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Abstract

The primary maize (Zea mays L.) production areas are in temperate regions throughout the

world and this is where most maize breeding is focused. Important but lower yielding maize

growing regions such as the sub-tropics experience unique challenges, the greatest of

which are drought stress and aflatoxin contamination. Here we used a diversity panel con-

sisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas

testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evalu-

ated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthe-

sis, days to silking and other agronomic traits. Irrigated trials were also inoculated with

Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-

yielded commercial checks in most trials, which indicated the potential for genetic diversity

to improve sub-tropical breeding programs. To identify genomic regions associated with

yield, aflatoxin resistance and other important agronomic traits, a genome wide association

analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants

for grain yield, plant and ear height, and flowering time after stringent multiple test correc-

tions, and after fitting different models. Three of these variants explained 5–10% of the vari-

ation in grain yield under both water conditions. Multiple identified SNPs co-localized with

previously reported QTL, which narrows the possible location of causal polymorphisms.

Novel significant SNPs were also identified. This study demonstrated the potential to use

genome wide association studies to identify major variants of quantitative and complex

traits such as yield under drought that are still segregating between elite inbred lines.
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Introduction

Maize (Zea mays L.) is one of the three most important crops of the world along with rice (Oryza

sativa) and wheat (Triticum spp.). World production in 2011 was 883 million ton (http://faostat.

fao.org [verified 6 May 2013]). Maize is the most important crop in the United States with a pro-

duction of 301 million tons, and an estimated market value of 77.4 billion U.S. dollars in 2012

(National Agricultural Statistical Service [NASS] 2013). Globally, the most important and highest

yielding production areas are in the temperate Midwestern U.S. and other temperate regions

throughout the world, which is where the majority of investment in maize breeding is focused

[1–3]. Important but lower yielding maize growing regions, such as the sub-tropics, experience

unique challenges. Sub-tropical production zones are hotter and drier, and two of the greatest

challenges for maize production in these zones are drought stress and aflatoxin contamination

[4–12]. Sub-tropical maize production in the U.S. Southern states accounts for approximately 9%

of U.S. production [13]. The largest producer in the Southern states is Texas, where summers are

hot and dry. There is a strong inter-annual precipitation variation across the state and severe

drought episodes have occurred in the last ten years [14]. These challenges may become increas-

ingly common in temperate regions under a changing climate. Texas provides ideal environmen-

tal conditions to conduct research in drought tolerance and aflatoxin contamination that major

maize production regions could experience in the future.

Improving drought tolerance is important because agriculture is the major user of surface

and ground water in the U.S. It has been estimated that water usage in agriculture for the West-

ern states accounts for up to 90% of the total water used in these states [15]. The use restrictions

and competition for water by growing urban areas will make drought stress even more com-

mon in irrigated agriculture. Drought episodes are likely to increase in the Midwestern U.S.

because of a stronger inter-annual variation in precipitation and temperature attributable to a

changing climate [16,17]. Drought tolerance is difficult to quantify and improve, as it is

clearly quantitative and complex, and regulated by thousands of genes [18–20].The impact of

drought stress depends on the severity, timing and length of the stress. Maize is most sensitive

to drought stress during flowering and grain fill stages [18,21,22]. Drought stress in maize

causes reduction in plant height, leaf rolling, early senescence, asynchronous flowering, kernel

abortion and barren plants without ears [18,21,22].

Drought episodes and other stresses such as heat are often followed by pre-harvest aflatoxin

contamination. Aflatoxin is a carcinogenic mycotoxin, produced by the soil borne fungus

Aspergillus flavus, which thrives under hot and dry conditions in pre-harvest maize. Aflatoxin is

federally regulated at 20 ng g−1 for human consumption, and is believed to cause over $200 million

dollars of economic losses in the Southern U.S. each year [4,12,23,24]. Aflatoxin susceptibility in

plants is a highly complex trait and no complete source of resistance is known for maize [7,25].

Adding to the complexity of this pathogen, both colonization and aflatoxin production appears to

have strong host-by-pathogen interactions [26–29]. As a consequence, breeding for aflatoxin resis-

tance is a complex challenge. Despite this complexity a number of breeding lines and germplasm

with improved aflatoxin resistance have been released. The lines Mp313E, Mp715, andMp717

[30,31] were derived from the tropical maize race Tuxpeño after several cycles of selection. The

maize inbred lines Tx736, Tx739, Tx740, and Tx772 [7,25,32] were selected using the pedigree

method from Argentinean and Bolivian lines. Other sources of resistance such as the line GT603

were selected from temperate elite hybrids produced in the 1970s [33]. This diverse germplasm

has already been used in linkage mapping studies to identify the quantitative trait loci (QTL) re-

sponsible for conferring resistance [11,23,34–39]. Relatively large QTL for aflatoxin resistance

have been reported on chromosomes one, three, four, five, and nine [25,34,39,40] and there has

often been little consistency between germplasm and environments. These findings give evidence
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that diverse germplasm has been the primary and best source for reducing ear rot diseases, and

more importantly that decreased susceptibility is indeed heritable [25,30,31,41]. Diverse tropical

maize germplasm has also demonstrated the potential to out-yield commercial hybrids in some

environments. This germplasm also can exhibit improved drought tolerance and other unique

traits unavailable in commercial temperate hybrids when testcrossed to elite temperate lines

[42–48]. However, tropical germplasm also may have many undesirable traits, such as delayed

flowering time/ photoperiod sensitivity and dry down, lower yield in some cases, poor stalks, and

disruption of heterotic patterns which makes it challenging to use in temperate breeding programs

[45,46,48].

Diverse germplasm must be further investigated to identify new sources of genetic variation

for drought stress and aflatoxin contamination outside of the elite Midwestern germplasm

such as the so called exPVP’s [45]. One source of diverse germplasm previously characterized

for the maize research community is the 282 Goodman maize association panel [43,49,50]. The

282 maize association panel includes several lines that originated from the dent maize commer-

cial lines in the 1970s and 1980s [51], and multiple North Carolina and CIMMYT lines of trop-

ical origin. Another diversity source includes the lines that have been bred in the Southern

States by public programs, including those selected and released for aflatoxin resistance. The

identification of favourable alleles in these sets of germplasm can allow targeted genetic im-

provement of current germplasm, and the incorporation of those alleles into elite material. In

addition, diverse germplasm with differences in phenotype facilitates linkage mapping and as-

sociation studies [52]. Multiple bi-parental linkage QTL mapping studies on aflatoxin and

drought have found many loci which tend to be specific to a narrow set of genetic backgrounds,

but not maize as whole. In contrast, genome wide association studies (GWAS) allow evaluating

multiple alleles in multiple genetic backgrounds at once. GWAS also captures many more

effective recombination events than traditional linkage populations, and therefore has the

potential to increase QTL resolution when the assembled germplasm panels have low linkage

disequilibrium (LD).

