OR (95% CI) = 1.04 (1.02–1.07)
for severe vs mild dependence for the insertion allele, consistent
with the prior result. Rs57342388 is located 216 kb upstream of
our top DNMT3B SNP rs910083. The two variants are weakly
correlated (r2= 0.11 in 1000G EUR where minor allele frequency =
2% for rs57342388 vs 18% for rs910083, r2= 0.0022 in AFR where
minor allele frequency = 19% vs 42%) but are in moderate to high
LD (D′= 0.57 in EUR, D′= 1 in AFR). In follow-up testing with both
SNPs included in the same model, both were associated with
nicotine dependence (meta-analysis P= 1.7 × 10− 6 for rs910083
and 8.3 × 10− 3 for rs57342388), showing that our observed
DNMT3B association signal is not explained by the previously
reported NOL4L signal.
We tested rs910083-C for association with each of the specific

FTND items, as presented in Supplementary Table 3. The
rs910083-C association was driven most strongly by TTFC (meta-
analysis P= 1.2 × 10− 4). Its next most significantly associated FTND
item was CPD (meta-analysis P= 0.0011). TTFC is an indicator of
withdrawal severity upon awakening40 and behavioral automati-
city (habitual smoking without awareness or cognitive control7).
Although TTFC has its distinct features (for example, strongest

Figure 1. Manhattan plot of SNP and indel associations with nicotine dependence from GWAS meta-analysis across 15 studies (total N= 38,602
European/European Americans and African Americans). The –log10 meta-analysis P-values are plotted by chromosomal position of SNPs
(depicted as circles) and indels (depicted as triangles). The genome-wide statistical significance threshold (Po5 × 10− 8) is shown as a solid
black line. GWAS, genome-wide association study; SNP, single-nucleotide polymorphism.
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predictor of cessation success among the FTND items), it is
correlated with heaviness of smoking as captured by CPD.7

DNMT3B SNP association with heavy smoking in an independent
study

Using heavy vs never smoking GWAS results from the UK Biobank
(N= 24,457 heavy and 24,474 never smokers),24 we found that
rs910083-C is associated at P= 3.6 × 10− 4 and OR (95% CI) = 1.05
(1.02–1.08) for heavier smoking. Although effect sizes were small,
its associations with risks of nicotine dependence and heavy
smoking were consistent (Table 1).

DNMT3B SNP associations with DNAm and RNAexp

Using a genome-wide meQTL study of 166 fetal brain samples,36

we found that rs910083-C associates with higher DNAm levels of
the probe cg13636640, located 252 base pairs upstream of the
DNMT3B gene (β= 0.082, P= 2.3 × 10− 26). This probe was the only
one observed in the region with significant mQTL variants
(Supplementary Figure 4). There were a total of 140 SNPs
associated with DNAm of this probe (smallest P= 1.8 × 10− 45),
and we observed associations of these SNPs with nicotine
dependence with meta-analysis P-values ranging from
3.66 × 10− 8 for rs910083 to 0.0051 (Supplementary Table 4). To
our knowledge, there are no similar data to assess cis-meQTL
effects in brain tissues from adults with no psychiatric disease.
However, we assessed the cis-acting effect of rs910083 on RNAexp
across several adult brain tissues using two independent data sets,
GTEx37 followed by Brain eQTL Almanac.38

Across the 13 brain tissues in GTEx, we observed the highest
DNMT3B gene expression levels in cerebellum (median log10
RPKM= 0.304) and cerebellar hemisphere (median log10 RPKM=
0.298), compared to median log10 RPKM⩽ − 0.325 for all other
brain tissues (Supplementary Figure 5). Moreover, across the brain
tissues, rs910083 was most significantly associated with DNMT3B
gene expression levels in cerebellum (P= 3.0 × 10− 6) and cere-
bellar hemisphere (P= 7.0 × 10− 7), with the C allele associated
with higher DNMT3B expression (Figure 3 and Supplementary
Table 5). We replicated this pattern in the Brain eQTL Almanac,
where DNMT3B mRNA transcript expression levels were highest in
cerebellar cortex (Supplementary Figure 6)—the outer layer of the
cerebellum that comprises most of its volume. Consistent with
GTEx, rs910083-C was associated with increased DNMT3B mRNA
transcript expression levels specifically in cerebellar cortex
(P= 0.028).
Beyond the brain tissues in GTEx, rs910083 is associated with

RNAexp of other genes within 1 MB (Supplementary Table 6):
MAPRE1 (smallest P= 7.3 × 10− 17 in sun exposed skin), COMMD7
(smallest P= 1.0 × 10− 6 in colon) and BPI fold containing family B,
member 2 (BPIFB4, smallest P= 5.4 × 10− 5 in artery).

