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Maize oil is high in energy and in polyunsaturated fatty acids, which 
makes maize with high oil concentration (‘high-oil’ maize) a popular 
resource for food, feed and bioenergy. Thus, the ability to manipulate 
oil quantity and quality has become a key target for plant breeding and  
biotechnology-assisted improvement. The oil stored in most plant seeds 
is composed of triacylglycerols. Studies with the model plant Arabidopsis 
thaliana have generated an extensive understanding of storage-oil  
biosynthetic pathways, the genes involved and their regulation1–4.

The long-term selection of high-oil maize populations has led to 
the development of unique genetic resources, including the Illinois 
high-oil (IHO) population, the Alexho single-kernel synthetic popu-
lation and the Beijing high-oil population5–7. These have provided 
opportunities for dissecting the genetic architecture of oil biosynthesis 
in maize kernels. The continuing phenotypic response to selection 
over many generations for high kernel oil concentration and corre-
lated traits provides convincing evidence for the involvement of many 
genes, each having a small effect8. On the basis of linkage analysis 
using high-oil inbred lines developed from these high-oil populations, 
several QTLs involved in the biosynthesis of maize kernel oil have 
been identified8,9. Recently, the nested association mapping (NAM) 
population of 5,000 lines and high-density markers has been used to 
identify 22 QTLs affecting oil concentration10. However, despite a 
good understanding of the plant oil biosynthetic pathway and many 
of the relevant genes, the molecular basis of natural variation in oil 
biosynthesis has not been fully elucidated in maize owing to the  
limited number of parental lines used in the previous studies8–10.

Genome-wide association studies (GWAS) provide the opportunity 
to methodically analyze the genetic architecture of complex traits 
in maize and benefit from the high diversity and rapid linkage dis-
equilibrium (LD) decay in this species11. Millions of polymorphisms 
would be required to ensure complete coverage for a GWAS in maize, 
considering the small size of conserved LD blocks12. Here we used 
massively parallel RNA sequencing (RNA-seq) to obtain abundant 
and informative SNPs from expressed regions of the genome and to 
simultaneously monitor the expression of each of the analyzed loci 
in the context of its biological function13. We analyzed these data, 
along with 56,110 genomic SNPs from the Illumina MaizeSNP50 
BeadChip14, in an association study of oil concentration and com-
position. We used two diverse association panels, both of which con-
tained a wide range of phenotypic variation for the traits under study. 
Some of the identified oil-associated SNPs we validated by expression 
analysis and/or linkage analysis in biparental populations after PCR 
amplicon resequencing.

RESULTS
Phenotypic variation
We observed abundant variation in oil-related traits in the association 
panel of 508 diverse inbred lines, which included 35 high-oil lines15. 
Variation ranged from a 2.3-fold difference in palmitic acid (C16:0) 
composition to an 8-fold difference in stearic acid (C18:0) composi-
tion (Supplementary Table 1). Five of the ten measured fatty acids 
accounted for 98.4% of the oil concentration; these included palmitic 
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(C16:0, 15.7%), stearic (C18:0, 2.1%), oleic (C18:1, 28.0%), linoleic 
(C18:2, 51.2%) and linolenic (C18:3, 1.4%) acids (Supplementary 
Fig. 1). Many of the traits were highly correlated, often because they 

are physiologically correlated (Supplementary Table 2). Compared 
with regular lines, the high-oil lines had higher oil concentration 
but similar oil composition (Supplementary Fig. 2). We observed 

table 1 sNPs and candidate genes significantly associated with oil concentration

Candidate genea Chromosome Positionb SNP Allelec MAF P valued QTLe
QTL  

directionf eQTLg Annotationh

GRMZM2G080524 1 16370466 M1c16370466 T,C 0.07 7.7 × 10−8 10 NS Epoxide hydrolase, 
EH51,52

GRMZM2G410515 1 17643572 M1c17643572 T,A 0.06 6.9 × 10−8 10 4.5 × 10−13 Phytoene desaturase

GRMZM2G115615 1 170961674 PZE-101132612 C,A 0.06 4.1 × 10−8 48,49 → N.S Tetratrico peptide 
repeat

GRMZM2G110298 1 248149904 M1c248149904 T,C 0.05 1.3 × 10−6 10,48 ↑ 3.5 × 10−12 Acyl carrier protein, 
ACP30,53,54

GRMZM2G134432 2 54358837 PZE-102073982 A,G 0.13 3.0 × 10−7 9,48,50 ↑ NA Phosphatidylinositol 
3 kinase,  
PI3Ks.a30,55

GRMZM2G079236 2 149517635 M2c149517635 T,G 0.05 1.3 × 10−7 10,48 ↑ NS Long-chain  
Acyl-CoA synthetase, 
LACS30,56,57

GRMZM2G176542 3 166664152 M3c166664152 C,G 0.08 4.6 × 10−7 49 NS Triglyceride lipases, 
TAGL30,58–60

GRMZM2G118423 3 167431166 M3c167431166 C,T 0.08 1.1 × 10−6 49 NA Oxidoreductase 
activity, Cytochrome 
P450, CYPOR61,62