Complex trait analysis can benefit from a number of statistical adjustments that account for

data dependencies such as field spatial variation or blocking effects. A number of spatial adjust-

ment methods have been developed, which can decrease the micro-environment non-genetic

noise in an experiment, making the results more robust and powerful [53–57]. These spatial

adjustment procedures are particularly appropriate in large field trials with heterogeneous

soil or furrow irrigation patterns. In addition, the modelling of the genetic by environmental

interaction (G x E) can allow detection of QTL specific for certain environments [58,59]. These

more complex models maximize the amount of genetic variation explained and model the ge-

netic variance and correlation across environments. As a result, the power of the data is in-

creased, while reducing false positives. Similarly, statistical methods to account for genetic

population structure and relatedness have long been used in association mapping to account

for spurious associations and provide a more conservative analysis [60]. Finally, a number of

multiple testing corrections procedures have been developed, each with various advantages and

drawbacks [61–63]. However, despite the various statistical analyses corrections (spatial adjust-

ment, modelling G x E, genetic relatedness, and multiple testing), it has been determined that

some associations are still subject to false positives (and negatives) which may only be identi-

fied retrospectively [64]. In past work, we have found that attempting multiple analysis meth-

ods and ensuring consistency between results suggests the most robust candidates for further

analysis [65,66], this can come at the expense of clarity in presentation.

This study used 346 lines from across two diversity panels testcrossed to Tx714, which is a

high yielding but aflatoxin susceptible line that is closely related to B73, to evaluate alleles from

diverse germplasm in Southern US environments. Specifically, the goals of this study were: 1)
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to identify diverse lines to improve yield potential, aflatoxin resistance, and agronomic abilities

in hybrid combination; and 2) to identify genomic regions that confer these phenotypes in

hybrids grown in Southern sub-tropical environments using a genome wide association study

(GWAS).

Materials and Methods

Phenotypic data collection

An association mapping panel comprised of subsets of the USDA Goodman maize association

panel (302 lines, [49]) and the diverse Southern subtropical focused Williams/Warburton

panel (300 lines, [67]) was assembled for a total of 400 lines [68]. Of the 400 lines, 346 pro-

duced sufficient seed in testcrosses to Tx714 [69] in a summer and fall nursery in College Sta-

tion, TX andWeslaco, TX, respectively in both 2010 and 2011. The hybrids were evaluated in

two separate replicates in a randomized complete block design (RCBD) under irrigated and

non-irrigated treatments with commercial checks randomly assigned in the field. Standard

production agronomics were followed to provide furrow irrigation to the irrigated trials as

needed to support crop growth. Only the well-watered trials were inoculated with A. flavus. A

modified colonized kernel technique was used where autoclaved maize kernels were inoculated

with A. flavus spores from isolate NRRL 3357 [70] and then incubated 24 to 36 hours to pro-

mote A. flavus growth and sporulation. Colonized kernels were manually spread on the soil

surface between treatment rows when the maize hybrids reached mid-silk stage [4,71]. The

testcross hybrids were grown in College Station (CS) in 2011 (CS11) and 2012 (CS12) at the

Texas A&M AgriLife Research Farm in one row plots 7.92 meters long and 76.2 centimetres

wide, and measured for all reported traits as explained below. The target plant density was

75,000 plants/ha and the soil type was a Ships clay. Combination of year and treatment were

designated trials and the following coding system was adopted in this research: The irrigated

trials were inoculated with A. flavus and coded well watered (WW) and the non-irrigated trials

were coded as water stress (WS). The water stress was most severe in 2011, especially during

flowering and grain filling. Water stress was less severe at these times in 2012 because of mod-

erate temperatures and timely rainfall. An additional well watered location was evaluated in

two replicates using a RCBD at Mississippi State, MS in 2012 (MS12) only for aflatoxin accu-

mulation and days to silk. Hybrids in this location were inoculated using the side needle meth-

od [71–73].

Plant height was measured from the ground to top of the tassel; ear height was measured to

the bottom ear node. Days to silk and days to anthesis were measured as the number of days, at

which 50% of the plants in a plot showed silks or pollen shed respectively. Anthesis silking in-

terval (ASI) was calculated using the difference between days to silk and days to anthesis. Be-

cause the severe drought in Texas in 2011 substantially reduced ear size, the CS11-WS trial was

completely hand-harvested. In contrast, for the CS12-WS, CS11-WW and CS12-WW, 10 ears

were hand harvested skipping the first five plants in the plot, and then hand harvesting every

other plant. The rest of the plot was harvested using a John Deere 3300 combine with a HM-

1000B Grain Gauge (Juniper Systems Inc., Logan, Utah) from which plot weight, moisture and

test weight were obtained. For the MS12-WW trial only the 10 inoculated ears were hand

harvested and processed for aflatoxin content. Hand harvested ears from each hybrid in CS

were photographed and phenotyped for disease, percentage of kernel abortion and pollination.

500-kernel weight was determined after shelling. All yields were adjusted to 15.5% moisture as

determined from the combine at harvest or for hand harvested ears after shelling using a

Dickey-John mini GAC plus portable moisture tester. Moisture was expressed as percentage of

weight. Aflatoxin content was determined by the Vicam Aflatest fluorometer (Vicam,

GWAS for Drought, Aflatoxin and Agronomics in Maize
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Watertown, MA) following standard procedures [7,37,39]. Aflatoxin values were transformed

using the transformation (Log10 [aflatoxin + 10]) to improve normality and constant variance

and back-transformed. Raw phenotypic data can be found in S1 Table.

Phenotypic analysis for the GWAS study

The different hybrids within each treatment and each location were laid out using a random-

ized complete block (RCBD) design with commercial checks randomly assigned to different

plots in the trial. Four commercial checks (check 1: BH9014 GENVT3P, check 2: GA26V21

GENVT3P, check 3: GA28V81 GENVT3P, check 4: DKC-805 GENVT3P) were replicated

several times in the field and were used to adjust for field spatial variation and to estimate the

residual variance. These commercial checks were excluded for estimating variance components

and Best Linear Unbiased Predictors (BLUPs) for the GWAS. A combined multi-environment

trial (MET) analysis was performed considering three different models: 1) a randomized com-

plete block design (RCBD) model, 2) a spatial model that used autoregressive terms for the row

and column effects (AR1 x AR1), and 3) to model the G x E, an unstructured genetic variance-

covariance matrix model (VCOV). The unstructured model assumes that every location has its

own genetic variance and that the genetic covariance between locations is different. The likeli-

hood ratio test was used to compare between the three different models for each trait, but not

all models could be estimated for all traits because of differences in the heritability estimates

for the different traits.

An RCBD model was first fit to the data. The phenotypic observation yijk on hybrid i in

replicate j of trial k was modelled as:

Yijk ¼ m þ ek þ gi þ ðr=eÞjk þ ðg�eÞik þ eijk ð1Þ

where, μ is the grand mean; ek is the fixed effect of trial k; gi is the random effect of hybrid i and

is*NID (0, σ²g), i = 1, . . .,g; (r/e)jk is the random effect of replication j nested in environment

k and is*NID (0, σ²r), r = 1,2; (g�e)ik is the random effect of the interaction between hybrid i

and trial k and is NID (0, σ²ge), and εijk is the random residual effect for hybrid i in the replica-

tion j of trial k and is NID (0, σ²
ε
). For the second model the phenotypic observation yijk on

hybrid i in k was modelled as:

Yijk ¼ m þ ek þ gi þ ðg�eÞik þ eijk ð2Þ

where, μ is the grand mean; ek is the fixed effect of trial k; gi is the random effect of hybrid i

and is*NID (0, σ²g), i = 1, . . .,g; (g�e)ik is the random effect of the interaction between hybrid

i and trial k and is NID (0, σ²ge), and εijk is the random residual effect for hybrid i in the replica-

tion j of trial k and is NID (0, σ²
ε
). εijk was further expanded to fit two-dimensional autoregres-

sive first order (AR1) x (AR1) terms for the row and column effects[53–57].

