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1 | INTRODUCTION

Summary

We performed a genome-wide mapping for the age at first calving (AFC) with
the goal of annotating candidate genes that regulate fertility in Nellore cattle.
Phenotypic data from 762 cows and 777k SNP genotypes from 2,992 bulls and
cows were used. Single nucleotide polymorphism (SNP) effects based on the sin-
gle-step GBLUP methodology were blocked into adjacent windows of 1 Mega-
base (Mb) to explain the genetic variance. SNP windows explaining more than
0.40% of the AFC genetic variance were identified on chromosomes 2, 8, 9, 14,
16 and 17. From these windows, we identified 123 coding protein genes that were
used to build gene networks. From the association study and derived gene net-
works, putative candidate genes (e.g., PAPPA, PREP, FERIL6, TPR, NMNATI,
ACADI0, PCMTDI, CRH, OPKRI1, NPBWRI and NCOA2) and transcription fac-
tors (TF) (STAT1, STAT3, RELA, E2F1 and EGRI) were strongly associated with
female fertility (e.g., negative regulation of luteinizing hormone secretion, follicu-
logenesis and establishment of uterine receptivity). Evidence suggests that AFC
inheritance is complex and controlled by multiple loci across the genome. As sev-
eral windows explaining higher proportion of the genetic variance were identified
on chromosome 14, further studies investigating the interaction across haplotypes
to better understand the molecular architecture behind AFC in Nellore cattle
should be undertaken.

KEYWORDS

beef cattle, gene function, single-step

that is most often used to evaluate female fertility in beef
cattle breeding programmes is the age at first calving

Although Nellore cattle are well adapted to Brazilian cli- (AFC). AFC is easily measured, expressed in almost all
matic conditions and production systems, low reproductive  cows under genetic evaluation and directly affects the herd
efficiency is still the major reason for high culling rates of  productivity. Currently, the availability of dense single
beef cows (Utsunomiya et al., 2014). The reproductive trait nucleotide polymorphism (SNPs) markers has allowed for

484 | © 2017 Blackwell Verlag GmbH

wileyonlinelibrary.com/journal/jbg J Anim Breed Genet. 2017;134:484-492.


http://orcid.org/0000-0003-0566-3236
http://orcid.org/0000-0003-0566-3236
http://orcid.org/0000-0003-0566-3236
http://orcid.org/0000-0003-3704-8131
http://orcid.org/0000-0003-3704-8131
http://orcid.org/0000-0003-3704-8131
http://wileyonlinelibrary.com/journal/JBG

MOTA ET AL.

genome-wide association studies (GWAS) of economically
important traits in domestic animals. In terms of fertility
traits, some results have been published for beef cattle; for
example, Fortes, Li, Collis, Zhang, and Hawken (2013)
reported IGFI pathway genes related to cattle puberty in
Brahman cattle. However, information on GWAS for AFC
while combining pedigree and genomic information (Wang,
Misztal, Aguilar, Legarra, & Muir, 2012) in Nellore cattle
is still scarce in the literature.

The characterization of chromosome regions affecting
AFC in Nellore cattle may assist in breeding efforts
through the identification of candidate genes by promoting
a better understanding of their reproductive biology. Candi-
date gene detection is complex for low-heritable complex
traits such as AFC. The challenge is greater when using
data from genotyped and non-genotyped animals. We
exploited the biological processes based on transcription
factors (TF) in gene-TF network analyses to identify the
most relevant candidate genes.

2 | MATERIAL AND METHODS

2.1 | Ethical approval

This study was developed using pre-existing datasets. All
animal procedures were approved by the Animal Care and
Use Committee of the Department of Animal Science from
Universidade Federal de Vigosa, Brazil (103/2014-CEUAP;
see http://www.pveuq.ufv.br/courses.php for further details).