GRMZM2G083195 3 178136002 M3c178136002 G,C 0.06 8.5 × 10−7 49(D/C)+ →→ NS Glycerol-phosphate 
acyltransferase, 
GPAT 30,63–65

GRMZM2G133675 4 6601732 M4c6601732 A,G 0.06 1.8 × 10−7 N 2.3 × 10−13 Regulation of  
transcription

GRMZM5G847159 4 32810884 M4c32810884 A,G 0.10 9.4 × 10−7 50 ↑ 1.7 × 10−10 Oxidoreductase 
activity, cytochrome 
P450, CYPOR61,62

GRMZM2G122767 4 165680223 M4c165680223 G,C 0.14 8.5 × 10−7 48 ↑ NS ATP binding

GRMZM2G125268 4 165969105 M4c165969105 G,A 0.05 1.0 × 10−6 48 ↑ 4.2 × 10−14 Aldehyde  
dehydrogenases

GRMZM2G092321 4 228013669 M4c228013669 C,T 0.12 1.2 × 10−6 N 2.1 × 10−23 Unknown

GRMZM2G041060 4 236185943 M4c236185943 G,C 0.06 1.2 × 10−9 N NS Unknown

GRMZM2G065194 5 15700222 M5c15700222 A,G 0.10 6.7 × 10−7 10,49 1.3 × 10−13 Short-chain 
dehydrogenases/
reductases

GRMZM2G439195 5 15800012 M5c15800012 G,C 0.05 3.8 × 10−13 10,49 7.5 × 10−11 Maize nicotianamine 
synthase

GRMZM2G035779 5 25549428 M5c25549428 C,T 0.12 1.5 × 10−6 49 2.6 × 10−7 Hydrolase activity

GRMZM2G169089 6 104859429 M6c104859429 C,T 0.15 3.9 × 10−15 9,10,23(C)+ ↑→ NS Diglyceride  
acyltransferase, 
DGAT1-2 (refs. 22,30, 
66–69)

GRMZM2G092550 7 109329336 M7c109329336 C,A 0.07 1.1 × 10−6 10 NS Phosphatidylinositol 
3 kinase,  
PI3Ks.b30,55

GRMZM2G136072 8 21615641 M8c21615641 G,T 0.07 2.7 × 10−12 50(D/C)+ ↑→→ 9.2 × 10−12 Oxidoreductase 
activity

GRMZM2G003022 8 38521846 M8c38521846 G,T 0.06 3.4 × 10−14 50(D)+ ↑→ NS COPII-coated  
vesicles, COPII30,70

GRMZM2G052855 8 100960678 M8c100960678 G,A 0.05 6.1 × 10−13 48(D)+ ↑→ 2.0 × 10−23 Unknown

GRMZM2G169240 10 16487751 M10c16487751 A,C 0.05 1.6 × 10−7 N NS Fatty acid  
desaturase-1,  
FAD2 (refs. 22,30, 
71–74)

GRMZM2G162972 10 26483664 M10c26483664 T,C 0.18 7.7 × 10−7 9 ↑ 1.4 × 10−8 Unknown

GRMZM5G828253 10 116894888 PZE-110061746 G,A 0.08 1.3 × 10−8 10 NA Cytochrome P450, 
CYPOR61,62

aA plausible biological candidate gene in the locus or the nearest annotated gene to the lead SNP. bPosition in base pairs for the lead SNP according to version 5b.60 of the maize reference 
sequence (MaizeSequence, see URLs). cMajor allele, minor allele; underlined bases are the favorable alleles. dP value of the oil concentration only. eThe candidate gene located in one of the  
QTL intervals as reported previously or in the By804/B73 recombinant inbred line population (B) or in one or both of the F2:3/F2:4 populations K22/Dan340 (D) and CI7/K22 (C). N, candidates 
not located in any QTL interval; +, candidates located in one or more QTL intervals in the B, D and C populations. fThe allele effect direction in B, D and C populations. ↑, high parent;  
↓, low parent; →, not segregated. gP values for the SNP located within 200 kb of the candidate gene that was most significantly associated with the expression level of this gene.  
NS, not significant (P > 1.8 × 10−6); NA, not available (no expression data for this candidate gene). hEach candidate gene is annotated according to InterProScan (see URLs).
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broad-sense heritability of >90% for oil concentration and each of 
the ten compositional traits, based on phenotypic data measured in 
four environments (Supplementary Table 1).

