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Summary

We performed a genome-wide mapping for the age at first calving (AFC) with

the goal of annotating candidate genes that regulate fertility in Nellore cattle.

Phenotypic data from 762 cows and 777k SNP genotypes from 2,992 bulls and

cows were used. Single nucleotide polymorphism (SNP) effects based on the sin-

gle-step GBLUP methodology were blocked into adjacent windows of 1 Mega-

base (Mb) to explain the genetic variance. SNP windows explaining more than

0.40% of the AFC genetic variance were identified on chromosomes 2, 8, 9, 14,

16 and 17. From these windows, we identified 123 coding protein genes that were

used to build gene networks. From the association study and derived gene net-

works, putative candidate genes (e.g., PAPPA, PREP, FER1L6, TPR, NMNAT1,

ACAD10, PCMTD1, CRH, OPKR1, NPBWR1 and NCOA2) and transcription fac-

tors (TF) (STAT1, STAT3, RELA, E2F1 and EGR1) were strongly associated with

female fertility (e.g., negative regulation of luteinizing hormone secretion, follicu-

logenesis and establishment of uterine receptivity). Evidence suggests that AFC

inheritance is complex and controlled by multiple loci across the genome. As sev-

eral windows explaining higher proportion of the genetic variance were identified

on chromosome 14, further studies investigating the interaction across haplotypes

to better understand the molecular architecture behind AFC in Nellore cattle

should be undertaken.
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1 | INTRODUCTION

Although Nellore cattle are well adapted to Brazilian cli-

matic conditions and production systems, low reproductive

efficiency is still the major reason for high culling rates of

beef cows (Utsunomiya et al., 2014). The reproductive trait

that is most often used to evaluate female fertility in beef

cattle breeding programmes is the age at first calving

(AFC). AFC is easily measured, expressed in almost all

cows under genetic evaluation and directly affects the herd

productivity. Currently, the availability of dense single

nucleotide polymorphism (SNPs) markers has allowed for
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genome-wide association studies (GWAS) of economically

important traits in domestic animals. In terms of fertility

traits, some results have been published for beef cattle; for

example, Fortes, Li, Collis, Zhang, and Hawken (2013)

reported IGF1 pathway genes related to cattle puberty in

Brahman cattle. However, information on GWAS for AFC

while combining pedigree and genomic information (Wang,

Misztal, Aguilar, Legarra, & Muir, 2012) in Nellore cattle

is still scarce in the literature.

The characterization of chromosome regions affecting

AFC in Nellore cattle may assist in breeding efforts

through the identification of candidate genes by promoting

a better understanding of their reproductive biology. Candi-

date gene detection is complex for low-heritable complex

traits such as AFC. The challenge is greater when using

data from genotyped and non-genotyped animals. We

exploited the biological processes based on transcription

factors (TF) in gene-TF network analyses to identify the

most relevant candidate genes.

2 | MATERIAL AND METHODS

2.1 | Ethical approval

This study was developed using pre-existing datasets. All

animal procedures were approved by the Animal Care and

Use Committee of the Department of Animal Science from

Universidade Federal de Vic�osa, Brazil (103/2014-CEUAP;

see http://www.pveuq.ufv.br/courses.php for further details).

2.2 | Genotype, phenotype and pedigree data

The DNA of each animal was obtained from blood or semen

samples. The genotype data set was comprised of three sub-

sets of Nellore animals. The first one was composed of 2,272

bulls and cows that were genotyped with the Illumina High-

Density Bovine SNP chip (777K panel; n = 786,799 SNPs).

The second was comprised of 529 cows with the Illumina

Bovine 70K panel. The third was composed of 191 cows

with the Illumina Bovine 30K panel. Genotype imputation

was performed through the FImpute software (Sargolzaei,

Chesnais, & Schenkel, 2011) as an efficient strategy to

derive a unique reference set, that is, 2,992 animals with

777K panel. Genotype quality control was implemented after

imputation to remove SNPs that were mapped to autosomes

(29 chromosomes) with call rates <0.97, minor allele fre-

quencies (MAF) <0.05 and with a significant deviation from

the Hardy–Weinberg equilibrium (p < 10�7).