A third model assumes a genetic variance-covariance (VCOV) matrix based on an unstruc-

tured model for the random genetic effects where a specific variance was fit for each trial and a

specific covariance was fit for each pair of trials. The phenotypic observation Yijk on hybrid i of

trial k was modelled as:

Yijk ¼ m þ ek þ gi þ ðr=eÞjk þ ðggeÞik þ eijk ð3Þ

where, μ is the grand mean; ek is the fixed effect of trial k; ggei represents the hybrid main effect

together with the genetic environmental interaction (GEI) for hybrid i in trial k. This model

was enhanced by including the significant terms for autoregressive terms for row and column

effects. Each of the three different models were fit using restricted maximal likelihood (REML)
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(Patterson and Thompson, 1975) in ASREML v3.0 [57]. JMP Pro V11.1.1 was used in testing

for significance of yield and aflatoxin in hybrids, treated as fixed, using similar models. Herita-

bility (h2) was calculated using the equation:

h2 ¼ 1� PEV=2sg2 ð4Þ

[55,74]. The predictor error variance (PEV) was calculated as square root of the average of

the standard error for each hybrid prediction for a given trait. The standard error was obtained

from the output in ASREML.

Genetic diversity, population structure and estimation of kinship matrix

Genome-wide single nucleotide polymorphism (SNP) genotype data from 213 lines from the

sub-tropical diverse panel was obtained from the USDA-ARS Corn Host Plant Resistance

Research Unit (Mississippi State, MS) using the Genotype By Sequence (GBS) method [75]. All

SNP locations are based on the maize genome version AGPV2. Genotype data for 133 lines

from the temperate panel was extracted from the maize diversity panel of 282 inbred lines

available in Panzea [49]. These genotypes were identical to Warburton et al. [67] with the

additional lines obtained from the 282 association mapping panel [49]. SNPs with a minor

allele frequency (MAF) greater than 25% and a low missing data rate (<7.5%) were extracted

to perform the genetic diversity and structure analysis only (total 1999 SNPs). The genetic

distance was calculated for Nei’s genetic distance [76] using the software PowerMarker. A

principal coordinate analysis (PCoA) was then carried out using the prcomp function in R (R

Development Core Team, 2013). Population structure was determined using the software

Structure v2.93 [77]. The number of subpopulations was estimated from five independent runs

having 5 x 105 burn-in and sampling iterations, and the number of subpopulations was varied

between 1 and 15. The ancestry model allowed for population admixture and correlated allele

frequencies. The optimum K was estimated using the ad hoc statistic ∆K, which is based on the

rate of change in the log probability of the data between successive K values [78]. Based on the

estimated K determined, a run of 5 x 106 burn-in and sample iterations was used. A kinship co-

efficient estimation matrix was created using the VanRaden algorithm as implemented in the

software GAPIT [79].

Genome wide association study (GWAS)

For each trait analysed, up to four different phenotypic inputswere used for GWAS analysis to

ensure that quantitative trait variants (QTVs) were robust across models, and to identify

QTV’s for specific environments. The phenotypic observations used as input for the four

GWAS analyses included 1) the entry mean for the different traits collected for all trials; 2) the

BLUPs for the combined MET analysis in Eq. (1); 3) the BLUPs for the MET analysis in Eq. (2)

including the row and column (AR1) x (AR1) effects for the spatial analysis; and 4) the BLUPs

from the VCOV GEI analysis in Eq. (3). Population structure and relatedness were taken into

account in the linear mixed model in all four analyses as described by Yu et al. [60]. The associ-

ation mapping analysis was conducted using the compressed mixed linear mixed model

(CMLM) and the P3D method, as implemented in GAPIT [79–81]. SNPs with a MAF< 0.05

were discarded for the association mapping analysis as they are prone to false positives [82].

Two common correction procedures were used to control for multiple testing, since each pro-

cedure has unique advantages and disadvantages [61,83]. First, the p-value was corrected for

multiple testing using the modified method proposed by Gao et al. [62]. This approach calcu-

lates the Meff, which is the effective number of independent test to correct for multiple testing.

GWAS for Drought, Aflatoxin and Agronomics in Maize
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Meff is determined by estimating the pair-wise composite LD matrix [62,63,84]. The number of

principal components (PCs) required explaining 99% of the variation in the dataset was used

to calculate the Bonferroni correction. The Meff calculated for this study was 49,030 indepen-

dent tests, which is equivalent to 1.01 x 10-6 or 5.99 (-log10[p]). Second, the false discovery rate

(FDR) was also used to correct for multiple testing for all the different analysis and traits in this

study but can overcorrect, leading to type II error [85].

Results and Discussion

Variance component estimates and heritability within and across
environments

The genetic variance in this experiment was very high. The heritability estimates for the WW

andWS trials for grain yield ranged from 0.61 to 0.83 (Table 1). The lowest heritability in the

WS trial was reported during the extreme drought of 2011. This result is expected since herita-

bility estimates are expected to decrease under stressed trials [21,86–89]. Comparable heritabil-

ity estimates for yield under drought stress trials have been reported previously [53,90]. Within

each environment, heritability estimates for aflatoxin level ranged from 0.67 to 0.83 for both

the transformed and raw aflatoxin level data (Table 1) demonstrating high statistically signifi-

cant variation between genotypes. However, a lower heritability estimate of 0.59 across all envi-

ronments was obtained (Table 2). Transformation of aflatoxin is a standard procedure used

prior to QTL mapping [7,34,39], and it is needed because the data are often skewed. In this

study, data transformation increased the heritability in some, and across all, environments

(Table 2).

Across all environments and all reported traits, heritability estimates ranged from 0.59 for

aflatoxin to 0.98 for days to anthesis (Table 2), based on the components of variance estimated

using the MET model from Eq. (1). These heritability estimates are considerably higher than

estimates reported in previous studies [7,39,72,91]. The differences observed in the heritability

estimates for grain yield and aflatoxin level between this study and others are partially

Table 1. Variance components and heritability estimates for each individual trial.

Grain yield (ton/ha) Aflatoxin (ng g−1) Log10 [aflatoxin (ng g−1)+10]

Effect CS11-WW CS11-WS CS11-WW MS11-WW CS11-WW MS11-WW

σ²g 299.9 ± 41.3 59.3 ± 16.6 233,845 ± 36,311.3 NAa 0.05 ± 0.009 NAa

σ²r 536.2 ± 385.8 20.5 ± 22.8 3,008.1 ± 4,359.6 NAa 0.001 ± 0.001 NAa

σ²ε 534.5 ± 28.9 187.1 ± 17.1 264,382 ± 22,235.6 NAa 0.08 ± 0.006 NAa

h² 0.73 0.61 0.81 NAa 0.77 NAa

CS12-WW CS11-WS CS12-WW MS12-WW CS12-WW MS12-WW

σ²g 767.9 ± 81.3 732.8 ± 83.9 296.7 ± 309 652,827 ± 87,276.3 0.07 ± 0.02 0.118 ± 0.02

σ²r 7.6 ± 10.7 28.6 ± 34 3,173. 8 ± 837.4 10,654.5 ± 18,058.5 0.004 ± 0.004 0.002 ± 0.004

σ²ε 703.6 ± 32.8 562.5 ± 50 11,612 ± 815.4 617,598 ± 51,338.2 0.2 ± 0.01 0.181 ± 0.015

h² 0.83 0.8 0.67 0.83 0.7 0.7

a Data was not collected for this trait for this trial.