Loci associated with oil-related traits 
From more than 3.6 million SNPs identified in 28,769 annotated 
genes (J. Yan, J. Wang and G. Wang, unpublished data), we selected 
1.03 million high-quality SNPs for this study. About 560,000 poly-
morphisms with minor allele frequency (MAF) ≥0.05 were selected 
for a GWAS by combining the two genotyping platforms (RNA-seq 
and SNP array). Association analysis with these polymorphisms 
identified 63 loci associated with oil concentration and/or at least 
one of the derived compositional traits at P < 1.8 × 10−6 (Table 1 
and Supplementary Table 3). As shown in the quantile-quantile and 
Manhattan plots for oil concentration (Fig. 1 and Supplementary 
Fig. 3) and other traits (Supplementary Fig. 4), we found notable 
positive associations after using the mixed linear model to account 
for population structure and familial relatedness16,17. The predicted 
genes at 21 loci were implicated in lipid metabolism in Arabidopsis 
or other species (Table 1, Supplementary Fig. 5 and Supplementary 
Table 3). The proteins encoded by the remaining 42 genes were classi-
fied as transcription factors, enzymes involved in biological pathways 
including oxidation-reduction reactions and protein metabolism, and 
transport complexes. The function of approximately one-third of the 
identified genes is currently unknown (Fig. 2). It is possible that these 
genes are not directly involved in the relevant pathway and that the 
polymorphic markers within them are actually linked to the causal 
polymorphisms in a nearby gene.

Although 26 loci were highly significantly associated with oil 
concentration (P < 1.8 × 10−6), fewer than 7 loci were significantly 
associated with each compositional trait (P < 1.8 × 10−6). It made 
biological sense that more genes affected oil concentration but  
fewer affected oil composition because oil concentration is a  
product of all the compositional traits combined. To evaluate 
whether additional associations could be found, we performed con-
ditional association analyses for each of the measured traits using 63  
identified loci as covariates in a new GWAS. We identified 11 addi-
tional significantly associated loci (P < 1.8 × 10−6), including 3 genes  
known to be involved in the oil biosynthesis pathway, for 5 oil  
compositional traits, but no additional loci were identified for oil 
concentration (Supplementary Table 4). This brings the total number 
of loci with identified associations to 74 (Fig. 2). Among these  

74 detected loci, 26 associated with oil 
 concentration explained up to 83% of the 
phenotypic variation, indicating that the 
additive effect is important in oil synthesis 
and accumulation. All potential candidate 
genes within 100 kb (50 kb upstream and 
downstream of the lead SNP) of the 74 loci 
are listed in Supplementary Table 5.

Validation of the strong association signals 
ruled out the possibility that they were simply 
a product of population structure. Again, we 
performed an association analysis between 
all 74 lead SNPs and the lead traits, this time 
excluding the high-oil lines. In this analysis, 
only 13 of the 26 SNPs affecting oil concentra-
tion were still significant at P < 0.01; however, 
the MAF of most SNPs fell to less than 0.05 
after exclusion of the high-oil lines, reducing 
the detection power (Supplementary Table 6).  

For oil component traits, the association significance and MAF of 
SNPs did not change significantly (P = 2.4 × 10−4 to 2.5 × 10−17; 
Supplementary Table 7). These results indicate that variation in oil 
concentration is mainly due to changes in the frequency of non-fixed 
alleles, whereas component traits have not been the target of substan-
tial selection pressure.

Because of the high marker density and the prohibitive computing 
time, we chose only one SNP from each gene at random and tested 
them in pairwise combinations for epistatic interactions. We detected 
no significant epistatic interactions (P < 1.0 × 10−4), in agreement 
with previous studies of oil concentration8,10 and of other quantita-
tive traits studied in the NAM population, including flowering time18,  
leaf architecture19 and disease resistance20,21.

GWAS, QTL mapping and eQTL mapping
We found considerable overlap between the genes identified via 
GWAS and previously reported QTLs for oil concentration and com-
position. Of the 74 identified loci, more than half (43/74) were located 
in QTLs found previously or mapped in the present study (Table 1 
and Supplementary Tables 3, 4 and 8). Nine of the loci identified in 
the present association study overlapped the confidence intervals of 
the 22 QTLs affecting oil concentration reported in the NAM popula-
tion10 (Table 1). Of the 74 loci identified via GWAS, 27 (16 with the 
same direction) were located within the confidence intervals of the 
mapped QTLs for the same traits in at least 1 of our 3 independent 
mapping populations, providing additional support for our GWAS 
results (Table 1 and Supplementary Tables 3, 4 and 8).

One example of overlap includes the locus containing the FAD2 
gene (encoding oleate desaturase) on chromosome 4, which was sig-
nificantly associated with oleic acid composition via association and 
independent linkage analysis in our study (Fig. 3a) and in a previous 
one22. Another overlap involved the major QTL affecting oil concen-
tration, which is caused by the DGAT1-2 gene (encoding diacylglyc-
erol acyltransferase)23; this gene is one of the most significant loci 
identified in the present study as well (Fig. 3b). We found that a 3-bp 
insertion and/or deletion (indel) (P = 2.9 × 10−11, n = 508) in DGAT1-2  
at the functional site identified previously23 is the most significant 
polymorphism. A third example of overlap is the major QTL affecting 
palmitic acid content, which we mapped to chromosome 9 (ref. 9). The 
QTL had been cloned and identified as gene FATB, and an 11-bp inser-
tion in the last exon of FATB decreases the palmitic acid composition, 
leading to an improvement in the ratio of saturated to unsaturated  
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fatty acids24. In the present study, FATB displayed the strongest  
association signal with palmitic acid composition and affected other 
compositional traits as well (Fig. 3c and Supplementary Table 3).