Phenotypic data included AFC records of Nellore cattle

that were raised in the North of Minas Gerais state, Brazil

(17°510 South and 40°430 West longitude). Their hardiness

and ability to adapt to the hot climate and historically low

rainfall are the main reasons to raise zebu breeds such as

Nellore in this part of Brazil. AFC records from 762 cows

that were born between 2000 and 2012 were used; they

were pasture-raised mainly with Urochloa decumbens (Syn.

Brachiaria) decumbens, mineral salt and water ad libitum.

The breeding season period is usually between November

and February. Seventy per cent of the cows were in

between 28 and 32 months old when the breeding season

started. AFC overall mean during the evaluation period

was 1,199 � 184.61 days (range: 628–1,821) or

39.9 � 6.15 months. Contemporary groups (CG) were

defined as cows that were born in the same year and sea-

son (March to May, June to August, September to Novem-

ber and December to February).

Our studied population is a pseudo-experimental popula-

tion that was raised under harsh conditions in Brazil under

constant reproduction and genetic evaluation. A small num-

ber of phenotypes would not allow us to make inferences

on a country-wide scale. To overcome this limitation, we

added 2,272 genotypes of representative animals from the

entire Nellore population in Brazil. These animals were

able to link our studied population to the wider Nellore

population as long as most of the genotyped animals were

Nellore proven bulls.

Pedigree information was recovered from historical

breeding records from the Brazilian Association of Zebu

Breeders (ABCZ), which was comprised of 6,341 individu-

als. A total of 4,133 animals remained after pruning the

data.

2.3 | Statistical model and linkage
disequilibrium analyses for GWAS

The following single-step genomic-BLUP (ssGBLUP)

model was fitted:

Y ¼ XbþWaþ e (1)

where Y is the vector of AFC records; b is the vector of

systematic effects (CG; n = 35 levels), a is the vector of

random additive genetic effects, X and W are incidence

matrices of systematic and random additive genetic effects,

respectively, and e is the random residual vector.

Genomic and pedigree information were combined via

ssGBLUP procedure (Aguilar et al., 2010). The model (1)

was implemented using the H matrix that includes simulta-

neously SNP markers and pedigree information. Although

H is complex, its inverse can be obtained according to

Aguilar et al. (2010):

H�1 ¼ A�1 þ
0 0

0 G�1 � A�1
22

� �

; (2)

where G is the genomic relationship matrix using current

allele frequencies (VanRaden, 2008), and A22 is a numera-

tor relationship matrix for genotyped animals. The
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following distributional assumptions were assumed as fol-

lows: a�Nð0;Hr2
aÞ and e�Nð0; Ir2

eÞ; I is the identity

matrix, r2
a and r2

e are additive genetic and residual vari-

ance components, respectively.

Genomic estimated breeding values (GEBV) were

obtained via REML using the software airemlf90 (http://

nce.ads.uga.edu/). The GEBVs were further used for SNP

effect derivation (Wang et al., 2012). Decomposing the

additive genetic effect into genotyped (ag) and non-geno-

typed (au) animals, SNP effects (u) can be estimated as

û ¼ Z0½ZZ0��1
âg; which is the best predictor of SNP effects

given animal effects (Wang et al., 2012).

We investigated chromosomal regions where SNP

effects were blocked into adjacent windows of 1 Megabase

(Mb). Genetic variances were explained per window and

estimated through PostGSf90 (http://nce.ads.uga.edu/) soft-

ware by calculating the variance explained by the n Mb

window of adjacent SNPs (segments) with their respective

effects as input. This was used to identify potential candi-

date genes that may affect AFC. SNP markers on the same

chromosome were analysed for linkage disequilibrium

(LD). The LD between any two loci within the same chro-

mosome (within and across different neighbouring win-

dows) was assessed via the r2 measure. It is considered to

be the most robust LD measure, as it is less dependent on

MAF and sample size. The r2 value was used as an LD

measure and calculated using the default of the Haploview

software (Barrett, Fry, Maller, & Daly, 2005) for every

SNP pair.