DNMT3B SNP associations with lung cancer

We assessed rs910083 for association with lung cancer using a
GWAS meta-analysis of EUR studies from TRICL-ILCCO39

(N= 27,349 cases and 54,472 controls, Supplementary Table 7).
Rs910083-C is significantly associated with increased risk of
squamous cell carcinoma (N= 6937 cases and 53,649 controls,
meta-analysis P= 0.0095 and OR [95% CI] = 1.05 [1.01–1.09]),
consistent with the increased nicotine dependence risk.
Rs910083 is not associated with adenocarcinoma.
We evaluated the effect of adjusting for smoking on the

rs910083 association with squamous cell carcinoma in the studies
with smoking data readily available. We found that the level of
statistical significance and magnitude of association were both
weakened with adjustment for ever/never smoking and pack-
years (Supplementary Table 8), suggesting that the rs910083Ta
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Figure 2. Novel DNMT3B SNP associations with nicotine dependence from GWAS meta-analysis of EUR and AA studies. SNP and indel
associations are shown across DNMT3B and its 100 kb flanking region (NCBI build 37 positions presented). r2 values between the top SNP
rs910083 and all other SNPs are shown in reference to 1000 Genomes panels: (a) EUR and (b) AFR. Indels with missing r2 values are indicated
in gray. The P-value threshold of 5 × 10− 8 is marked by the solid black line. AA, African American; EUR, European/European American; GWAS,
genome-wide association study; SNP, single-nucleotide polymorphism.
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association with squamous cell carcinoma is mediated by
smoking.

DISCUSSION

This largest-ever GWAS meta-analysis for nicotine dependence,
and the largest-ever cross-ancestry GWAS meta-analysis for any
smoking phenotype, identified rs910083 as a novel SNP that
regulates DNMT3B in human brain and contributes to risks of
nicotine dependence and heavy smoking. Rs910083 was dis-
covered via meta-analysis of two ancestry groups; the association
signal includes SNPs in high LD with rs910083 across the
COMMD7, DNMT3B and MAPRE1 genes in EUR ancestry, but LD is
localized to the DNMT3B gene in AA ancestry. Moreover, rs910083
was implicated as a cis-acting QTL SNP that influences DNMT3B
DNAm in fetal brain and DNMT3B RNAexp in adult cerebellum,
with the C allele being associated with higher DNAm and RNAexp
levels. While this pattern might contrast the traditional view of
higher DNAm being correlated with lower RNAexp, the observed
effects reflect temporal and spatial differences, thus limiting our
ability to draw direct correlations. Nonetheless, genome-wide QTL
comparisons in human brain have shown that almost half of SNPs
that act as both an eQTL and meQTL show the same direction of
association for DNAm and RNAexp,41 as we observed here for
DNMT3B and before for CHRNA5.42 The previously established
nicotinic acetylcholine receptor genes also harbor nicotine
dependence-associated SNPs with important consequences for
gene regulation, including noncoding SNPs that correlate with
DNAm,42 splicing,23 and/or RNAexp43,44 in brain tissues that are
frequently studied for nicotine and other SUDs because of their
role in primary reward pathways and executive function, such as
prefrontal cortex.45 This newly identified DNMT3B SNP association
highlights changes in DNAm in fetal brain and with RNAexp
specifically in cerebellum, a part of the brain that has often been

overlooked despite some indications for its involvement in the
neurobiology of addiction.46–48

DNMT3B encodes a DNA methyltransferase prominently
involved in de novo DNAm that establishes patterns early in
development; it may also contribute to maintenance DNAm.49