2.2 | Genotype, phenotype and pedigree data

The DNA of each animal was obtained from blood or semen
samples. The genotype data set was comprised of three sub-
sets of Nellore animals. The first one was composed of 2,272
bulls and cows that were genotyped with the Illumina High-
Density Bovine SNP chip (777K panel; n = 786,799 SNPs).
The second was comprised of 529 cows with the Illumina
Bovine 70K panel. The third was composed of 191 cows
with the Illumina Bovine 30K panel. Genotype imputation
was performed through the FImpute software (Sargolzaei,
Chesnais, & Schenkel, 2011) as an efficient strategy to
derive a unique reference set, that is, 2,992 animals with
777K panel. Genotype quality control was implemented after
imputation to remove SNPs that were mapped to autosomes
(29 chromosomes) with call rates <0.97, minor allele fre-
quencies (MAF) <0.05 and with a significant deviation from
the Hardy—Weinberg equilibrium (p < 1077).

Phenotypic data included AFC records of Nellore cattle
that were raised in the North of Minas Gerais state, Brazil
(17°51' South and 40°43’ West longitude). Their hardiness
and ability to adapt to the hot climate and historically low
rainfall are the main reasons to raise zebu breeds such as
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Nellore in this part of Brazil. AFC records from 762 cows
that were born between 2000 and 2012 were used; they
were pasture-raised mainly with Urochloa decumbens (Syn.
Brachiaria) decumbens, mineral salt and water ad libitum.
The breeding season period is usually between November
and February. Seventy per cent of the cows were in
between 28 and 32 months old when the breeding season
started. AFC overall mean during the evaluation period
was 1,199 + 184.61 days (range: 628-1,821) or
39.9 £+ 6.15 months. Contemporary groups (CG) were
defined as cows that were born in the same year and sea-
son (March to May, June to August, September to Novem-
ber and December to February).

Our studied population is a pseudo-experimental popula-
tion that was raised under harsh conditions in Brazil under
constant reproduction and genetic evaluation. A small num-
ber of phenotypes would not allow us to make inferences
on a country-wide scale. To overcome this limitation, we
added 2,272 genotypes of representative animals from the
entire Nellore population in Brazil. These animals were
able to link our studied population to the wider Nellore
population as long as most of the genotyped animals were
Nellore proven bulls.

Pedigree information was recovered from historical
breeding records from the Brazilian Association of Zebu
Breeders (ABCZ), which was comprised of 6,341 individu-
als. A total of 4,133 animals remained after pruning the
data.

2.3 | Statistical model and linkage
disequilibrium analyses for GWAS

The following
model was fitted:

single-step genomic-BLUP (ssGBLUP)

Y=XB+Wa+e (1

where Y is the vector of AFC records; B is the vector of
systematic effects (CG; n = 35 levels), a is the vector of
random additive genetic effects, X and W are incidence
matrices of systematic and random additive genetic effects,
respectively, and e is the random residual vector.

Genomic and pedigree information were combined via
ssGBLUP procedure (Aguilar et al., 2010). The model (1)
was implemented using the H matrix that includes simulta-
neously SNP markers and pedigree information. Although
H is complex, its inverse can be obtained according to
Aguilar et al. (2010):

0 0

—1 _ A-1

H =A +[0 G—l_A2—21:|; ()
where G is the genomic relationship matrix using current
allele frequencies (VanRaden, 2008), and A,, is a numera-
tor relationship matrix for genotyped animals. The
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following distributional assumptions were assumed as fol-
lows: a~N(0,Ho?) and e~N(0,Ic2); I is the identity
matrix, 62 and o? are additive genetic and residual vari-
ance components, respectively.

Genomic estimated breeding values (GEBV) were
obtained via REML using the software airemlf90 (http://
nce.ads.uga.edu/). The GEBVs were further used for SNP
effect derivation (Wang et al., 2012). Decomposing the
additive genetic effect into genotyped (ag) and non-geno-
typed (a,) animals, SNP effects (u) can be estimated as
o = 7/[ZZ/) "4, which is the best predictor of SNP effects
given animal effects (Wang et al., 2012).