2.4 | Assessment of gene functional
annotation and network analyses

Following Utsunomiya et al. (2014), we selected the largest

window variances (>0.40%) as outliers for the most rele-

vant windows that were affecting AFC. To identify puta-

tive genes associated with the list of SNP markers located

inside the most relevant windows, we used the package

Map2NCBI (Hanna & Riley, 2014) of the R software

based on the UMD Bos taurus 3.1 assembly of the bovine

genome sequence, which allowed us to generate a list of

genomic features from the Bos taurus (BUILD.6.1) gen-

ome. To provide information regarding the identity and

function of genes at adjacent windows, the chromosomal

positions from the Ensembl Genome Browser (http://ense

mblgenomes.org/) were used. In addition, a Bioconductor

package that accesses and retrieves Ensembl data (Entrez

IDs, Ensembl gene ID, HGNC symbols and more), R/Bio-

maRt, was used to download all genes (background genes)

from the Bos taurus genome (ORG.MESH.BTA.DB) as

well as map features within �200 kb from the location of

the SNP markers.

The biological function of these genes and possible rela-

tion to AFC were first investigated using a biological process

gene network. For this, the ClueGO plug-in for Cytoscape

(Bindea et al., 2009) was used, based on a 1-sided hypergeo-

metric test and Bonferroni correction, to construct a gene

network highlighting the biological roles and relations across

candidate genes. While aiming to identify the TF related to

potential candidate genes, the TFM-Explorer web tool

(http://bioinfo.lifl.fr/TFM/TFME/) was used. This web tool

takes a set of gene sequences and searches for locally over-

represented transcription factor binding sites (TFBS) using

weight matrices from the JASPAR vertebrate database (San-

delin, Alkema, Engstr€om, Wasserman, & Lenhard, 2004); it

also detects all potential TFBS and extracts significant clus-

ters (region of the input sequences associated with a factor)

through score function calculation. The score threshold is

given by a p-value equal to or smaller than 10�3 for each

position and for each sequence (Touzet & Varr�e, 2007). The

program default for the analysed promoter region is 2,000–

200 bp upstream and downstream, respectively. As the gene

transcription start site (TSS) annotations are uncertain in the

current assembly for some regions, we compensated both in

the 50 and 30 directions by applying no restrict ample defini-

tions. Therefore, from this set of genes, excluding the

ncRNA genes, we collected sequences of the TSS gene that

were 3,000 bp upstream and 300 bp downstream (FASTA

format), based on the Bos_taurus_UMD_v3.1.1 assembly

(Zimin et al., 2009). This data were used as an input for the

TFM-explorer.

The given TF list was fed into Cytoscape (Shannon

et al., 2003) using a Biological Networks Gene Ontology

tool (BiNGO) plug-in to determine which gene ontology

(GO) terms were significantly overrepresented by assuming

a default statistical test (binomial test) and multiple testing

corrections (e.g., Bonferroni and false discovery rates) with

a significance level of 0.05%. The total number of statisti-

cal tests in a single analysis might be as much as several

hundred. Based on biological processes (e.g., response to

growth hormone stimulus and response to fatty acids) and

literature reviews, we selected the main TFs related to AFC

(key TF) and constructed a gene-TF network. A schematic

representation of the work- and dataflow can be seen in

Figure 1.

3 | RESULTS

Genetic and residual variance component estimates for

AFC were 6,685.00 � 2,910.70 days and 21,162.00 �

2,577.77 days, respectively. The heritability estimate (h2)

was 0.24 � 0.04, which confirmed genetic variability for

this trait and for possible selection in this population.
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Single nucleotide polymorphism windows with a 1 Mb

length (Figure 2) were built across the genome with an

average density of 172 � 49 SNPs per window. A total

of 18 SNP windows that each explained more than 0.40%

of the genetic variance were identified. These windows

were used to locate candidate genes affecting AFC on

BTA 2, 8, 9, 14, 16 and 17. The SNP window (n = 232

SNPs) with the highest proportion of genetic variance

explained approximately 3% and was located on BTA14.

Nine windows with a threshold that was higher than

0.40% were also located on BTA14, whereas 1, 1, 3, 2

and 1 window(s) were respectively located on BTA 2, 8,

9, 16 and 17. A detailed breakdown of the 1 Mb SNP

windows that were used to locate candidate genes is pre-

sented in Table 1.

We checked the LD between SNP markers within and

across different neighbouring SNP windows (n = 18),

which each explained more than 0.40% of the genetic vari-

ance. Illustrations of the haplotype blocks in which seg-

ments of correlated SNPs are separated by gaps between

the gray-scale triangular matrices are presented in Fig-

ure S1. Patterns of block structures differed between peaks

in the same chromosome and presented with a high LD

within each peak, especially on BTA8, BTA9, BTA14 and

BTA16.