Genetic mechanisms that regulate phenotypic variation can 
act at genomic, transcriptional and post-
 transcriptional levels. The differences in 
expression may account for a substantial pro-
portion of variation in the traits, especially 
for quantitative traits. We tested the correla-
tion between the polymorphisms identified in 
the DNA sequence and the mRNA expression 
levels of the loci identified by GWAS and QTL 
analysis to look for possible genes regulating 
oil synthesis and accumulation at the expres-
sion level. Expression data were available 

for 67 of the 74 loci from the RNA-seq data set of 28,769 annotated 
genes sequenced from kernels collected 15 d after pollination from  
368 genotypes. At P < 1.8 × 10−6, 41 of the 67 loci defined clear 
expression QTLs and exhibited a statistical correlation between 
DNA sequence polymorphisms and expression levels (Table 1, 
Supplementary Fig. 6 and Supplementary Tables 3 and 4). Notably, 
expression levels of 14 of the 41 genes were also correlated directly with 
the phenotypic variation of the target traits, and an additional 18 genes 
were correlated with a related trait, all at P < 0.01 (Supplementary 
Table 9). This strongly suggests that at least some of the genes affect 
the phenotypic variation via transcriptional regulation.

We constructed a coexpression network to identify the relation-
ships between genes associated with oil metabolism (Supplementary  
Fig. 7). We found that the gene GRMZM2G132468, which encodes 
a putative Ca2+-dependent lipid-binding protein containing a 
C2 domain, is the central node in this oil transcriptional network 
(Supplementary Fig. 7). C2 domain–containing proteins are involved 
not only in signal transduction but also in vesicle trafficking and other 
cellular processes in animals and plants25. In the presence of Ca2+, 
many C2 domains bind the phospholipid membrane25. According to 
the coexpression analysis, GRMZM2G132468 appears to fall upstream 
of several key genes predicted to be associated with oil-related traits, 
including LACS, DGAT1-2, TAGL and COPII (Supplementary Fig. 7). 
It is likely that GRMZM2G132468 is important in regulating down-
stream biological pathways, including the oil metabolic pathway.

Variation identified by resequencing
Approximately one-third of the annotated candidate genes identified 
in this study belong to the lipid metabolic pathway (Fig. 2). To further  
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investigate the associations between the allelic variation of these 
candidate genes and phenotypic variation in the association panel,  
we chose five candidate genes involved in oil metabolism (FAD2, ACP, 
LACS, WRI1a and COPII) to investigate the potential functional poly-
morphisms capable of causing changes in the phenotype. We did this 
by resequencing PCR products that encompassed the genetically asso-
ciated polymorphisms in a subset of 155 inbred lines26. The additional 
polymorphisms identified by resequencing were then genotyped in 
the complete panel.

FAD2 (GRMZM2G064701), which functions in the endoplasmic 
reticulum (ER), was significantly associated with oleic acid com-
position (Fig. 3a and Supplementary Fig. 8). Our GWAS results 
identified a strongly associated SNP in the first intron of this gene  
(P = 9.8 × 10−10, n = 471; Supplementary Table 3). Resequencing the 
coding and untranslated regions of FAD2 indicated that the polymor-
phism (SNPG/T; Chr. 4_162263608) affecting residue 230 (encoding 
a p.Ser230Ala alteration), resulting in a polarity change in the amino 
acid, was significantly associated with oleic acid composition (P = 2.9 × 
10−4, n = 477; Table 2 and Supplementary Fig. 8). The SNPG/T variant 
localized with a previously mapped QTL for oleic acid composition in 
the By804/B73 recombinant inbred line population (Supplementary 
Fig. 8). Subsequent investigation revealed that expression of this gene 
was negatively correlated with oleic acid composition (r = −0.15,  
P = 4.9 × 10−3) and positively correlated with linoleic acid composi-
tion (r = 0.17, P = 1.4 × 10−3), and thus negatively correlated with the 
ratio between oleic acid and linoleic acid (r = −0.18, P = 7.0 × 10−4; 
Supplementary Fig. 8). We did not, however, detect a significant 
difference between the expression of the two alleles of SNPG/T or 
the SNP originally detected in the promoter region (P = 0.58), sug-
gesting that these two sites do not cause the observed differences 
between the expression levels and the target traits in the association 
panel. Additional sequencing efforts of untranslated and regulatory 
regions are needed.

ACP (GRMZM2G110298) encodes an acyl carrier protein. The 
homologous gene in Arabidopsis functions as the mobile carrier 
of the growing fatty acid chain in each cycle reaction of fatty acid  
synthesis27,28. Overexpression of an ACP isoform in Arabidopsis 
remarkably increases the fatty acid composition29. Our resequenc-
ing results identified an 8-bp indel in the 3′ UTR of ACP (indel_8)  
that was strongly associated with oil concentration (P = 4.5 × 10−6, 
n = 409) (Fig. 3d and Table 2). We found a significant difference 
between the expression levels of the two alleles at indel_8 (P = 9.0 ×  
10−3, n = 367; Supplementary Fig. 9), suggesting that the regula-
tion of this gene at the level of expression can explain at least part of  
the phenotypic variation and that indel_8 may be the cause of this 
expression difference.