We investigated chromosomal regions where SNP
effects were blocked into adjacent windows of 1 Megabase
(Mb). Genetic variances were explained per window and
estimated through PostGSf90 (http://nce.ads.uga.edu/) soft-
ware by calculating the variance explained by the n Mb
window of adjacent SNPs (segments) with their respective
effects as input. This was used to identify potential candi-
date genes that may affect AFC. SNP markers on the same
chromosome were analysed for linkage disequilibrium
(LD). The LD between any two loci within the same chro-
mosome (within and across different neighbouring win-
dows) was assessed via the 7 measure. It is considered to
be the most robust LD measure, as it is less dependent on
MAF and sample size. The /° value was used as an LD
measure and calculated using the default of the Haploview
software (Barrett, Fry, Maller, & Daly, 2005) for every
SNP pair.

2.4 | Assessment of gene functional
annotation and network analyses

Following Utsunomiya et al. (2014), we selected the largest
window variances (>0.40%) as outliers for the most rele-
vant windows that were affecting AFC. To identify puta-
tive genes associated with the list of SNP markers located
inside the most relevant windows, we used the package
Map2NCBI (Hanna & Riley, 2014) of the R software
based on the UMD Bos taurus 3.1 assembly of the bovine
genome sequence, which allowed us to generate a list of
genomic features from the Bos taurus (BUILD.6.1) gen-
ome. To provide information regarding the identity and
function of genes at adjacent windows, the chromosomal
positions from the Ensembl Genome Browser (http://ense
mblgenomes.org/) were used. In addition, a Bioconductor
package that accesses and retrieves Ensembl data (Entrez
IDs, Ensembl gene ID, HGNC symbols and more), R/Bio-
maRt, was used to download all genes (background genes)
from the Bos taurus genome (ORG.MESH.BTA.DB) as
well as map features within £200 kb from the location of
the SNP markers.

The biological function of these genes and possible rela-
tion to AFC were first investigated using a biological process
gene network. For this, the ClueGO plug-in for Cytoscape
(Bindea et al., 2009) was used, based on a 1-sided hypergeo-
metric test and Bonferroni correction, to construct a gene
network highlighting the biological roles and relations across
candidate genes. While aiming to identify the TF related to
potential candidate genes, the TFM-Explorer web tool
(http://bioinfo.lifl.fr/TFM/TFME/) was used. This web tool
takes a set of gene sequences and searches for locally over-
represented transcription factor binding sites (TFBS) using
weight matrices from the JASPAR vertebrate database (San-
delin, Alkema, Engstrom, Wasserman, & Lenhard, 2004); it
also detects all potential TFBS and extracts significant clus-
ters (region of the input sequences associated with a factor)
through score function calculation. The score threshold is
given by a p-value equal to or smaller than 10~ for each
position and for each sequence (Touzet & Varré, 2007). The
program default for the analysed promoter region is 2,000—
200 bp upstream and downstream, respectively. As the gene
transcription start site (TSS) annotations are uncertain in the
current assembly for some regions, we compensated both in
the 5" and 3’ directions by applying no restrict ample defini-
tions. Therefore, from this set of genes, excluding the
ncRNA genes, we collected sequences of the TSS gene that
were 3,000 bp upstream and 300 bp downstream (FASTA
format), based on the Bos_taurus_UMD_v3.1.1 assembly
(Zimin et al., 2009). This data were used as an input for the
TFM-explorer.

The given TF list was fed into Cytoscape (Shannon
et al.,, 2003) using a Biological Networks Gene Ontology
tool (BiNGO) plug-in to determine which gene ontology
(GO) terms were significantly overrepresented by assuming
a default statistical test (binomial test) and multiple testing
corrections (e.g., Bonferroni and false discovery rates) with
a significance level of 0.05%. The total number of statisti-
cal tests in a single analysis might be as much as several
hundred. Based on biological processes (e.g., response to
growth hormone stimulus and response to fatty acids) and
literature reviews, we selected the main TFs related to AFC
(key TF) and constructed a gene-TF network. A schematic
representation of the work- and dataflow can be seen in
Figure 1.