A total of 3,570 SNP markers were within the relevant

adjacent windows and were detected in Bos taurus chromo-

somes BTA 2, 8, 9, 14, 16 and 17. Potential candidate

genes were identified using NCBI and Ensembl sources for

gene mapping, and 152 genes (123 protein coding, four

snoRNA, 13 snRNA, one miRNA, four rRNA, two mis-

c_RNA and five pseudo genes) were mapped against the

major loci that were found for AFC. Some of these SNPs

had no identified gene, and 111 genes were mapped within

or close to 2,275 SNP markers. Supplementary information

linking SNP markers and potential candidate genes is pre-

sented in Table S1.

The biological process gene network highlighted a

well-related process (negative regulation of luteinizing

hormone secretion) using protein-coding genes (Figure 3).

From this network, four genes were directly linked:

neuropeptides B/W receptor gene (NPBWR1,

ENSBTAG00000016159), nuclear receptor coactivator 2

Selection of the most

relevant sliding windows

based on their genetic

variance explained (>0.40%)

Gene location via

Map2NCBI

Gene identity and biological

function

Biological function and Age

at first calving relationship

investigation via gene

networks

Transcription factors (TFs)

identification

Gene ontology (GO)

significance

Main TFs selction based on

biological process and

literature review

FIGURE 1 A schematic work- and dataflow representation

FIGURE 2 Manhattan plots of age at first calving genetic variance explained by SNP windows in Nellore cattle. Each dot represents a

1 Mb SNP window segment. Horizontal gray line represents the adopted threshold (0.40%)
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(NCOA2, ENSBTAG00000020312), opioid receptor Kappa

1 (OPRK1, ENSBTAG00000000914) and corticotropin-

releasing hormone (CRH, ENSBTAG00000033128) on

BTA14.

From the promoter sequences of the 123 protein-coding

genes that were mapped, a total of 18 TFs were identified

and analysed to determine which GO terms were signifi-

cantly overrepresented. The main TFs associated with AFC

based on biological processes and literature review

(Table 1) were chosen to generate a gene-TF network

enabling the identification of putative candidate genes for

AFC (Figure 4). Based on the most representative TF

(STAT1, STAT3, RELA, E2F1 and EGR1; Table S2), we

identified the most likely candidate genes for AFC (e.g.,

ORMDL1 on BTA2; PAPPA on BTA8; FIG 4, PPIL6,

PREP on BTA9; PCMTD1, SDCBP, UBXN2B, MCM4,

ARMC1, MRPL15, NSMCE2 and FER1L6 on BTA14;

APITD1, NMNAT1and TPR on BTA16 and ACAD10 and

PRKAB1 on BTA17).

4 | DISCUSSION

After quality control edits, 399,308 (51%) SNP markers

and 4,133 animals remained in the HD panel to impute

30k and 70k panels and to further estimate the genomic

relationship coefficients between animals. The number of

overlapped SNPs was 13,708 and 53,375 on 30k and 70k

panels, respectively, whereas 2,900 (30k) and 3,673 (70k)

were excluded.

The estimated population mean for AFC in this study

(1,199 � 184.61 days) agrees with those reported in the

literature, which varied from 1,050 to 1,260 days in Brazil-

ian Nellore cattle (Grossi et al., 2008). High AFC values

may be due to the harsh climate conditions, as the animals

were pasture-raised in a region with historically low yearly

rainfall (Figure S2; http://clima1.cptec.inpe.br/evolucao/pt)

and a high daily temperature range (16–30 Celsius; Fig-

ure S3; http://clima1.cptec.inpe.br/evolucao/pt) with an

average of 27°C, thereby hindering the animals’ ability to

have progeny earlier. The heritability estimate

(0.24 � 0.04) while incorporating marker information was

higher than the traditional pedigree-based estimate reported

by Grossi et al. (2008) and Mercadante, Lôbo, and Oliveira

(2000) with values equal to 0.14 and 0.09, respectively.

AFC heritability estimates are usually low as AFC is a sex-

limited trait and heavily influenced by the environment.