LACS (GRMZM2G079236) contains a Ser/Thr/Gly-rich domain 
with long-chain Acyl-CoA ligase activity. The Arabidopsis homolog 
activates fatty acyl chains to fatty acid CoAs and participates in 
the last step of fatty acid synthesis and in cutin, polyester and wax  
biosynthesis in Arabidopsis30. Resequencing results identified two 

completely linked indels (indel_146 and indel_472, a 146-bp inser-
tion with 472-bp deletion and a 146-bp deletion with a 472-bp inser-
tion, respectively) in the 3′ UTR of LACS that were significantly 
 associated with oil concentration (P = 2.4 × 10−9, n = 440; Table 2). 
The lines containing the 146-bp insertion (with the 472-bp deletion) 
had lower LACS expression but higher oil concentration compared 
with the lines containing the 472-bp insertion (with the 146-bp  
deletion; Fig. 3e, Table 2 and Supplementary Fig. 10).

WRI1a (GRMZM2G124524), located 200 kb upstream of LACS, 
encodes a transcription factor that affects kernel oil accumulation in 
Arabidopsis and maize31,32. There are two WRI1 genes in maize, which 
are located on chromosome 2 (WRI1a) and chromosome 4 (WRI1b). 
In our GWAS results, the lead SNP at WRI1a (M2c149341792) in the 
3′ UTR was associated with oil concentration (P = 1.2 × 10−5, n = 368). 
On the basis of resequencing, a 2,000-bp indel in the 3′ UTR was also 
significantly associated with oil concentration (P = 6.9 × 10−4, n = 504;  
Fig. 3e and Table 2). However, it was not the primary factor respon-
sible for the expression difference, and we uncovered no other signi-
ficantly associated polymorphisms via resequencing. Although 
expression of this gene was significantly correlated with oil concen-
tration (r = 0.30, P = 9.8 × 10−9; Supplementary Fig. 11), the causal 
polymorphism is still unknown. It may lie in another gene entirely, 
acting through altered regulation.

Coexpression analysis between WRI1a and all other 28,768 genes 
showed that the expression levels of 2,482 genes were significantly 
correlated at P < 1.0 × 10−12 with the expression level of WRI1a. 
Among the top 200 genes (Supplementary Table 10), 11 were anno-
tated as transcription factors, with a high similarity to either the 
B3 region of the VP1/ABI3-like protein, or the AP2/ERF family of 
transcription factors; both of these are crucial for seed development 
and interacted with WRI1a directly or indirectly in this study. There 
were 33 genes involved in late glycolysis and fatty acid biosynthesis 
in the plastid, 10 of which were reported previously to be involved in  
kernel oil biosynthesis33 (Supplementary Fig. 12 and Supplementary 
Table 10). Although it is difficult to establish a direct link to the 
process of lipid metabolism, the other 127 functionally annotated 
genes were mainly related to carbohydrate metabolic, amino-acid 
 metabolism and transmembrane transport processes, which might 
provide resources and energy for lipid metabolism (Supplementary 
Fig. 12 and Supplementary Table 10).

COPII (GRMZM2G003022) encodes a sec23 or sec24 protein, 
which transfers membrane proteins and certain lipids between cellular 
organelles in the secretory pathways in Arabidopsis30. A 20-bp indel in 
the 5′ UTR (indel_20) was significantly associated with oil concentra-
tion (P = 2.2 × 10−11, n = 501; Fig. 3f and Supplementary Fig. 13). 
Indel_20 segregated in the parents of the K22 and Dan340 segregating 
population, in which a QTL for oil concentration was identified near 
COPII. Indel_20 did not, however, associate with expression of COPII 
(Supplementary Fig. 13), suggesting that phenotypic variation may 
not be regulated via expression differences or that indel_20 may be 
linked to but not cause these differences.

table 2 Polymorphisms identified by resequencing of 5 candidate genes
Candidate gene Trait Markera Siteb Allelec Frequency Location Amino acid change P value