3 | RESULTS

Genetic and residual variance component estimates for
AFC were 6,685.00 &+ 2,910.70 days and 21,162.00 +
2,577.77 days, respectively. The heritability estimate (k%)
was 0.24 + 0.04, which confirmed genetic variability for
this trait and for possible selection in this population.
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FIGURE 1 A schematic work- and dataflow representation

Single nucleotide polymorphism windows with a 1 Mb
length (Figure 2) were built across the genome with an
average density of 172 + 49 SNPs per window. A total
of 18 SNP windows that each explained more than 0.40%
of the genetic variance were identified. These windows
were used to locate candidate genes affecting AFC on
BTA 2, 8, 9, 14, 16 and 17. The SNP window (n = 232
SNPs) with the highest proportion of genetic variance
explained approximately 3% and was located on BTA14.
Nine windows with a threshold that was higher than
0.40% were also located on BTA14, whereas 1, 1, 3, 2
and 1 window(s) were respectively located on BTA 2, 8,
9, 16 and 17. A detailed breakdown of the 1 Mb SNP
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windows that were used to locate candidate genes is pre-
sented in Table 1.

We checked the LD between SNP markers within and
across different neighbouring SNP windows (n = 18),
which each explained more than 0.40% of the genetic vari-
ance. Illustrations of the haplotype blocks in which seg-
ments of correlated SNPs are separated by gaps between
the gray-scale triangular matrices are presented in Fig-
ure S1. Patterns of block structures differed between peaks
in the same chromosome and presented with a high LD
within each peak, especially on BTA8, BTA9, BTA14 and
BTALlS6.

A total of 3,570 SNP markers were within the relevant
adjacent windows and were detected in Bos taurus chromo-
somes BTA 2, 8, 9, 14, 16 and 17. Potential candidate
genes were identified using NCBI and Ensembl sources for
gene mapping, and 152 genes (123 protein coding, four
snoRNA, 13 snRNA, one miRNA, four rRNA, two mis-
c¢_RNA and five pseudo genes) were mapped against the
major loci that were found for AFC. Some of these SNPs
had no identified gene, and 111 genes were mapped within
or close to 2,275 SNP markers. Supplementary information
linking SNP markers and potential candidate genes is pre-
sented in Table S1.

The biological process gene network highlighted a
well-related process (negative regulation of luteinizing
hormone secretion) using protein-coding genes (Figure 3).
From this network, four genes were directly linked:
neuropeptides B/W  receptor  gene (NPBWRI,
ENSBTAG00000016159), nuclear receptor coactivator 2

o) bt s Jd Ju..LJh.x..ILuU Ll

13 14 16 17 18 19 20 21 22 23 24 2526 272829

Chromosome

FIGURE 2 Manhattan plots of age at first calving genetic variance explained by SNP windows in Nellore cattle. Each dot represents a
1 Mb SNP window segment. Horizontal gray line represents the adopted threshold (0.40%)



MOTA ET AL.

488
Wl LEY_ Animal Breeding and Genetics I

TABLE 1 Relevant single nucleotide polymorphism (SNP) windows detecting major loci explaining variance and potential candidate genes

for age at first calving in Nellore cattle

Window start Window end Chr
BovineHD0200001802 BovineHD0200002125 2
BovineHD0800031709 BovineHD0800032090 8
BovineHD0900011384 BovineHD0900011657 9
ARS-BFGL-NGS-66207 BovineHD0900012314 9
BovineHD0900012655 BovineHD0900012880 9
BovineHD 1400004685 BovineHD 1400004991 14
BovineHD 1400005826 BovineHD1400006161 14
BovineHD 1400006241 BovineHD 1400006529 14
BovineHD 1400006530 BovineHD 1400006869 14
BovineHD 1400006871 BovineHD 1400007165 14
BovineHD 1400007551 BovineHD 1400007803 14
BovineHD4100011412 BovineHD 1400008347 14
BovineHD 1400009017 BovineHD 1400009324 14
BovineHD1400009735 BovineHD 1400010082 14
BovineHD 1400010352 BovineHD1400010608 14
BovineHD1600012226 BovineHD1600012468 16
BovineHD 1600019305 BovineHD1600019652 16
BovineHD1700016259 BovineHD1700016502 17
Total N/A