Estimates of the hybrid (σ²g), replicate (σ²r), error (σ²ε) variances and their respective standard errors for each trial for grain yield (ton/ha) and aflatoxin

(ng g−1). The estimates were obtained using a linear mixed model that fit hybrids and replicate as a random effect and commercial checks as a fixed

effect. CS11-WS College Station 2011 water stress, CS11-WW College Station 2011 well watered, MS11-WW Mississippi state 2011 well watered, CS12-

WS College Station 2012 water stress, CS12-WW College Station 2012 well watered, MS12-WW Mississippi state 2012 well watered.

doi:10.1371/journal.pone.0117737.t001
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explained by the high genetic variation present in this study. Based on the heritability estimates

observed, it was concluded that sufficient genetic variation was present in this panel to perform

an association analysis.

Spatial analysis for row column (AR1 x AR1), and G x E modelling using
an unstructured genetic variance-covariance model

The number of hybrids investigated in the experiment resulted in large field tests. Spatial analy-

sis has proven useful in identifying and reducing error in large field studies when checks are

replicated throughout the field [54,56,92]. The analysis showed that field spatial variation was

most important for for grain yield among traits reported (Table 3). CS11 was the location with

the most field spatial variation for grain yield (data not shown). This would be expected with

the extreme drought in 2011, as drought typically brings out the highest level of field variation.

For other traits such as plant and ear height and 500 kernel weight field spatial variation was

observed as well. In contrast, field spatial variation was not observed for aflatoxin contamina-

tion, however this could partially be due to the large variance (lower heritability) that would

not allow row and column effects to be determined. Fitting these spatial models, when signifi-

cant, partitions out error allowing more power for subsequent QTV detection.

Genetic correlation across different environments

A higher genetic correlation across environments would be expected in diverse material with a

wide range in flowering, but the diversity in this study was moderated by the use of testcrosses.

The modelling of the variance-covariance structure for GEI analysis using Eq. (2) [93] was

Table 2. Variance components and heritability estimates for all traits across all trials.

Effect Days to
anthesis

Days to
silk

ASI Plant
height (cm)

Ear height
(cm)

500-kernel
weight (gr)

Grain yield
(ton/ha)

Aflatoxin (ng
g−1)

Log10 (aflatoxin
(ng g−1))

σ²g 7.8 ± 0. 5 8.5 ± 0.5 0.3 ± 0.04 228.5 ± 19.2 107.3 ± 9.2 122.1 ± 11.5 0.08 ± 0.008 47465 ± 17197.5 0.04 ± 0.008

σ²ge 0.3 ± 0.03 0.4 ± 0.05 0.2 ± 0.03 32.2 ± 3.6 13.8 ± 2.1 42.5 ± 4.2 0.02 ± 0.003 238610 ± 24273.7 0.04 ± 0.008

σ²ε 0. 7 ± 0.02 0.9 ± 0.03 0.7 ± 0.02 91.7 ± 2.8 63.2 ± 1.9 94.2 ± 2.8 0.1 ± 0.003 273774 ± 12332.2 0.2 ± 0.007

h² 0.98 0.97 0.82 0.93 0.92 0.88 0.87 0.59 0.70

The variance components were estimated using the combined MET analysis in Eq. (1) without spatial adjustment for all the traits. These were derived

from the hybrids (g), the interaction between the hybrid (i) and trial (e), and the experimental error (ε). Heritability was estimated using the method

proposed by Cullis et al. [55], and Oakey et al. [74].

doi:10.1371/journal.pone.0117737.t002

Table 3. Comparisons of different models used in this analysis.

Model Days to anthesis Days to silk ASI Plant height (cm) Ear height (cm) Grain yield (ton/ha) Aflatoxin

RCBD -2636.5 -3090.2 -1654.1 -10173.4 -9427.1 1640.9 453.5

AR1 x AR1 NE NE -1651.1 (NS) -9782.8*** -9324.5*** 2055.8*** 454.3 (NS)

VCOV NE NE -1598.1*** -9624.3*** -9256.5*** 2120.8*** 490.8***

*** >0.001, NS (not significant), NE (Not estimated)

The log likelihood values are presented for the randomized complete block design (RCBD) model, the row column spatial analysis model (AR1 x AR1)

and the unstructured genetic variance-covariance matrix model (VCOV). The likelihood ratio test was used to compare the log likelihood change between

the different models. Not all models could be estimated (NE).

doi:10.1371/journal.pone.0117737.t003
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greater than zero for all environment pairs (Table 4). This analysis showed the lowest genetic

correlation for grain yield was 0.63, which correspond to the genetic correlation between CS11-

WS and CS12-WW trials (Table 4). In contrast, the genetic correlation between other trials for

grain yield ranged from 0.70 to 0.95. Based on these results, it was concluded that hybrid rank-

ing between years and trials was consistent. This result is similar to other drought QTL studies

in maize, sorghum and wheat [90,94,95]. The lowest genetic correlation for aflatoxin level was

between the CS12-WW and MS12-WW trials (Table 5). This could in part be due to the differ-

ent inoculation methods used which was confounded between these locations or other environ-

mentally specific differences.

Best performing hybrids

There were multiple hybrids that performed statistically as well as, or better than, the elite com-

mercial checks used in this study for grain yield (Table 6). This was evidence that diverse in-

bred lines bred in the test environment have the potential to out-yield elite commercial hybrids

under water stress, even when combined with an older public tester. Under the severe drought

that was experienced in Texas 2011, none of the commercial checks was among the fifteen

highest yielding hybrids but three commercial checks were not significantly different from this

group. In the CS11-WW and CS12-WS trials, only one of the commercial checks was among

and not significantly different from the top fifteen hybrids (Table 6).

For aflatoxin resistance, the best testcrosses (Table 7) were numerically better but generally

not significantly different from most of the checks (data not shown) in every environment; this

Table 4. Variance-covariance unstructured matrix for grain yield (ton/ha).

Environment CS11-WS CS11-WW CS12-WS CS12-WW

CS11_WS 0.06 0.76 0.70 0.63

CS11_WW 0.06 0.09 0.95 0.84

CS12_WS 0.07 0.11 0.15 0.94

CS12_WW 0.05 0.08 0.12 0.10

CS11-WS College Station 2011 water stress, CS11-WW College Station 2011 well watered, CS12-WS College Station 2012 water stress, and CS12-WW

College Station 2012 well watered. Four trials were grown in College Station in 2011 and 2012. The diagonal represents the genetic variance for each

trial. The elements off the diagonal in the lower half of the matrix are the specific genetic covariance per each pair of trials. The elements off the diagonal

in the upper half of the matrix (shaded in gray) represent the specific genetic correlation for each pair of trials.

doi:10.1371/journal.pone.0117737.t004

Table 5. Variance-covariance unstructured matrix for aflatoxin level (ng g−1) for the College Station
2011 and 2012 trials and Mississippi 2012 trial.