Although initially reported for maintaining DNAm at imprinted
loci,50 later evidence showed that other members of the DNMT
family (DNMT3A and DNMT3L) are required for imprinting, while
DNMT3B may not play an essential role.51 Mouse models have
shown that complete loss of DNMT3B function is embryonically
lethal.50 However, recessive inheritance of rare mutations that
render DNMT3B partially functional are known to cause Immuno-
deficiency, Centromeric instability and Facial dysmorphism
syndrome, which manifests with growth and neurodevelopmental
abnormalities.49 Because of the critical role that DNMT3B plays in
establishing methylation, altered expression has been associated
with Immunodeficiency, Centromeric instability and Facial dys-
morphism syndrome at 4700 genes involved in brain develop-
ment and other processes.52 These and other genes that are
regulated by DNMT3B methylation represent candidate genes that
may directly contribute to nicotine dependence susceptibility.
DNMT3B has not previously been connected with the biology

underlying the risk of nicotine dependence or any other SUD.
However, there is evidence that in vitro cigarette smoke exposure
leads to increased DNMT3B expression in human respiratory
epithelial cells, and DNMT3B overexpression results in downstream
hypermethylation that has been widely implicated in lung
cancer.53 Given this indication, DNMT inhibition has been an
active area of research for cancer treatment; two inhibitor agents
are currently approved by the US Food and Drug Administration
(decitabine, which shows high affinity for DNMT3A/3B over
DNMT1,54 and azacytidine), and at least one other promising
agent (zebularine) awaits clinical trial testing.55 With the DNMT3B
variant discovery for nicotine dependence, DNMT3B inhibition

Figure 3. Normalized DNMT3B gene expression levels as a function of rs910083 genotype in cerebellum from the Genotype-Tissue Expression
(GTEx) project. The box lines mark the first quartile, median and third quartile; and the whiskers are marked by the highest and lowest data
points within the 1.5 × inter-quartile range (third–first quartile) to show outliers that fall outside of these boundaries.
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may merit future study for smoking cessation treatment. Rs910083
resides in an active promoter marked by H3K9ac in several brain
regions examined in the Roadmap Epigenomics Project,56 and it
associates with DNMT3B RNAexp specifically in the cerebellum.
This finding does not negate the importance of other brain
regions known to be involved in SUDs but brings up the possibility
of altered gene regulation in the cerebellum contributing to the
complex neurobiological pathway leading to dependence. A main
function of the cerebellum is motor coordination, but it is also
involved in non-motor functions relevant to SUD, including
reward.46–48 The cerebellum responds to acute and long-term
exposures to nicotine57–62 and other substances,47 and it makes
functional connections with the prefrontal cortex and other brain
tissues that are widely recognized for their involvement in SUDs.47

Our discovery of the rs910083 association with nicotine
dependence was made possible by assembling the largest
possible sample size of FTND studies comprised of ever-smokers
to maximize statistical power. No large FTND studies were left for
replication, but because CPD is a central component of both the
FTND and the heavy vs never smoking definition used in the UK
Biobank, we tested for independent confirmation of the novel
association with heavy vs never smoking and found that
rs910083-C also conferred risk in the UK Biobank.
Larger GWAS meta-analyses have been reported for other

smoking phenotypes such as ever vs never smoking, but these
studies were comprised only of EUR participants and based on
HapMap imputation.16–18 Rs910083, a 1000G-imputed SNP, was
not captured in these studies, but 9 of the 18 DNMT3B SNPs
associated with nicotine dependence at meta-analysis
Po5 ´ 10− 7 in the present study were HapMap-imputed
(Supplementary Table 9); these SNPs were in strong LD with
rs910083 among EURs (r2= 0.78–0.99 in 1000G EUR) but weaker
LD among AAs (r2= 0.29–0.76 in 1000G AFR). Using results from
the largest GWAS meta-analysis of CPD (Tobacco and Genetics
(TAG) consortium, N= 38,181 EUR ever smokers independent of
the ones included here), we found that the nine HapMap-imputed
DNMT3B SNPs were associated with CPD at P-values ranging from
0.027 to 0.059 and a consistent direction of association with
nicotine dependence; in comparison, P-values for ever vs never
smoking (N= 74,035 in the TAG consortium) ranged from 0.049 to
0.34 (Supplementary Table 9). We caution that the best DNTM3B
signal in the TAG consortium was observed for CPD at only
nominal significance (smallest P= 0.027), despite having a nearly
equivalent sample size as our study. However, our study yielding
more statistically significant DNMT3B SNP associations with
nicotine dependence (smallest P= 3.7 × 10− 8) is likely due to a
combination of factors, including (1) reliance on FTND, a multi-
dimensional phenotype that encompasses CPD and other
important features of smoking behavior including TTFC that
drove the rs910083 association, and (2) 1000G imputation which
has been shown to strengthen association signals for some loci
due to the finer mapping available.63,64 We have similarly
observed more statistically significant associations with nicotine
dependence and stronger effect sizes, compared to CPD, in prior
studies of CHRNB319 and CHRNA4.23