PS (Mb) PE (Mb) N. SNP GVE (%)
6.17 7.17 178 0.43
106.27 107.27 219 0.52
40.97 41.97 178 0.44
43.31 44.31 235 0.44
45.62 46.61 131 0.60
16.54 17.53 214 0.41
20.39 21.39 217 0.53
21.66 22.66 196 0.79
22.66 23.66 232 3.10
23.67 24.67 198 0.61
26.20 27.20 183 0.52
27.84 28.84 237 1.99
31.25 3225 216 0.92
33.91 34.91 231 0.84
35.96 36.95 186 0.51
43.94 44.93 147 0.85
68.23 69.23 194 0.47
57.29 58.28 178 0.55
N/A N/A 3,392 14.52

Chr, chromosome; PS, position start; PE, position end; N. SNP, number of SNPs; GVE, genetic variance explained; N/A, non-applicable.

(NCOA2, ENSBTAG00000020312), opioid receptor Kappa
1 (OPRKI, ENSBTAG00000000914) and corticotropin-
releasing hormone (CRH, ENSBTAGO00000033128) on
BTA14.

From the promoter sequences of the 123 protein-coding
genes that were mapped, a total of 18 TFs were identified
and analysed to determine which GO terms were signifi-
cantly overrepresented. The main TFs associated with AFC
based on biological processes and literature review
(Table 1) were chosen to generate a gene-TF network
enabling the identification of putative candidate genes for
AFC (Figure 4). Based on the most representative TF
(STATI, STAT3, RELA, E2F] and EGRI; Table S2), we
identified the most likely candidate genes for AFC (e.g.,
ORMDLI] on BTA2; PAPPA on BTAS8; FIG 4, PPILG,
PREP on BTA9; PCMTDI, SDCBP, UBXN2B, MCM4,
ARMCI, MRPLI5, NSMCE2 and FERIL6 on BTAIl4;
APITDI1, NMNATIand TPR on BTA16 and ACADIO and
PRKABI on BTA17).

4 | DISCUSSION

After quality control edits, 399,308 (51%) SNP markers
and 4,133 animals remained in the HD panel to impute
30k and 70k panels and to further estimate the genomic

relationship coefficients between animals. The number of
overlapped SNPs was 13,708 and 53,375 on 30k and 70k
panels, respectively, whereas 2,900 (30k) and 3,673 (70k)
were excluded.

The estimated population mean for AFC in this study
(1,199 £ 184.61 days) agrees with those reported in the
literature, which varied from 1,050 to 1,260 days in Brazil-
ian Nellore cattle (Grossi et al., 2008). High AFC values
may be due to the harsh climate conditions, as the animals
were pasture-raised in a region with historically low yearly
rainfall (Figure S2; http://climal.cptec.inpe.br/evolucao/pt)
and a high daily temperature range (16-30 Celsius; Fig-
ure S3; http://climal.cptec.inpe.br/evolucao/pt) with an
average of 27°C, thereby hindering the animals’ ability to
have progeny earlier. The heritability estimate
(0.24 £+ 0.04) while incorporating marker information was
higher than the traditional pedigree-based estimate reported
by Grossi et al. (2008) and Mercadante, L.obo, and Oliveira
(2000) with values equal to 0.14 and 0.09, respectively.
AFC heritability estimates are usually low as AFC is a sex-
limited trait and heavily influenced by the environment.
AFC heritabilities normally range from 0.05 to 0.22 (Grossi
et al., 2008). However, AFC can by definition be dissected
into three traits: age at the onset of puberty, time from the
onset of puberty until conception and gestation length. In
our case, age at the onset of puberty is strongly influenced
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by the body weight development, which was often reported
to be highly heritable (Grossi et al., 2008). It might play a
greater role in our study and therefore partially explains the
relatively high heritability estimate when compared to other
studies and also other fertility traits.

Although genome mapping analysis detected potential
chromosome regions explaining the maximum 3% of the
genetic variance, this percentage could be considered a rele-
vant proportion, as previously reported in cattle (Utsuno-
miya et al., 2014). The evidence is that AFC inheritance is
complex as it is controlled by multiple loci across the gen-
ome. The potential candidate genes that were selected in this
study might only describe a small piece of the molecular
mechanisms underlying AFC, especially due to the fact that
these cows were not bred early (14 or 18 months of age). In
addition, if we consider all windows explaining more than
0.40% on BTAI14, that is, by summing the genetic variance
explained by SNP windows on BTA14, it amounts to nearly
7%. On the other hand, by considering all relevant windows,
this value increased to 14.52% (Table 1).