Environment CS11-WW CS12-WW MS12-WW

CS11_WW 0.02 0.77 0.60

CS12_WW 0.04 0.10 0.46

MS12_WW 0.03 0.05 0.13

CS11-WW: College Station 2011 well watered, CS12-WW College Station 2012 well watered, MS12-WW

Mississippi state 2012 well watered. The diagonal represent the genetic variance for each trial. The

elements off the diagonal in the lower half of the matrix are the specific genetic covariance for each pair of

trials. The elements off the diagonal in the upper half of the matrix represent the specific genetic correlation

for each pair of trials.

doi:10.1371/journal.pone.0117737.t005
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is likely because the tester selected, Tx714, has very high aflatoxin susceptibility, which was an-

ticipated to identify inbreds with non-recessive forms of resistance [69]. However, aflatoxin

values for many lines demonstrated an aflatoxin susceptibility statistically greater than the

commercial checks; overall BLUPs from Eq. (1) ranged from 215 up to 1068 ng g−1. Testcrosses

of the lines bred in tropical and sub-tropical areas generally exhibited decreased aflatoxin sus-

ceptibility when compared to testcrosses from temperate materials. These results indicate the

presence of favourable alleles for stress tolerance and Aspergillus ear rot disease resistance in

exotic material. The presence of favourable genetic variation in exotic germplasm has been pre-

viously reported by different authors, including for aflatoxin resistance [43,45–47,96].While

the lowest accumulating testcross hybrids cannot be recommended per se, the best performing

inbreds are expected to be useful in breeding for decreased aflatoxin susceptibility.

Genetic diversity, population structure and estimation of kinship matrix

Of the 400 lines, only 346 lines were able to successfully produce seed under conditions of the

four Texas nurseries. The genetic diversity analysis between the 346 inbred lines indicated that

Table 6. BLUPs for the best 15 grain yield (GY) hybrids for all the trials and the MET analysis.

MET analysis CS11-WS CS11-WW CS12-WS CS12-WW

Line GY (ton/
ha)

Line GY (ton/
ha)

Line GY (ton/
ha)

Line GY (ton/
ha)

Line GY (ton/
ha)

B14A 8.8* NC408 3.3** CML61 7.4**** NC334 9.9*** CML45 14.8****

CML115 8.7*** Mp04:97 3.3** A&MY07-222 7.0*** A&MY07-222 9.6** Mp707 13.5***

Tzi11 8.4*** CML108 3.2**** CML423 7.0**** CML-322R. . . 9.6** CML264 12.8**

NC334 8.1**** CML423 3.2** CML108 6.9**** CML77 9.5* A&MY07-
226

12.5****

CML264 8.0*** Mo47 3.2** SC212M 6.7**** CML45 9.1** CML52 12.3****

A&MY07–222 7.8**** NC260 3.2** NC318 6.6**** [MBRC5BcF14. . . 9.0** CML115 11.9***

NC370 7.8**** NC358 3.1** DTPYc9-F46. . . 6.5**** CML254 9.0 NS Tzi11 11.7***

CML381 7.5**** DTPYC9-
F134. . .

3.0* CML264 6.4** B14A 8.9 NS NC370 11.6****

Mp339 7.4* DTPYC9-
F143. . .

2.9* LaPosta. . .F64. . . 6.4** CML381 8.7* SC357 11.4***

Check3 7.4**** CML348 2.9* NC332 6.2** M162W 8.6* NC334 11.4***

CML45 7.3**** NC264 2.9* LaPosta. . .F180. . . 6.2*** CML382 8.5* [MBR-
ET. . .

11.4***

Check4 7.2**** Mo45 2.7* T234 6.2* A&MY07_219 8.5* Check3a 11.2****

CML261 7.2*** CML331 2.7* Check2 6.2**** K148 8.5* CML332 11.0***

LaPosta. . .F180. . . 7.0**** T234 2.7NS Tzi8 6.1* NC336 8.4 NS CML10a 10.9****

NC366 4.7**** A&M407–
004

2.7 NS Check3a 6.1**** NC318 a 8.3* NC322a 10.8****

Mean 4.3 Mean 1.8 Mean 4.3 Mean 5.7 Mean 7.6

CS11-WS College Station 2011 water stress, CS11-WW College Station 2011 well watered, CS12-WS College Station 2012 water stress, and CS12-WW

College Station 2012 well watered.
a These testcross hybrids were significantly lower yielding than the top yielding hybrid in that environment.

The MET analysis was performed using Eq. (1) without spatial adjustment. For the rest of the analysis, the BLUPs for each individual trial were obtained

using Eq. (2). Eq. (2) was expanded to include AR1 x AR1 terms for row and column spatial effects. The 15 best lines in each trial were mostly

significantly different from the mean of the test but not from each othera; *, **, ***, **** indicate statistical significance at the 5%, 1%, 0.1%, and 0.01%

level respectively, NS indicate non-significant differences.

doi:10.1371/journal.pone.0117737.t006
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the majority of the lines are quite distantly related to each other. Between all pairs of lines, the

mean and median genetic distance was 0.68 and 0.69, respectively. Only 0.1% of the pairs of

entries exhibited a genetic distance of less than 0.2, 2.7% of the entry pairs exhibited a genetic

distance of less than 0.5, and 64% of the entry pairs exhibited a genetic distance less than 0.7

(S1 Fig.). These results suggested that the majority of the lines are equally distantly related in

absolute number of shared alleles, however there were still patterns in allele sharing that re-

sulted in observed population structuring. The population structure was determined using the

software Structure [77,97], a preliminary analysis was performed to estimate the optimum K

(number of populations) using the rate of change in the log probability, as measured by the ad

hoc statistic ∆K. This analysis found that the optimum subpopulation number was K = 4 and

these clusters roughly correspond to tropical, temperate, B73, and a mixed group. These results

are similar to previous studies [49,67]. However, the Northern U.S./B14 stiff stalk lines clus-

tered with non-stiff stalk lines (Mo17 related lines) [51], which is uncommon. This likely oc-

curred because the Northern temperate germplasm is poorly represented in the current

association panel. In contrast, the B73 group is small but well-defined.

The population structure results were similar to those visualized by the pairwise genetic dis-

tance matrix using a PCoA. The first two eigenvectors used to graph the data explained 14%

and 13% of the variation, respectively, and separated three general clusters containing tropical

lines, B73 types and a mixed group (Fig. 1). The mixed cluster is ill-defined and contains the

non-stiff stalks and most southern US inbred lines. To explain 80% of the variation, over 100

PCoA eigenvectors were required, which further corroborated the weak structure between the

inbred lines.

Table 7. BLUPs for the 15 lowest aflatoxin accumulating hybrids for all the trials and the MET analysis.

MET analysis CS11-WW CS12-WW MS12-WW

Line Aflatoxin (ng g−1) Line Aflatoxin (ng g−1) Line Aflatoxin (ng g−1) Line Aflatoxin (ng g−1)

CML77 20** CML77 87**** CML258 0NS Mp705 22***

Tzi18 40** Mp04:97 112**** A619 0NS H95 23***

M37W 43*** Mp04:96 138**** B46 0NS Mp07:121 25***

Mp04:97 43**** CML108 161**** C103 0NS M37W 29**

NC340 47*** CML176 174*** CO125 0NS NC290A 33**

KUI44 47* Tzi9 177*** GT-AIRTP-W 0NS NC342 34**

Tzi11 49ns CML343 181*** A682 0NS NC358 35**

CO125 51** NC366 185*** KUI2007 0NS DTPYc9-F46. . . 44**

CML52 51** NC334 193* Ki3 0NS Mt42 46**

A619 53ns CML258 195*** Tx772 0NS Ki43 46**

CML342 55 ns CML342 197* Tzi11 0NS [MBR-. . . 49**

SC54 55 ns CML376 200* Mo17 0NS CML238 52*

CML264 56* CML264 221* CI187–2 0NS LaPosta. . .F71. . . 53*

Mp07:121 58*** NC370 227* NC290A 0NS Check4 59****

CML381 58* Tzi10 246** CML5 0NS CML52 60*

Mean 152 Mean 659 Mean 30 Mean 365

CS11-WW College Station 2011 well watered, CS12-WW College Station 2012 well watered, MS12-WW Mississippi state 2012 well watered. The MET

analysis was performed using Eq. (1) on log10(aflatoxin + 10) transformed data without spatial adjustment, and back-transformed. The 15 best lines in

each trial were mostly significantly different from the mean of the test but never from each other; *, **, ***, **** indicate statistical significance at the

