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Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple 

genetic and environmental risk factors. We report the findings of a new genome-wide association 

study of T1D, combined in a meta-analysis with two previously published studies. The total 

sample set included 7,514 cases and 9,045 reference samples. Forty-one distinct genomic locations 

provided evidence for association to T1D in the meta-analysis (P < 10-6). After excluding 

previously reported associations, 27 regions were further tested in an independent set of 4,267 

cases, 4,463 controls and 2,319 affected sib-pair (ASP) families. Of these, 18 regions were 

replicated (P < 0.01; overall P < 5 × 10-8) and four additional regions provided nominal evidence 

of replication (P < 0.05). The many new candidate genes suggested by these results include IL10, 

IL19, IL20, GLIS3, CD69 and IL27.

Results from linkage and association studies in T1D have long supported a model in which 

the major risk factor for T1D resided in the HLA region on chromosome 6p21. Candidate 

gene studies carried out over a number of years identified four non-HLA T1D risk loci: INS, 

CTLA4, PTPN22, and IL2RA1-4. Recently, the application of genome-wide SNP typing 

technology to large sample sets and comparisons with results from other immune-mediated 

diseases have provided convincing support for 19 additional T1D loci5-13, all with allelic 

odds ratios (OR’s) of less than 1.3.

In order to have adequate power to detect additional T1D risk loci with ORs in the range of 

1.1 to 1.3, we performed a new genome-wide association scan using British cases and 

controls and used this dataset in a meta-analysis which included 7,514 cases and 9,045 

reference samples (Table 1). The other datasets included in the meta-analysis were from the 

Wellcome Trust Case Control Consortium (WTCCC) study7 and a study12 that utilized 

T1D cases from the Genetics of Kidneys in Diabetes (GoKinD) study of diabetic 

nephropathy14, and reference samples from the National Institute of Mental Health (NIMH) 

study15.

The two earlier studies (WTCCC and GoKinD/NIMH) used Affymetrix 500K platforms 

while the new (T1DGC) study used the Illumina 550K platform. Of the 841,622 SNPs 

genotyped in these studies which had minor allele frequencies (MAF) exceeding 1% and 

passed our quality control standards, 328,044 were only genotyped by the Affymetrix 

platform, 437,739 only by the Illumina platform, and 75,839 were genotyped by both 

platforms. Since only 9% of SNPs are shared between these platforms, imputation was used 

to combine results across studies. To develop imputation rules, we took advantage of the 

fact that 1,422 of the original WTCCC controls which were included in the T1DGC study 

had been genotyped on both platforms (Methods).

An analysis using Mantel’s extension to the 1 degree of freedom (1 df) Cochran-Armitage 

trend test which combined comparisons over the three studies yielded 41 distinct genomic 

locations with P-values < 10-6 (Figure 1) (Individual plots for each study are in 

Supplementary Figure 1). Fifteen of these sites were in regions where there were prior 

reports of association to T1D (Table 2). The remaining 26 of these locations along with one 

weaker association on the X chromosome, were chosen for further analysis. To address the 

possible effects of population structure, the analyses were stratified by geographical region 

in the case of the British studies and by a “propensity score” based on principal components 
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analysis on the US study. This was only partially successful in reducing the over-dispersion 

of test statistics, a large part of which derived from the US data (Table 3). If the residual 

over-dispersion were due to population structure, there would be a strong case for correcting 

the P-values (as shown in Table 3). However, the modest effect of the stratified analysis on 

over-dispersion, taken together with the absence of any over-dispersion in case-only 

interaction tests (see below) suggests that it is more likely due to differential genotyping 

errors. In this case, correction of the most significant P-values would be over-conservative 

since we have carefully checked all genotyping cluster plots for associated SNPs. The 

genomic control corrected P-values are nevertheless shown in Supplementary Table 1. The 

strongest associations tended to become somewhat less significant, but the choice of regions 

for follow-up, based on the criteria of P < 10-6, was not affected. We also carried out, for 