AFC heritabilities normally range from 0.05 to 0.22 (Grossi

et al., 2008). However, AFC can by definition be dissected

into three traits: age at the onset of puberty, time from the

onset of puberty until conception and gestation length. In

our case, age at the onset of puberty is strongly influenced

TABLE 1 Relevant single nucleotide polymorphism (SNP) windows detecting major loci explaining variance and potential candidate genes

for age at first calving in Nellore cattle

Window start Window end Chr PS (Mb) PE (Mb) N. SNP GVE (%)

BovineHD0200001802 BovineHD0200002125 2 6.17 7.17 178 0.43

BovineHD0800031709 BovineHD0800032090 8 106.27 107.27 219 0.52

BovineHD0900011384 BovineHD0900011657 9 40.97 41.97 178 0.44

ARS-BFGL-NGS-66207 BovineHD0900012314 9 43.31 44.31 235 0.44

BovineHD0900012655 BovineHD0900012880 9 45.62 46.61 131 0.60

BovineHD1400004685 BovineHD1400004991 14 16.54 17.53 214 0.41

BovineHD1400005826 BovineHD1400006161 14 20.39 21.39 217 0.53

BovineHD1400006241 BovineHD1400006529 14 21.66 22.66 196 0.79

BovineHD1400006530 BovineHD1400006869 14 22.66 23.66 232 3.10

BovineHD1400006871 BovineHD1400007165 14 23.67 24.67 198 0.61

BovineHD1400007551 BovineHD1400007803 14 26.20 27.20 183 0.52

BovineHD4100011412 BovineHD1400008347 14 27.84 28.84 237 1.99

BovineHD1400009017 BovineHD1400009324 14 31.25 32.25 216 0.92

BovineHD1400009735 BovineHD1400010082 14 33.91 34.91 231 0.84

BovineHD1400010352 BovineHD1400010608 14 35.96 36.95 186 0.51

BovineHD1600012226 BovineHD1600012468 16 43.94 44.93 147 0.85

BovineHD1600019305 BovineHD1600019652 16 68.23 69.23 194 0.47

BovineHD1700016259 BovineHD1700016502 17 57.29 58.28 178 0.55

Total N/A N/A N/A 3,392 14.52

Chr, chromosome; PS, position start; PE, position end; N. SNP, number of SNPs; GVE, genetic variance explained; N/A, non-applicable.
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by the body weight development, which was often reported

to be highly heritable (Grossi et al., 2008). It might play a

greater role in our study and therefore partially explains the

relatively high heritability estimate when compared to other

studies and also other fertility traits.

Although genome mapping analysis detected potential

chromosome regions explaining the maximum 3% of the

genetic variance, this percentage could be considered a rele-

vant proportion, as previously reported in cattle (Utsuno-

miya et al., 2014). The evidence is that AFC inheritance is

complex as it is controlled by multiple loci across the gen-

ome. The potential candidate genes that were selected in this

study might only describe a small piece of the molecular

mechanisms underlying AFC, especially due to the fact that

these cows were not bred early (14 or 18 months of age). In

addition, if we consider all windows explaining more than

0.40% on BTA14, that is, by summing the genetic variance

explained by SNP windows on BTA14, it amounts to nearly

7%. On the other hand, by considering all relevant windows,

this value increased to 14.52% (Table 1).

A total of 123 protein-coding genes were observed from

the 18 SNP windows, and a biological process network

(Figure 3) was built; genes such as PLAG1, NPBWR1,

OPRK1, CRH and NCOA2 were highlighted as they showed

an important biological process for AFC, such as negative

regulation of luteinizing hormone secretion. These four

genes are located on BTA14. The NPBWR1 gene is a neu-

ropeptide W (NPW)/neuropeptide B (NPB) receptor-1

endogenous ligand for the orphan G protein-coupled recep-

tors GPR7, which is related to the regulation of feeding and

energy metabolism. The endogenous NPW may play a regu-

latory role in the organization of neuroendocrine signals

based on the hypothesis that NPW does not act as a true

releasing or inhibiting factor. According to Baker, Cardinal,

Bober, Taylor, and Samson (2003), NPW acts in the brain

to control prolactin, corticosterone and growth hormone

release. However, Fang et al. (2015) reported NPW

immunoreactivity levels in sow reproductive systems as

intense in primordial follicles, moderate in the uterus and

very weak in oocytes of the primary follicle.