5%, 1%, 0.1%, and 0.01% level respectively or, NS indicate non- significant differences.

doi:10.1371/journal.pone.0117737.t007
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GWAS analysis for grain yield and 500 kernel weight

Based on the heritabilities shown in Table 2 for the different traits collected, it is clear that

there was enough genetic variation in this study to perform a GWAS study to identify QTVs

for most traits collected. For the GWAS analysis for grain yield four different analyses were

performed using raw means, and the BLUPs extracted from equations 1 to 3 and the results

were compared for consistency. Five QTVs for grain yield on chromosomes two, seven (two

variants), nine (not shown in Fig. 2), and ten were identified across most analyses (Fig. 2). The

allelic effects for the different QTV ranged from 0.14 to 0.59 ton/ha, and the amount of pheno-

typic variation explained ranged from 3 to 5% (Table 8).

Fig 1. PCoA eigenvector plot of maize inbred lines that composed the diversity panel in this study.Nei’s (1972) genetic dissimilarly matrix was
calculated from 1999 SNPmarkers.

doi:10.1371/journal.pone.0117737.g001
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QTV1, QTV2, and QTV3 were detected under WW andWS trials in 2011 and 2012, respec-

tively (Table 8). These QTV were also detected in the MET analysis that adjusted for field spa-

tial variation (Fig. 2). QTV1 had the strongest effect in the non-irrigated trial in 2012. No QTV

were detected in the non-irrigated trial in 2011, likely due to low overall heritability. QTV4 was

only significant in the well-irrigated trial in 2012 and QTV5 was only significant in the MET

analysis that adjusted for field spatial variation (Table 8). Several linkage mapping studies have

reported multiple QTLs for grain yield, but to our knowledge this has not yet been examined

using association approaches or in testcrosses [51,98–105]. These previous studies based on

linkage mapping identified one to five linkage QTLs for grain yield, explaining 20 to 35% of

phenotypic variation for all QTLs together.

QTV1 found in this study for grain yield is located in bin 2.03, and the exact SNP location

can be found within the locus name in Table 9. No QTLs associated with grain yield have been

reported in this bin by other authors and this SNP is in the abph1—aberrant phyllotaxy1- gene

(Maize B73 RefGen_v2available at www.maizegdb.com/). Gene abph1 is expressed in the shoot

apical meristems, and mutations in this gene alters the regular arrangement of leaves and flow-

ers [106]. Despite LD decaying rapidly in this area of the genome, further investigation must be

done to confirm that this SNP is only associated with the abph1 locus, and not other linked

genes.

QTV2 is located in bin 7.04, the allelic effect ranged from 0.14 to 0.42, and the percentage of

explained phenotypic variation ranged from 4.5 to 5% (Table 8). In addition to yield, QTV2

was also detected as associated with plant height, days to anthesis and days to silk, suggesting a

pleiotropic effect on multiple traits (Table 9). In a recent meta-analysis of Texas commercial

yield trial data, the R2 of plant height and grain yield was determined to be 0.61, indicating the

importance of robust tall plants under Southern stressed growing conditions and further sup-

porting the possibility of pleiotropy of this locus [14]. In order to further address this question,

an association analysis was performed including plant height as a covariate in Eq. (1) and (2).

Fig 2. GWAS results for grain yield (ton/ha) using spatial adjustment. The phenotypic observation was
the BLUPs for the MET analysis, which includes AR1 x AR1 terms to adjust for column and row effects. The
red line represents the threshold value after correcting for multiple testing using the Meff or FDR.

doi:10.1371/journal.pone.0117737.g002

GWAS for Drought, Aflatoxin and Agronomics in Maize

PLOS ONE | DOI:10.1371/journal.pone.0117737 February 25, 2015 13 / 30

http://www.maizegdb.com/


The QTV2 variant was no longer significant for grain yield, providing an additional line of evi-

dence that this QTV affects grain yield via a positive pleiotropic effect with height and may be

enhancing overall plant vigor (Fig. 3). Austin and Lee [101] found a QTL for grain yield in the

same bin that explained 3.9% of the phenotypic variation; however, their sparse map makes it

difficult to confirm co-location with QTV2. Schön et al. [107] using 1000 F4:5 maize testcross

progeny developed by Pioneer Hi-Bred in 1995, identified a QTL in the same chromosome bin,

which was detected across seven environments in the Corn Belt.

To identify potential candidate genes for QTV2, LD was investigated and found to decay

within 0.2 kilobases (kb) upstream and showed no LD with the closest marker 225 (kb) down-

stream (data not shown). Different authors have reported that LD decays rapidly in maize

around 1 to 10 kb; specifically for chromosome seven, linkage disequilibrium has varied from 2

to 5 kb depending on the region and the germplasm [52,108–111]. Assuming that the LD

Table 8. GWAS results for grain yield (ton/ha).

SNP CHR MAF FDR_adjusted_P Log10 Effect (ton/ha) R2 (%) QTV APE

CS11-WW-USa

S7_164955163 7 0.08 0.0003 8.25 0.37 4.9 QTV2 C

S9_142746374 9 0.26 0.0147 6.32 0.28 3.6 QTV3 G

S9_142746338 9 0.27 0.0197 6.02 0.28 3.4 QTV3 T

S2_27482479 2 0.22 0.0585 5.42 0.26 3 QTV1 C

CS12-WS (average from raw data)

S2_27482431 2 0.24 0.0212 6.21 0.59 4.7 QTV1 A

S2_27482479 2 0.22 0.0212 6.16 0.59 4.7 QTV1 C

CS12-WS-USa

S7_164955163 7 0.08 0.0005 8.11 0.42 5 QTV2 C

S9_142746374 9 0.26 0.0083 6.57 0.33 3.9 QTV3 G

S2_27482479 2 0.22 0.0133 6.08 0.31 3.6 QTV1 C

S9_142746338 9 0.27 0.0133 6 0.32 3.5 QTV3 T

S2_27482431 2 0.24 0.0133 5.97 0.31 3.5 QTV1 A

CS12-WW-USa

S7_164955163 7 0.08 0.0028 7.35 0.14 4.9 QTV2 C

S2_27482431 2 0.24 0.0457 5.69 0.28 3.7 QTV1 A

S2_27482479 2 0.22 0.0457 5.63 0.28 3.6 QTV1 C

S9_142746374 9 0.26 0.0457 5.46 0.28 3.5 QTV3 G

S9_149545863 9 0.06 0.0457 5.43 0.37 3.5 QTV4 T

MET analysis with spatial adjustmentb

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) QTV

S7_164955163 7 0.08 0.0017 7.6 0.35 4.5 QTV2 C

S10_10246117 10 0.24 0.0326 6 0.26 3.4 QTV5 G

S7_164954968 7 0.09 0.0361 5.7 0.32 3.2 QTV2 T

S2_27482479 2 0.22 0.0361 5.6 0.25 3.2 QTV1 C

a The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using model in Eq. (3).
b The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using the MET model in Eq. (2) including AR1 x AR1 terms

for row and column effects.