A total of 123 protein-coding genes were observed from
the 18 SNP windows, and a biological process network

(Figure 3) was built; genes such as PLAGI, NPBWRI,
OPRKI1, CRH and NCOA2 were highlighted as they showed
an important biological process for AFC, such as negative
regulation of luteinizing hormone secretion. These four
genes are located on BTA14. The NPBWRI gene is a neu-
ropeptide W (NPW)/neuropeptide B (NPB) receptor-1
endogenous ligand for the orphan G protein-coupled recep-
tors GPR7, which is related to the regulation of feeding and
energy metabolism. The endogenous NPW may play a regu-
latory role in the organization of neuroendocrine signals
based on the hypothesis that NPW does not act as a true
releasing or inhibiting factor. According to Baker, Cardinal,
Bober, Taylor, and Samson (2003), NPW acts in the brain
to control prolactin, corticosterone and growth hormone
release. However, Fang et al. (2015) reported NPW
immunoreactivity levels in sow reproductive systems as
intense in primordial follicles, moderate in the uterus and
very weak in oocytes of the primary follicle.

The NPBWRI gene is located in the adjacent window
region that explains the largest proportion (3.09%) of AFC
genetic variance mapped on BTA14, peaking between 22.7
and 23.7 Mb (Figure S1). Similarly, the OPRKI gene was
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also mapped on BTAl4. OPKRI is an opioid receptor
kappa 1 mapped by Fortes et al. (2012) and reported as a
potential candidate for Brahman cattle puberty.

The corticotropin-releasing hormone (CRH) gene was
identified in another relevant window mapped between
31.25 and 32.25 Mb (Table 1) and was reported to be
involved in ovarian steroidogenesis regulation and follicular
maturation, ovulation and luteolysis (Kiapekou, Zapanti,
Mastorakos, & Loutradis, 2010). Another candidate gene
identified on BTA14 was the nuclear receptor coactivator
(NCOA2) which acts as a transcription factor in the
hypothalamus (Fortes et al., 2011). The 1-Mb window con-
taining this protein-coding gene explained around 0.50% of
the genetic variance for AFC and was mapped on BTA14
(35.96-36.95 Mb; Table 1). In a study on Brahman cattle,
Fortes et al. (2011) reported that NCOA2 seems to play a
key role in the development of puberty by acting as a tran-
scription factor for multiple genes affecting the onset of
puberty. Camargo et al. (2015) partially characterized
NCOA?2 associated with polymorphisms that were found
with reproductive traits in Nellore cattle. These authors
have reported significant SNPs in the NCOA2 gene for

early pregnancy probability, days to first calving and AFC
in Nellore females.

Biological process analyses from these TF pointed out
important reproductive mechanisms (e.g., cellular response
to peptide hormone stimulus and response to hormone
stimulus) with some literature evidence regarding effects
on female puberty, as observed in Table S2. Based on
these key TFs, we were able to build a gene-TF network
highlighting genes sharing roles with AFC (e.g., PAPPA,
PREP, PCMTD1, FERIL6 NMNAT, TPR and ACADI0).

The pregnancy-associated plasma protein-A (PAPPA)
gene was mapped in an adjacent window between 106.27
and 107.27 Mb on BTAS8 and explained 0.52% of AFC
genetic variance. This gene is cited to compromise ovarian
steroidogenesis and female fertility in mice (Nyegaard
et al.,, 2010). Prolyl endopeptidase (PREP) was identified
on BTA9 with 0.60% of genetic variance explained. This
gene is a member of the serine peptidase group that is
widely conserved through evolution. PREP activity has
been detected in all organs and tissues with many different
types of activities such as maturation and degradation of
peptide hormones and neuropeptides. In terms of AFC,
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PREP is also related to male and female reproduction-asso-
ciated processes; gonad function and gamete physiology
are some of the roles of PREP that were previously
described in the literature (Kimura, Matsui, & Takahashi,
2002). These results suggested that PREP might be an
important gene influencing AFC, mainly in terms of sire
selection.