FAD2 C18:1 SNPG/T Chr. 4_162263608 G,T 154/323 Exon p.Ser230Ala 2.9 × 10−4

ACP Oil Indel_8 Chr. 1_248150429 0,8 377/32 3′ UTR No 4.5 × 10−6

LACS Oil Indel_146/472 Chr. 2_149517352 146,472 31/409 3′ UTR No 2.4 × 10−9

WRI1a Oil Indel_2000 Chr. 2_149342079 0,2,000 87/417 3′ UTR No 7.0 × 10−4

COPII Oil Indel_20 Chr. 8_38520907 0,20 472/29 5′ UTR No 2.2 × 10−11

aCandidate functional polymorphisms. bPosition for the SNP and indel markers according to version 5b.60 of the B73 reference sequence (MaizeSequence, see URLs). cThe favorable allele for 
the corresponding trait is underlined. The number represents the insertion size of an allele.
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DISCUSSION
Rapid LD decay and abundant diversity make maize an ideal species 
for GWAS11,34. The resolution of maize GWAS in most cases can reach 
the gene level, which is much more precise than in self-pollinated 
plant species, such as rice35 and Arabidopsis36. With the rapid develop-
ment of next-generation sequencing technologies and the continuing  
decrease in the associated costs, GWAS are rapidly becoming a stand-
ard tool for detecting natural variation that accounts for complex 
quantitative phenotypes in plants35,36. The mixed model is a popular 
method to detect genotype-phenotype associations in plant GWAS, 
but resource consumption becomes impractical because of large  
sample size and high-throughput marker density37. The improved 
method used in this study17 can save a substantial amount of computer  
time while decreasing false positive rates. However, it may decrease 
detection power, as it may be too strict in using the Bonferroni thresh-
old as the cutoff after controlling for population stratification and 
kinship. In addition, LD between strongly selected factors of large 
effect, not captured by the kinship in the mixed model, will cause 
overestimation of individual effect size38. Users must make decisions 
based on knowledge of the trait under study.

Using RNA deep sequencing, we obtained more than 1 million high-
quality SNPs in 368 diverse maize lines. Using GWAS, we identified 
74 loci associated with oil concentration or composition, including  
3 previously cloned genes involved in oil biosynthesis (DGAT1-2, FATB 
and FAD2). We identified complex coexpression networks between the 
identified genes, and one-third of these genes affected phenotype via 
transcriptional regulation (Supplementary Fig. 7 and Supplementary  
Table 10). By resequencing the candidate genes in a large and diverse 
germplasm collection, we identified polymorphisms that were either 
causal or in high LD with causal polymorphisms for trait associations 
with five genes. These include four members of the oil metabolic pathway 
(FAD2, LCACS, ACP and COPII) and one transcription factor (WRI1a), 
which regulates many other genes involved in lipid metabolism and is 
itself regulated by several other transcription factors. WRI1a could prove 
to be a key regulator of pathways involved in oil biosynthesis that are 
as yet uncharacterized (Supplementary Fig. 12). We found insertions 
and deletions (some very long) in the UTRs or promoter regions in four 
of the five validated genes, potentially accounting for gene expression 
differences seen in the RNA-seq results. Transposable elements are a key 
source of new genetic variation in maize39, and transposable element 
insertions have been documented to be the causal variants in biosyn-
thesis pathways40,41 and maize domestication genes42,43. An example in 
this study includes the 2,000-bp insertion in the WRI1a 3′ UTR, which 
has high sequence homology to a nonautonomous Helitron-type trans-
posable element including nonspecified gene fragments (CENSOR). 
These Helitron elements cause mutations in maize by altering RNA 
splicing44,45. In the present study, we found the Helitron sequences in 
the WRI1a 3′ UTR in most inbred lines with regular oil concentration, 
where they may influence RNA stability and protein translation, result-
ing in lower oil concentration. Additional studies, including linkage 
validation in near-isogenic lines or transgenic analysis, will be necessary 
to conclusively identify this insertion as the causal variant.

Oil concentration and composition are inherited in a mainly addi-
tive manner, which has also been observed in previous studies8–10 and 
will make breeding for these genes more straightforward. Mutation 
and favorable allele accumulation are probably two major routes for 
increasing oil concentration during the selection of high-oil lines46. Our 
results provide evidence for the latter hypothesis. The 23 high-oil lines 
in the association panel had favorable alleles for 24.6 ± 4.2 (±s.d.) of the 
58 loci associated with oil concentration and composition (excluding 
those loci associated only with derived ratios of composition). The 328 

lines with regular oil levels in this study had favorable alleles for only 
9.8 ± 2.8 of those loci. Although oil concentration is a polygenic trait 
controlled by many genes, each with only a small effect, a few genes 
(seven or less in the present study) with much larger effects were asso-
ciated with oil composition. Oil concentration is the result of complex 
biosynthesis pathways, including many known (Supplementary Fig. 5) 
and unknown components. Oil composition, in contrast, represents the 
interim products of a pathway and is regulated by a few key genes.

In the IHO population, ~50 genes have a role in oil biosynthesis, 
each of which increases oil concentration by ~0.2% (ref. 8). Genetic 
improvement for oil concentration via marker-assisted selection or 
genetic engineering will be inefficient under those circumstances. 
There were, however, a few key genes with a relatively higher pheno-
typic effect on the traits in our study, including DGAT1-2, the locus 
with the second strongest association signal for oil concentration (Fig. 1  
and Table 1). In a recent study, a line with the favorable allele of this 
gene, By804, was backcrossed into two lines with regular oil concen-
tration, Zheng58 and Chang7-2, the parents of the most widely planted 
hybrid in China for the past 10 years. This allele increased oil concen-
tration by >1% in the near-isogenic background without significantly  
(P > 0.05) affecting yield potential or other major agronomic traits47. 
This relatively larger effect may help to explain the difference in selec-
tion response in different high-oil populations. The IHO population, 
which was originally chosen from the open-pollinated variety Burr’s 
White, has been selected for >100 cycles, and the kernel oil concen-
tration has increased by ~15% (ref. 5). However, in two other high-
oil populations with more diverse backgrounds and higher selection 
intensity, it took only 7 and 18 cycles of selection to increase kernel oil 
concentration by ~8% and~10%, respectively7. More favorable genes 
and alleles with larger effects must have been present for selection to 
act on the more diverse populations. The identification of major loci 
in this study will provide the genetic resources and markers needed for 
additional rapid oil improvement in maize as well as other crops.