Significant markers associated after correcting for multiple testing (SNP) using either FDR or Meff, their MAF, FDR adjusted p value of association, p value

of the association [-log10 (p)], allele estimated effect, percentage of variation explained by marker (R2), the assigned name of the QTV in this study, and

the allele of positive effect (APE) which increased yield.

doi:10.1371/journal.pone.0117737.t008
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follows the same pattern observed for the upstream area from QTV2, a plausible transcript cor-

responds to a protein with an unknown function (Table 9) that is expressed in vegetative stage

1 (V1) (Maize eFP browser) [112,113].

QTV3 is located in bin 9.06, the allelic effect ranged from 0.28 to 0.33 ton/ha across

environments, and the percentage of explained phenotypic variation ranged from 3.5 to 3.9%

(Table 8). No QTLs have been reported in bin 9.06 for grain yield to our knowledge. LD near the

QTV3 variant is higher than average, which is consistent to previous reports for chromosome

nine [52,110,111]. There are six transcripts upstream from QTV3 within a high level of LD.

Downstream from the QTV3 variant, there are two additional transcripts (GRMZM2G150594

GRMZM2G573775) in LD with the variant. Additional work will be needed to narrow down

which of the seven possible transcripts (if any) are responsible for the positive association with

grain yield. QTV4 (bin 9.07), and QTL5 (bin 10.02) are in locations that have not been previously

reported to contain grain yield QTL, and correspond to genes of unknown function (Table 8).

This study did not detect a significant QTV for 500-kernel weight after stringent corrections

for multiple testing. However, a peak near significance was consistently observed on bin 9.01

across different trials and both of the MET analysis (data not shown). The effect estimates ran-

ged from 2.3 to 3.6 g per 500 kernels, and explained 3.8 to 4.3% of the phenotypic variation.

Although this peak was not significant after correcting for multiple testing using FDR and

Table 9. Summary of the most promising QTV variants found in this study.

SNP QTV variant Bin Chr. Allele 1 Allele 2 Description Plausible transcript

Grain yield (ton/ha)

S2_27482431 QTV1 2.03 2 A*b C PUT-2–171a-Zea_mays-13770 GRMZM2G035688

S7_164955163 QTV2 7.04 7 A C*b Protein unknown function GRMZM2G009320

S9_142746374 QTV3 9.06 9 A G*b Clp amino terminal domain GRMZM2G150598

S9_149545863 QTV4 9.07 9 C T*b unknown motif GRMZM5G864133

S10_10246117 QTV5 10.02 10 G*b T unknown motif GRMZM2G475197

Plant height (cm)

S7_164955163 QTV2 7.04 7 A C*b Protein unknown function GRMZM2G009320

S3_168307280 QTV6 3.05 3 A*c C Chromatin assembly factor I GRMZM2G096458

Ear height (cm)

S2_34433893 QTV7 2.04 2 C T*c Proton-dependent oligopeptide transporter GRMZM2G138731

S4_62573339 NSa 4.05 4 C* Gc four cysteine-rich zinc finger protein GRMZM2G153722

S4_173817044 NSa 4.07 4 C T*b Promoter region GRMZM2G549279

S4_173996901 NSa 4.07 4 A G*b Promoter region GRMZM2G010755

Days to anthesis or days to silk

S7_164955163 QTV2 7.04 7 A C*b Protein unknown function GRMZM2G009320

S8_131176630 QTV8 8.05 8 C*b T Protein tyrosine kinase GRMZM2G120839

S4_173817044 NSa 4.07 4 C T*b GRMZM2G549279

S8_123509373 QTV9 8.05 8 C G*b Protein unknown function GRMZM2G479987

S3_1775697 QTV10 3.02 3 A C* Epsin N-terminal homology (Domain) GRMZM2G123499

*Allele with the positive effect
aThese QTV were just under the significance threshold after multiple test correction but were consistent skyscrapers observed in multiple tests.
b This is the allele in both Tx714 and B73 based on citation [117]
c This is the allele in B73 but Tx714 is unknown based on citation [117].

SNP position test, QTV name, bin, chromosome, SNP_1 allele one present, SNP_2 allele two, description of the translated protein motif, plausible

transcript as reported in the B73 genome sequence. The SNP name is also the position on the maize genome using assembly AGPv2.

doi:10.1371/journal.pone.0117737.t009
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Meff, this SNP warrants further investigation based on consistency and the fact that other

authors have reported a linkage QTL for 300 kernel weight, named q300k21, in the same bin

[114–116]. Correction for multiple testing can be too stringent, causing false negatives and loss

of information.

The effect sizes of significant QTV for yield, which ranged from 3 to 5%, appeared larger in

magnitude than might be expected for a complex quantitative trait; we believe there are a few

potential causes. First, heterosis from the tester would be expected to mask phenotypic varia-

tion at many alleles. For all QTVs the tester (Tx714) has the allele of positive effect [117], sug-

gesting theseQTVs show either additive effects or dominant deleterious effects. Second, with

such a diverse panel, more extreme deleterious alleles would be expected to be present than in a

narrow elite panel. Indeed, we find that the alleles with the positive effect are more common in

the population and examining the QTVs in ex-PVP lines [45], only a few have the alleles of

negative effect; these are generally in the oldest lines suggesting they have been selected out of

more elite maize [117]. Third, given the moderate population size it is reasonable to expect the

‘Beavis effect’ or ‘winners curse’ to be present in this study and all allelic effects may be overes-

timated. Fourth, it is possible that population structure is not fully accounted for [64]; however,

this seems less probable after examining the diverse origins of the individuals with these SNPs.

GWAS for plant and ear height

Two QTVs (QTV2 and QTV6) were detected for plant height (Fig. 4). QTV2 was previously

described for grain yield (Table 8 and 9). Several studies have reported a QTL for height at bin

7.04 [104,105,107]. The effect of QTV2 ranged from 5.3 to 5.6 centimetres, and explained 4.6

to 5% of the phenotypic variation (Table 10). The other SNP, QTV6 in bin 3.05, had an effect

that ranged from 3 to 3.2 centimetres and explained 4.7 to 4.8% of the phenotypic variation

Fig 3. GWAS results for grain yield (ton/ha) using spatial adjustment and a covariate for plant height.
The phenotypic observation was the BLUPs for the MET analysis, which includes AR1 x AR1 terms to adjust
for column and row effects. In addition, this model includes a centered and standardized covariance for plant
height. The red line represents the threshold value after correcting for multiple testing using the Meff or FDR.

doi:10.1371/journal.pone.0117737.g003
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(Table 10). A QTL for plant height has been reported previously in bin 3.05 using a bi-parental

cross between lines Ki3 and CML139 [118]. Both QTV2 and QTV6 were detected in the non-

irrigated and in the irrigated trials in 2011 (Fig. 4).

For ear height, only one significant SNP, QTV7 (bin 2.04) was detected after correcting for

multiple testing and only in the non-irrigated trial in 2012 (Table 10). It had an estimated effect

of 3.9 centimetres and explained is 6.3% of the phenotypic variation. No QTL have been previ-

ously reported for ear height in this bin to our knowledge. Three additional peaks were consis-

tently detected across different analyses, and the effects were strongest in the CS12-WW trial

(Fig. 5). These SNPs are worthy of additional consideration despite the fact that none of them

were significant after adjusting for multiple testing. The SNP S4_62573339 is located in bin

4.05, had an allele effect of 4.4 centimetres, and explained 5% of the phenotypic variation

(Table 10). The SNP falls within a putative transcript; however, the LD extends around 100 kb

in this area, indicating that this transcript may not be the causal gene. The strong LD in this

area may indicate that this region of the genome has been under recent selection. Different

authors have reported that LD generally decays around 1 to 5 kb for chromosome four

[52,108–111]. A QTL for plant height, but not ear height, has been previously reported in bin

4.05 by different authors [102–105].