SNPs with minor allele frequency exceeding 10%, 2 df “genotype” tests which would be 

more sensitive to associations showing marked dominance (deviation from an additive 

model, on the log scale). Significance was notably increased, by 3 to 4 orders of magnitude, 

at three SNPs, but was less significant than the corresponding 1 df tests otherwise 

(Supplementary Table 1) yielding no additional findings at P < 10-6. The results of both 

simple and stratified 1 df tests of these SNPs, separated by study, are shown in 

Supplementary Tables 3 and 4. Quantile-quantile plots for tests in our new (T1DGC) study, 

and in the meta-analysis, after removal of tests for SNPs in linkage disequilibrium (LD) 

regions surrounding known and putative associations, are shown in Supplementary Figure 

2a and 2b.

The most significantly T1D associated SNPs from each of the 27 novel regions selected for 

replication were genotyped in a further 4,267 cases and 4,670 controls and in 4,342 trios 

from 2,319 T1DGC families with multiple affected offspring. Genotype data passed design 

and quality control criteria for 25 of these SNPs. Eighteen regions replicated with P < 0.01 

and showed genome-wide significant (P < 5 × 10-8) association in the joint analysis of the 

genome scans and replication samples (Table 4, individual scan data in Supplementary 

Table 2). A further three of the remaining seven SNPs also showed P < 0.01 in the 

replication studies, and a fourth had P < 0.05, but these failed to reach overall P < 5 × 10-8 

(Table 4). This study, therefore, adds 18 T1D risk loci to the existing 24, and provides 

suggestive support for four more. As expected, nearly all of these loci have OR < 1.2, as 

larger effects would likely have been discovered in earlier studies. Two of the new 

associations (10q23 and 16q23) contradict this trend and highlight the disparity between 

genomic coverage of the older Affymetrix 500K chip and the newer Illumina 550K: these 

loci do not have a good proxy on the Affymetrix chip, explaining why they were not 

previously identified despite relatively large effect sizes (OR ∼ 1.3).

The families utilized for replication were derived from affected sib-pair linkage studies. One 

consequence of ascertainment on the basis of at least two affected siblings was a high 

frequency of high risk HLA genotypes16. It has been reported that relative risks for several 

non-HLA loci are reduced in subjects carrying high risk HLA genotypes17, 18, reflecting 

deviation from a multiplicative model for joint effects, and this would lead us to expect 

reduced effect sizes in multiple-case families. Indeed, the results of the replication study 

were generally less convincing in the family data than in the case-control data reflecting 
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smaller effect sizes in the families. One potential explanation for these different effect sizes 

lies in possible statistical interaction among risk loci leading to a less-than-multiplicative 

accumulation of risk in samples (such as those from multiplex families) with a large number 

of risk variants. This hypothesis is difficult to test because power to detect interaction terms 

is much less than that to find equivalent sized main effects and is doubly compounded when 

specific causal variants (rather than tag SNPs from a GWA scan) are not known.

We tested for deviation from the model of multiplicative effects with HLA, on a genome-

wide basis, by first calculating predictive risk scores using SNPs in the MHC region on each 

platform, and testing for association between this score and every other SNP in the 

remainder of the genome. These tests are “case-only” tests for statistical interaction 

reflecting variation of allelic relative risks with the level of HLA-attributable risk. As noted 

earlier, these test statistics did not show the over-dispersion which would have been 

indicative of population stratification (Supplementary Figure 2c). However, the subset of 

these tests concerning established T1D susceptibility loci tended to have larger chi-squared 

values than expected by chance (Supplementary Figure 2d). In the majority of cases (31/45), 

the interaction tests took the opposite sign from the main effect test, consistent with high 

MHC risk leading to lower risk for other loci. Of the five interactions which reached P < 

0.05, four were of this type (loci near 2q24.2/IFIH1, 1p13.2/PTPN22, 17p13.1 and 2q33.2/

CTLA4). We carried out a further test by calculating a T1D risk score using all associated 

loci excluding the MHC region and testing, in cases only, for correlation between this score 

and the MHC risk score. We found a weak, but significant (P=0.0007) negative correlation, 

again indicating that risk from HLA and non-HLA sources accumulates at a rate less than 

expected based on the model of multiplicative effects, so that there is a general tendency for 

relative risks for non-HLA loci to be reduced when HLA-related risk is high.