The NPBWR1 gene is located in the adjacent window

region that explains the largest proportion (3.09%) of AFC

genetic variance mapped on BTA14, peaking between 22.7

and 23.7 Mb (Figure S1). Similarly, the OPRK1 gene was

Reproductive behaviouti r

NNeeegggaaattiivee
rrreeeeggguullaaaatt iioonn ooff

llluutteeeiiinniizz iinngg
hhhoorrrmmoonnee
ssseeecccrreettiiiooonnn

OPRK1

Negative regulation ofga fNegatg
gonadotropin secretiona ropin secre

Luteinizing hormone secretioi hoLu n cretioLutLuteinizing hi hn n

Multicellular organismalo
reproductive behaviour

Multiorganism reproductivee tiu
behaviourr

NCOA2

Circadian behavioub ur

Caatecholaminem trannra ssportt

Gonadod trropinpino  secrcreettioionn

Regulation of gonadotropin
secretion

Opioid receptor signalling pathwacep y

Catecholamine secretioatechtechch n

NPBWR1

Regulation of catecholamine
secretion

ResponseRes  to cocaine

Regulation of luteinizing
hormone secretion

Bile acid metabolic procesab s

CYP7A1

ASPH

SPIDR

Regulationn of digegedigd stive systemm
processcerocro

Positive regulattion of receptor
activityi

CRH
Cellular response to alkaloia d

Regulation of endocrine procese g endo s

Positive regulation of calcium ion
import

Endocrine hormone secretion

FIGURE 3 Main functional networks with biological process terms and genes (in red) as nodes. The node size represents the term

enrichment significance from ClueGO. The most enriched term related age at first calving is shown in bold. [Colour figure can be viewed at

wileyonlinelibrary.com]
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also mapped on BTA14. OPKR1 is an opioid receptor

kappa 1 mapped by Fortes et al. (2012) and reported as a

potential candidate for Brahman cattle puberty.

The corticotropin-releasing hormone (CRH) gene was

identified in another relevant window mapped between

31.25 and 32.25 Mb (Table 1) and was reported to be

involved in ovarian steroidogenesis regulation and follicular

maturation, ovulation and luteolysis (Kiapekou, Zapanti,

Mastorakos, & Loutradis, 2010). Another candidate gene

identified on BTA14 was the nuclear receptor coactivator

(NCOA2) which acts as a transcription factor in the

hypothalamus (Fortes et al., 2011). The 1-Mb window con-

taining this protein-coding gene explained around 0.50% of

the genetic variance for AFC and was mapped on BTA14

(35.96–36.95 Mb; Table 1). In a study on Brahman cattle,

Fortes et al. (2011) reported that NCOA2 seems to play a

key role in the development of puberty by acting as a tran-

scription factor for multiple genes affecting the onset of

puberty. Camargo et al. (2015) partially characterized

NCOA2 associated with polymorphisms that were found

with reproductive traits in Nellore cattle. These authors

have reported significant SNPs in the NCOA2 gene for

early pregnancy probability, days to first calving and AFC

in Nellore females.

Biological process analyses from these TF pointed out

important reproductive mechanisms (e.g., cellular response

to peptide hormone stimulus and response to hormone

stimulus) with some literature evidence regarding effects

on female puberty, as observed in Table S2. Based on

these key TFs, we were able to build a gene-TF network

highlighting genes sharing roles with AFC (e.g., PAPPA,

PREP, PCMTD1, FER1L6 NMNAT, TPR and ACAD10).

The pregnancy-associated plasma protein-A (PAPPA)

gene was mapped in an adjacent window between 106.27

and 107.27 Mb on BTA8 and explained 0.52% of AFC

genetic variance. This gene is cited to compromise ovarian

steroidogenesis and female fertility in mice (Nyegaard

et al., 2010). Prolyl endopeptidase (PREP) was identified

on BTA9 with 0.60% of genetic variance explained. This

gene is a member of the serine peptidase group that is

widely conserved through evolution. PREP activity has

been detected in all organs and tissues with many different

types of activities such as maturation and degradation of

peptide hormones and neuropeptides. In terms of AFC,
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PREP is also related to male and female reproduction-asso-

ciated processes; gonad function and gamete physiology

are some of the roles of PREP that were previously

described in the literature (Kimura, Matsui, & Takahashi,

2002). These results suggested that PREP might be an

important gene influencing AFC, mainly in terms of sire

selection.