The protein-L-isoaspartate (D-Aspartate) O-methyltrans-
ferase domain containing 1 (PCMTD1) was reported to be
expressed in the endometrium of high- and low-fertility
heifers during the mid-luteal phase of the oestrous cycle
gene in cross-bred cattle (Killeen et al., 2014) and has been
cited to be associated with Brahman cattle puberty (Fortes
et al., 2012). This gene was mapped on BTA14 in a win-
dow region that explained the largest portion (3.09%) of
genetic variance located between 22.7 and 23.7 Mb; it was
also one of the most highlighted genes in the gene-TF net-
works and appeared to be one of the most noticeable candi-
date genes in our study.

Four genes (FERIL6, TPR, NMNATI, and ACADI0)
were mapped, respectively, on BTA14, BTA16, BTA16
and BTA17 and are candidate genes with some puberty
involvement. The adjacent windows in which these genes
are included explained, respectively, 0.41%, 0.47%, 0.85%
and 0.55% of AFC genetic variance (Table 1). FERILG is
related to folliculogenesis (Stigliani, Anserini, & Nicoletti,
2013), TPR to oestrus and early pregnancy in pigs (Goos-
sens & van den Berg, 1979) and NMNATI to female repro-
ductive efficiency in cattle (Khatkar, Randhawa, &
Raadsma, 2014), whereas ACADI0 is involved in fatty acid
oxidation during oocyte maturation in mice (Dunning,
Anastasi, Zhang, Russell, & Robker, 2014).

Previous studies have found peaks on BTA14 in a simi-
lar region, reinforcing this autosome as a chromosome can-
didate for reproductive traits in cattle. Fortes et al. (2012)
identified a large number of SNPs associated with puberty
in Brahman cattle. Karim et al. (2011) argued that PLAGI
was the relevant gene underlying this region on BTA14
and affecting bovine stature; a secondary effect can be
related to age at puberty, and therefore to AFC, due to the
high genetic correlation between these traits.

Despite the fact we found two SNP markers (Bovi-
neHD1400006722 and BovineHD1400006725) inside the
gene PLAGI (Table S1), we did not confirm this gene as a
potential candidate in the present population. Although we
reported two close peaks in the region of BTA14 close to
PLAG]I, this region has shown a low LD (r2 < .1; Figures
S1 and S4) with the main peak, where the PCMTDI,
NPBWRI and OPKRI genes were mapped. The largest
peak on BTAI14 (Figure 2) segregated into two high LD
peaks, located at 22.7-23.7 and 27.8-28.8 Mb. The PLAGI
gene is located in between (25 Mb) and in low LD
(r2 <.1) with both peaks (Table 1; Figure S1), thereby
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suggesting a segregation of events. Our results suggest that
the PCMTD1, NPBWRI and OPKRI genes are strong can-
didates for AFC on BTAI14. Future studies with greater
numbers of genotyped and phenotyped animals may con-
firm these as major genes for AFC in not challenged Nel-
lore cows.

In this study, we identified a high LD within, but low LD
between peaks on the same chromosome (Figure S1).
Genetic variants within peaks, marked by the associated SNP
windows, must have biological functions that hinder the
localization of true QTLs related to AFC. Another point to
be highlighted is that different genes could be pronounced as
potential candidates depending upon the environmental gra-
dient, which may suggest a SNP by environment interaction
affecting AFC. In a recently paper, Mota et al. (2017)
reported the presence of SNP by environment interactions
for tick resistance in cattle affecting different tick burden
levels. Therefore, models that incorporate the genotype by
environment interaction should be performed.

5 | CONCLUSION

This study contributes important information on AFC
genetic variance and the dissection of molecular mecha-
nisms regulating Nellore cattle fertility. The identified
potential candidate genes (e.g., PAPPA, PREP, FERILG,
TPR, NMNATI, ACADIO, PCMTDI, CRH, OPKRI,
NPBWRI and NCOA2) and related gene-TF networks have
biological roles that are strongly associated with female
reproduction features.
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