URLs. MaizeSequence, http://www.maizesequence.org/; InterProScan, 
http://www.ebi.ac.uk/interpro/; Primer Premier 5, http://www. 
premierbiosoft.com/primerdesign/index.html; Primer3, http://frodo.
wi.mit.edu/primer3/; CENSOR, http://www.girinst.org/censor/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene resequencing data are available under 
GenBank accession codes JX404032–JX405439, and the SNP data 
set generated by RNA-seq is available from http://www.maizego.org/
Resources.html.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Association panels: genetic relationship and phenotyping. Association tests 
were done in an association mapping panel composed of 508 diverse inbred 
lines (AM508, 473 regular and 35 high-oil lines). This panel was character-
ized with 36,618 high-quality SNPs from IlluminaMaizeSNP50 BeadChip14 to 
estimate population structure and kinship coefficients75; three subpopulations 
were identified15,75. One subset of the AM508 panel (CAM155), including 155 
temperate Chinese inbred lines, was used for candidate gene resequencing26. 
Another subset of 368 lines (345 regular and 23 high-oil lines), randomly 
selected from the AM508 panel, was used for RNA sequencing.

The AM508 panel was planted in 2009 in Sichuan, Yunnan and Hainan and 
in 2010 in Guangxi, all in China. One replicate was planted in each location; 
field experiments have been described previously15. CAM155 inbred lines 
were planted in Beijing, China, in 2006 and 2007 and Hainan, China, in 2007. 
Two replications were planted for all lines in each enviroment26. More than 
six ears in each row were self-pollinated for all AM508 and CAM155 lines. 
The protocols for maize kernel lipid extraction and measurement have been 
reported previously9.

RNA preparation and sequencing. All lines in the AM508 panel were 
divided into two groups (temperate and tropical/subtropical) on the basis 
of their pedigree information and planted in one-row plots in an incom-
pletely randomized block design within the group with two replicates in 
Jingzhou, China, in the summer of 2010. Six to eight ears in each block 
were self-pollinated, and five immature seeds from three to four ears in 
each block were collected at 15 d after pollination. Equal amounts of 
immature seeds from two replicates were mixed together for total RNA 
extraction. Additionally, 3 inbred lines (replicated twice) were added as 
positive controls to the analysis with the 368 inbred lines. RNA extraction, 
library construction with 200-bp insert size, 90-bp paired-end Illumina 
sequencing, read mapping and SNP calling followed published protocols. 
On average, 73.8 ± 0.7 million reads were generated for each sample, lead-
ing to 2,445.9 Gb of high-quality raw sequencing data. In total, 1.03 mil-
lion high-quality SNPs and 28,769 genes, covering about 70% of the maize 
predicted genes, were identified. The SNP density in the transcript region 
was ~1 SNP per 54 bp, and there were 40.3 SNPs per gene. Overall LD decay 
was rapid, reaching 500 bp (r2 = 0.1) in the 368 lines. There were 10,117 
SNPs in common with the SNPs identified by the commercially available 
MaizeSNP50 BeadChip, and the overall mean concordance rate was 96.7%. 
For the three technical replicates, the concordance rates between each 
pair of replicates were greater than 99.6% (J. Yan, J. Wang and G. Wang,  
unpublished data).

Genome-wide association analysis. A GWAS on kernel oil traits was per-
formed using a mixed linear model16,17 that took into account population 
structure and relative kinship to test for statistical association between pheno-
types and genotypes in 2 data sets, including 1.03 million high-quality SNPs 
genotyped by RNA-seq and 56,110 SNPs genotyped by the MaizeSNP50 
BeadChip. To combine association results across the two studies, we set a 
uniform threshold (P 1/n = 1.8 × 10−6, n = total markers used). To uncover 
the unique candidate gene underlying association signals, we performed LD 
analysis of the significant SNPs on the same chromosome and used a cutoff of 
<0.2 for the LD statistic r2. Among the unique association signals identified, 
several candidate genes in or near (within 50 kb up- and downstream of the 
lead SNP) known genes were validated. Associated SNPs that were not in or 
near annotated oil metabolism–related genes were considered more likely to 
be linked to a more distant gene, the closest of which was considered to be 
the most likely candidate gene. The physical location of the SNPs was identi-
fied based on the maize genomic sequence version 5b.60 (MaizeSequence, 
see URLs).