The protein-L-isoaspartate (D-Aspartate) O-methyltrans-

ferase domain containing 1 (PCMTD1) was reported to be

expressed in the endometrium of high- and low-fertility

heifers during the mid-luteal phase of the oestrous cycle

gene in cross-bred cattle (Killeen et al., 2014) and has been

cited to be associated with Brahman cattle puberty (Fortes

et al., 2012). This gene was mapped on BTA14 in a win-

dow region that explained the largest portion (3.09%) of

genetic variance located between 22.7 and 23.7 Mb; it was

also one of the most highlighted genes in the gene-TF net-

works and appeared to be one of the most noticeable candi-

date genes in our study.

Four genes (FER1L6, TPR, NMNAT1, and ACAD10)

were mapped, respectively, on BTA14, BTA16, BTA16

and BTA17 and are candidate genes with some puberty

involvement. The adjacent windows in which these genes

are included explained, respectively, 0.41%, 0.47%, 0.85%

and 0.55% of AFC genetic variance (Table 1). FER1L6 is

related to folliculogenesis (Stigliani, Anserini, & Nicoletti,

2013), TPR to oestrus and early pregnancy in pigs (Goos-

sens & van den Berg, 1979) and NMNAT1 to female repro-

ductive efficiency in cattle (Khatkar, Randhawa, &

Raadsma, 2014), whereas ACAD10 is involved in fatty acid

oxidation during oocyte maturation in mice (Dunning,

Anastasi, Zhang, Russell, & Robker, 2014).

Previous studies have found peaks on BTA14 in a simi-

lar region, reinforcing this autosome as a chromosome can-

didate for reproductive traits in cattle. Fortes et al. (2012)

identified a large number of SNPs associated with puberty

in Brahman cattle. Karim et al. (2011) argued that PLAG1

was the relevant gene underlying this region on BTA14

and affecting bovine stature; a secondary effect can be

related to age at puberty, and therefore to AFC, due to the

high genetic correlation between these traits.

Despite the fact we found two SNP markers (Bovi-

neHD1400006722 and BovineHD1400006725) inside the

gene PLAG1 (Table S1), we did not confirm this gene as a

potential candidate in the present population. Although we

reported two close peaks in the region of BTA14 close to

PLAG1, this region has shown a low LD (r2 < .1; Figures

S1 and S4) with the main peak, where the PCMTD1,

NPBWR1 and OPKR1 genes were mapped. The largest

peak on BTA14 (Figure 2) segregated into two high LD

peaks, located at 22.7–23.7 and 27.8–28.8 Mb. The PLAG1

gene is located in between (25 Mb) and in low LD

(r2 < .1) with both peaks (Table 1; Figure S1), thereby

suggesting a segregation of events. Our results suggest that

the PCMTD1, NPBWR1 and OPKR1 genes are strong can-

didates for AFC on BTA14. Future studies with greater

numbers of genotyped and phenotyped animals may con-

firm these as major genes for AFC in not challenged Nel-

lore cows.

In this study, we identified a high LD within, but low LD

between peaks on the same chromosome (Figure S1).

Genetic variants within peaks, marked by the associated SNP

windows, must have biological functions that hinder the

localization of true QTLs related to AFC. Another point to

be highlighted is that different genes could be pronounced as

potential candidates depending upon the environmental gra-

dient, which may suggest a SNP by environment interaction

affecting AFC. In a recently paper, Mota et al. (2017)

reported the presence of SNP by environment interactions

for tick resistance in cattle affecting different tick burden

levels. Therefore, models that incorporate the genotype by

environment interaction should be performed.

5 | CONCLUSION

This study contributes important information on AFC

genetic variance and the dissection of molecular mecha-

nisms regulating Nellore cattle fertility. The identified

potential candidate genes (e.g., PAPPA, PREP, FER1L6,

TPR, NMNAT1, ACAD10, PCMTD1, CRH, OPKR1,

NPBWR1 and NCOA2) and related gene-TF networks have

biological roles that are strongly associated with female

reproduction features.
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