Several of the 18 regions identified here contain genes of possible functional relevance to 

T1D. These include the region 1q32.1 containing the potent immunoregulatory cytokine 

genes, IL10, IL19 and IL20. The region of strong LD at 9p24.2 contains only a single gene, 

GLIS3. Mutations in GLIS3 have been reported in children from three different 

consanguineous families with permanent neonatal diabetes associated with congenital 

hypothyroidism and other clinical complications19. The region on 12p13.31 harbors a 

number of immunoregulatory genes including CD69, which is induced by activation of T 

cells and functions in thymic egress20. Several other members of the calcium-dependent (C-

type) lectin (CLEC) domain family with immune functions also map to this region. Overall, 

our results provide a rich new source of candidate genes, but until further genotyping, re-

sequencing and functional studies are performed, it is not possible to be more specific in 

regard to which genes might be causal.

Methods

Subjects

The WTCCC study has been described elsewhere7. Cases were recruited from pediatric and 

adult diabetes clinics at 150 National Health Service Hospitals across Great Britain as part 

of the Genetic Resource for Investigating Diabetes (GRID) collection (www.childhood-

diabetes.org.uk/grid.shtml) of the JDRF/WT DIL9. Half of the controls were drawn from the 
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British 1958 Birth Cohort21 and half from a group of blood donors recruited by the WTCCC 

in collaboration with the UK Blood Services7. The former group was subsequently 

genotyped on the Illumina 550K platform and was used as controls in the new T1DGC study 

reported here. Since the removal of this group from the WTCCC study left it somewhat 

short of controls, we used a group of 1,868 patients with bipolar disorder as additional 

reference samples — a group conspicuous in the WTCCC studies in its lack of significant 

differences from control allele frequencies7.

Our new study added approximately 2,500 new controls from the British 1958 Birth Cohort 

to the 1,500 described above, and compared these with a new group of approximately 4,000 

British cases from the JDRF/WT DIL collection. All cases and controls were resident in 

Great Britain. To minimize the effects of population structure, the case-control comparisons 

in the WTCCC and T1DGC studies have been stratified by the 12 regions of Great 

Britain5,7. Sample exclusions in the genome-wide studies are discussed in Supplementary 

Methods.

Replication studies were carried out in two groups of cases and control as well as 2,319 

affected sib-pair families previously recruited and characterized by the T1DGC6. The 

British cases were from the JDRF/WT DIL, and the controls were drawn from the British 

1958 Birth Cohort, and the UK Blood Service controls of the WTCCC. The second set of 

cases and controls from Denmark were recruited from a nationwide registry. All cases (49% 

females) were diagnosed before age 18 years and the mean age at onset 9.02 years. Control 

subjects were randomly selected from the Inter99 study22.

Genotyping

For the T1DGC study, the 4,000 T1D case and 2,500 control DNA samples were selected 

based on no prior use in a prior genome wide association study and migration as a high 

molecular weight band of genomic DNA, ∼23 kb, by electrophoresis on a 0.75% agarose 

gel. All DNA samples were extracted using a chloroform-based method and quantified in 

triplicate using Picogreen®. Once selected, the case and control DNA were randomized by 

columns into a 96 well plate format.

For the T1DGC study, genotyping was performed on the Illumina 550K Infinium platform 

and, for comparability, all genotypes were re-scored using the ILLUMINUS algorithm23. 