Conditional analysis of significant signals. To identify additional independent  
oil-associated SNPs, we repeated the GWAS for each of the 21 oil-related 
traits, using the lead SNPs identified in the first GWAS iteration as additional  
covariates. For some lead SNPs detected by the MaizeSNP50 BeadChip,  
we performed a conditional analysis using merged genotypes from the 
MaizeSNP50 BeadChip and RNA-seq data.

Candidate gene resequencing and analysis. Maize gene sequences were 
obtained from the B73 reference sequence at the MaizeSequence database 
(see URLs). Primers were designed using Primer Premier 5 (see URLs) or 
Primer3 (see URLs) to cover the full length and/or the 5′ and 3′ sequences of 
the maize genes (Supplementary Table 11). Sequencing was performed by the 
Tianyi Huiyuan Bioscience & Technology and the SinoGenoMax Companies, 
using 3,730 sequencers (ABI). The sequences were aligned using MUSCLE76 
and refined manually in BioEdit77. Nucleotide polymorphisms, including SNPs 
and indels at a frequency of ≥0.05, were extracted in TASSEL78. TASSEL was 
also used to calculate r2 among polymorphisms using 1,000 permutations. 
Several markers developed from the candidate functional sites of validated 
genes were used to genotype the AM508 panel using the primers and PCR 
conditions listed in Supplementary Table 11.

QTL mapping. Linkage analysis was done in three linkage populations:  
the By804/B73 recombinant inbred line (RIL), and the K22/Dan340 F2:3/F2:4 
and CI7/K22 F2:3/F2:4 populations. The By804/B73 RIL population was derived 
from a cross between regular line B73 and high-oil line By804, and QTL ana-
lysis results have been described in detail previously9. As only QTLs for oil 
concentration and four major oil components (C16:0, C18:0, C18:1 and C18:2) 
had been identified previously9, additional QTL mapping for other oil compo-
nents and the derived ratios mentioned in this GWAS was performed. Over 500 
individuals each in the K22/Dan340 and CI7/K22 F2 populations were planted 
to develop F3 families by self-pollinating in Beijing in 2009; a total of 465 F2:3 
families (K22/Dan340, 237; CI7/K22, 218) were collected for phenotyping and 
offspring validation. These F2:3 families were further planted in two environ-
ments (Sanya, 2009; Hubei, 2010) to obtain F2:4 families. All 465 F2 individuals, 
together with 3 parents, were genotyped using GoldenGate assays (Illumina) 
containing 1,536 SNPs79. A linkage map was constructed using Mapmaker 
version 3.0 (ref. 80), and QTL mapping using the composite interval mapping 
method81 was performed with QTL cartographer version 2.5 (ref. 82).

eQTL mapping. To determine whether SNPs near significantly associated 
genes act as regulators, the associations between the expression level of each 
associated gene and SNPs within 100 kb upstream and downstream of the lead 
SNP were performed using the method described for the GWAS. Only those 
genes expressed in more than 50% of the 368 sequenced lines that had a mean 
quantification of more than 10 reads were used in this analysis.

Epistatic interactions. Epistatic interactions were tested in 368 inbred lines 
using a subset of the SNPs because of the prohibitive number of pairwise 
comparisons in the original data set. One SNP from each gene was chosen at 
random throughout the genome. A previously reported method was used for 
detecting epistatic interactions18. We first developed an additive model by 
stepwise regression (using P < 1.0 × 10−4 as a significance threshold); this was 
followed by a two-way ANOVA for preliminary screening of significant pair-
wise marker interactions with the smallest P values using all chosen markers in 
pairwise combinations. Finally, we tested all significant pairwise interactions 
to identify epistasis combined with the additive model, and permutation tests 
were done to find the significance of the effects. If the minimum P value from 
the additive data model alone was smaller than the fifth percentile of mini-
mum P values from 100 permutations, we concluded that at least 1 epistatic 
interaction was present in our panel.

Coexpression analysis. To develop a correlated expression network of the 
chosen genes, we calculated pairwise relative expression coefficients in R83 
and used these coefficients to filter the genes (P < 1.0 × 10−12, n = 368).  
The program Cytoscape84 was used to draw the network with only the 54 most 
highly connected genes.

Phenotypic variation explained by multiple SNPs. Stepwise regression was 
performed to examine the effect of multiple alleles with different functional 
polymorphisms on oil traits and estimate total variance explained (R2), using 
the lm function in R83. Before fitting the model, each marker was recoded, 
substituting the value 1 for inbred lines with a given allele and value 0 for all 
other inbred lines. To avoid linear dependency, the recoded variables were 
transformed into a set of independent linear combinations. The model was 
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then fitted using least square estimation. The forward-backward (stepwise) 
selection of markers on the basis of Akaike information criterion (AIC) was 
started from fitting the null model (no marker). At each forward step, the 
global significance of the model was evaluated, as well as the significance 
of the newly added marker. In additional to AIC, the criteria for accepting a 
new marker was P < 0.05, based on a partial F test for each marker. At each 
backward step, the least significant marker was dropped from the model.  
R2 was calculated as the proportion of total phenotypic variation explained by 
the optimal regression model.
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