Until now, the only common DNMT3B variant implicated by
GWAS was identified in a study of inflammatory bowel disease
(intronic rs4911259).65 This SNP was associated with nicotine
dependence in our meta-analysis (P= 3.5 × 10− 6) and is in LD with
our top SNP rs910083 (r2= 0.76 and D′= 1 in 1000G EUR, r2= 0.16
and D′= 1 in 1000G AFR). Cigarette smoking is the environmental
factor most consistently associated with inflammatory bowel
disease,66 and these shared SNP association signals suggest that
DNMT3B SNPs may exert pleiotropic effects. Alternatively, it is
possible that smoking mediates the DNMT3B SNP association with
inflammatory bowel disease, but the inflammatory bowel disease
GWAS did not include adjustment for smoking.65

Beyond finding DNMT3B and (as expected) CHRNA5-CHRNA3-
CHRNB4, our GWAS meta-analysis resulted in Po5 × 10− 7 for two
other loci previously implicated in smoking, CHRNA4 on chromo-
some 20q1323,24 and dopamine β-hydroxylase (DBH) on chromo-
some 9q34.17,24 Our prior nicotine dependence GWAS meta-
analysis of EUR studies identified the CHRNA4 splice site SNP
rs2773500.23 Rare CHRNA4 variants have also been found to
associate with nicotine dependence.67,68 Our study supported
common CHRNA4 SNP associations among EUR samples, but no
association was detected for these SNPs among AA studies
(Table 1).
DBH is a strong functional candidate for influencing nicotine

dependence. The dopaminergic system lies at the core of the
brain’s reward pathway, and the DBH enzyme converts dopamine
into norepinephrine. An upstream DBH SNP (rs3025343) was
identified in a GWAS of smoking cessation (current vs former
smokers)16–18 and later independently replicated.69,70 Consistent
with rs3025343-A being associated with reduced success of
quitting smoking, its phenotypic profile has been expanded to
include associations with: (1) heavier smoking (N= 48,931 in the
UK Biobank, P= 1.2 × 10− 5)24; (2) higher FTND scores (N= 1430
EUR participants, P= 0.023)71; and (3) higher nicotine dependence
risk in our EUR studies (N= 28,677, meta-analysis P= 1.7 × 10− 5).
Smaller P-values were found for other 1000G-imputed upstream
DBH SNPs in the UK Biobank and our study (rs111280114 and
rs56116178, respectively; Table 1); the minor alleles of these SNPs
were similarly associated with increased risks among EUR studies
(Supplementary Figure 7 for rs56116178). Because these DBH SNPs
all occur at o1% frequency among AAs, studying DBH variation
on nicotine dependence risk in this ancestry group will require
larger sample sizes or an alternative study design.
Nicotine dependence-associated variants in CHRNA5-CHRNA3-

CHRNB444,72 and CHRNA423,67 have been previously shown to
associate with lung cancer and other smoking-related diseases.
Our study shows that the nicotine dependence-associated SNPs in
DNMT3B and DBH are also associated with lung cancer
(Supplementary Table 7). These findings may reflect the SNPs
acting indirectly on lung through their influence on smoking
(Supplementary Table 8). Alternatively, because DBH is expressed
in the lung73 and DNMT3B overexpression has been shown in lung
cancer, we cannot exclude the possibility that either of these SNPs
act directly to promote lung cancer through an unknown
mechanism.53 The DNMT3B and DBH SNPs were both associated
with squamous cell lung carcinoma. This histological subtype has
a strong association with smoking and occurs infrequently in
never-smokers. In contrast, neither SNP is associated with
adenocarcinoma, a subtype that has a weaker association with
smoking74 and an increasing prevalence over time among never-
smokers.75 Histology-specific associations are not uncommon for
lung cancer genetic loci.39

Our findings expand the known genetic architecture of nicotine
dependence, by showing that the DNMT3B SNP rs910083
increases the likelihood of developing nicotine dependence as
observed across two different ancestries, smoking heavily, and
consequently incurring a heightened risk of lung cancer.53,55 The
convergence of prior and current findings indicate that the
complex neurobiology underlying nicotine dependence involves
several sequence variants with functional and regulatory effects
across distinct brain tissues.
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