The WTCCC study used the Affymetrix GeneChip Human Mapping 500K Array set, while 

the GoKinD/NIMH study used genotype data generated with the Affymetrix Genome-wide 

Human SNP Array 5.0. The 5.0 array incorporates all of the SNPs on the earlier 500K array 

but on a single chip along with an additional 420K non-polymorphic probes. Details of the 

scoring of genotypes may be found in the original publications7, 12. The criteria for 

discarding some SNPs from the analysis are discussed in Supplementary Methods.

For the replication studies, genotyping was performed in a fully blinded fashion using 

Taqman assays as previously described9.
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Statistical methods

One degree of freedom tests are Cochran-Armitage tests for trend alternatives, extended to 

pool information across multiple studies or across multiple strata within a single study by 

the method described by Mantel24. The two degree of freedom tests follow similar 

principles. Testing for association with SNPs on the X chromosome was carried out using 

the method proposed by Clayton25. More details are given in Supplementary Methods.

The meta-analysis involved studies that used different platforms, necessitating the use of 

imputation. Since we had a substantial sample typed on both platforms, we used a simple 

linear regression approach to imputation26. Details of this, and other methods used in the 

meta-analysis, are given in Supplementary Methods. Supplementary Figure 3 shows the 

distribution of the quality of imputation, as measured by the coefficient of determination, R2.

Analysis of the replication case-control studies was carried out in a similar manner, by 1 df 

comparisons of allele frequencies with Danish and UK studies treated as separate strata. The 

family study was analyzed by the transmission/disequilibrium test (TDT).

The MHC risk score was derived by an adaption of the lasso approach27 to logistic 

regression of case/control status versus all SNPs in the MHC region (defined as spanning 

from 24.7 Mb to 34.0 Mb on chromosome 6). This was applied to the combined Affymetrix 

data, with a dummy variable in the regression to differentiate WTCCC and GoKinD/NIMH 

studies and, separately to the T1DGC Illumina data. The coefficients for the selected 

regression equations are shown in Supplementary Table 3. The degree of risk prediction, as 

demonstrated by the receiver operating curves (Supplementary Figure 4) was very similar in 

the three study groups.

A case-only test for statistical interaction between each SNP and MHC risk score was 

carried out by a 1 df test based on the covariance between MHC risk score and the SNP 

genotype coded 0, 1 or 2. These tests were stratified within study by geographical region or 

by principal component score, and information pooled across strata and studies as described 

above. A 2 df test for association, possibly modified by MHC, was calculated by adding the 

chi-squared interaction test on 1 df to the 1 df chi-squared statistic for the stratified 

association test.

The lasso analysis of the MHC risk prediction was carried out in the lasso2 package in the R 

statistical system28. All the remaining analysis was carried out in the snpMatrix package 

from the bioConductor project 29.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genome-wide plots of -log10 P-values from stratified 1 df tests combining results from all 

three studies. Values of -log10 P greater than 10 are plotted at 10. SNPs only present on the 

Illumina chip are shown in blue, those only present on the Affymetrix chip in red, and those 

present on both chips are shown in black. Points are plotted in the order red, blue, black. 

Previously known disease susceptibility loci are marked by vertical black lines, while new 

findings from the current analysis are marked by vertical grey lines (solid lines for 

convincingly replicated loci and dashed lines for nominally replicated results).
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Table 3

Over-dispersion factors (λ) of 1 df association tests

Study

Simple tests Stratified tests

λ λ p=10-6 p=10-8

WTCCC 1.077 1.062 2.1 × 10-6 2.7 × 10-8

GoKinD/NIMH 1.196 1.150 5.1 × 10-6 9.1 × 10-8

T1DGC 1.066 1.055 1.9 × 10-6 2.4 × 10-8

GB studiesa 1.105 1.092 3.2 × 10-6 5.0 × 10-8

Combinedb 1.136 1.119 3.8 × 10-6 6.0 × 10-8

For the stratified test λ values, the effect of genomic control correction of p-values of 10-6 and 10-8 are also shown.

(a)
Values are shown for each study separately and for meta-analyses of both GB studies (WTCCC and T1DGC)

(b)
Values are shown for each study separately and for meta-analyses of all three studies.
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