Significant peaks associated with SNPs S4_173817044 and S4_173996901 are located in bin

4.07. The effect of the S4_173817044 SNP ranged from 3.8 to 6.5 centimetres, and the percent-

age of explained phenotypic variation ranged from 4.2 to 5%. The effect of the S4_173996901

SNP ranged from 3.8 to 4.3 centimetres. The amount of phenotypic variation ranged from 4.4

to 4.6%. Similar to the previous QTL for ear height, neither SNP falls within a bin where a QTL

has been reported by other authors. Additionally, the LD decay around 100 bp in this area of

chromosome four and based on the Maize B73 RefGen_v2 genome, these SNPs seems to be in

the promoter regions of different uncharacterized transcripts (Table 9).

Fig 4. GWAS results for plant height (cm). The phenotypic observation was the BLUPs for the CS11-DTYL
trial. The red line represents the threshold value after correcting for multiple testing using the Meff or FDR.

doi:10.1371/journal.pone.0117737.g004
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GWAS for flowering time traits

For the days to silk and days to anthesis traits, only one GWAS analysis was performed using

the entry mean as the phenotype observation. Multiple QTVs were found (Fig. 6) with effects

ranging from 0.5 to 1.8 days and the percentage of explained phenotypic variation ranging

from 4.2 to 7.4% (Table 11). QTV2, previously reported for grain yield and plant height, was

also detected for days to anthesis and days to silk in the well-watered CS11-WW and CS12-

WW trials. Buckler et al. [119] reported three QTLs for days to anthesis (PZA03624,

PZA03728, PZA-1744) and four QTLs for days to silk (PHM15501.9, PZA00986.1,

PZA02722.1, PZA01044.1) on chromosome seven. However, based on the physical location

and genetic distance none of the markers are located in bin 7.04.

QTV8 (bin 8.05) was detected for both days to anthesis (effect of 0.9 days) and days to silk

(effect of 1 day), explaining 5.8% of the phenotypic variation for both traits. Two different

SNPs were found for QTV9 (bin 8.05), S8_123509373 and S8_123511933, separated by 2.5 kb.

The effect for these QTL variants ranges from 0.5 to 0.8 and the phenotypic variation ranges

from 4.6 to 4.7% (Table 11). Buckler et al. (2009) reported three QTLs for days to anthesis

(PZA00908.2, PZB02155.1, PZA00675.1) and three QTLs for days to silk (PHM4711.14,

PZB02155.1, PHM1834.47) on this chromosome across eight environments in the NAM panel.

One of the QTL reported is located on chromosome eight in bin 8.05 (locus pzb02155), located

Table 10. GWAS results for plant and ear height (cm).

SNP CHR MAF FDR adjusted P Log10 Effect (cm) R2 (%) QTV APE

Plant height

CS11-WS-USa

S7_164955163 7 0.08 0.0429 6.08 5.3 5 QTV2 C

S3_168307280 3 0.36 0.0429 5.85 3 4.8 QTV6 A

CS11-WW-USa

S3_168307280 3 0.36 0.0577 5.81 3.2 4.7 QTV6 A

S7_164955163 7 0.08 0.0577 5.73 5.6 4.6 QTV2 C

Ear height

CS12-WS (average from raw data)

S2_34433893 2 0.31 0.0391 6.2 3.9 6.3 QTV7 T

CS12-WS-USa

S4_173996901 4 0.13 0.0811 5.88 3.8 4.6 NSC G

SNP CHR MAF FDR adjusted P Log10 Effect R2 (%) QTV

CS12-WW (average from raw data)

S4_173817044 4 0.14 0.0789 5.69 6.5 5 NSC T

S4_62573339 4 0.41 0.0789 5.59 4.4 5 NSC C

CS12-WW-USa

S4_173996901 4 0.13 0.1468 5.62 4.3 4.4 NSC G

RCBDb

S4_173817044 4 0.13 0.362 5.23 3.8 4.2 NSC T

a The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using model in Eq. (3).
b The phenotypic observation used for the GWAS was the BLUP for the hybrid effect from the MET model in Eq. (1).
CThese QTV were just under the significance threshold after multiple test correction but were consistent skyscrapers observed in multiple tests.

Significant markers associated after correcting for multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the association

(-log10 (p)), allele estimated effect, percentage of variation explained by marker (R2), the assigned name of the QTV in this study, and the allele of positive

effect (APE) which increased height.

doi:10.1371/journal.pone.0117737.t010
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between position 123,542,426 and 125,974,265, which is 30 kb downstream from QTV9. LD

extends for 3 kb upstream from QTV9 (results not shown); however, downstream from the

QTV9, there is gap between the markers of 80 kb. As a consequence, this study cannot defini-

tively determine if QTV9 and locus PBZ02155.1 are the same QTV or not. Finally, QTV10 had

Fig 5. GWAS results for ear height (cm). The phenotypic observation was the BLUPs for the CS12-
WW trial.

doi:10.1371/journal.pone.0117737.g005

Fig 6. GWAS results for days to anthesis and days to silk. The phenotypic observation was the BLUPs for
the CS12-WW trial. The red line represents the threshold value after correcting for multiple testing using the
Meff or FDR.

doi:10.1371/journal.pone.0117737.g006
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an effect of 0.6 for days to anthesis and 0.8 for days to silk, and explaining 4.2% of the pheno-

typic variation for days to anthesis and 4.3% for days to silk (Table 11).

This study did not find any significant QTL variants for ASI despite multiple analyses run

using the average of the raw data, and the MET analysis described in Eq. (1) and (2). Buckler

et al.’s [119] study was the most powerful to date for flowering time QTV detection, and many

but not all of the QTV were novel to a particular study. This lack of co-localization raises the

question of whether the differences observed were because of the use of different germplasm,

different environments, or the use of testcross hybrids. If germplasm caused the observed dif-

ferences, this suggests that the hypothesis of multiple variants for common genes may play

more of a role in temperate than in tropical germplasm. If different environments were the

cause, this suggests that local testing is critical for relevance in association mapping. If the use

of testcross hybrids were the cause, this suggests that for the most relevance to crop improve-

ment, only testcross hybrids and a relevant tester should be used in GWAS studies conducted

Table 11. GWAS results for days to anthesis and days to silk.

SNP CHR MAF FDR_adjusted_P Log10 Effect (days) R2 (%) QTV APE

Days to anthesis

CS12-WSa

S7_164955163 7 0.07 0.0006 8.03 1.8 7.4 QTV2 C

CS12-WWa

S8_131176630 8 0.26 0.0088 6.85 0.9 5.8 QTV8 C

S4_173817044 4 0.14 0.0314 5.91 0.8 4.9 NSa T

S8_123509373 8 0.37 0.0314 5.78 0.6 4.7 QTV9 G

S7_164955163 7 0.08 0.0314 5.65 1.8 4.6 QTV2 C

S8_123511933 8 0.38 0.0314 5.59 0.5 4.6 QTV9 G

S3_1775697 3 0.41 0.0571 5.25 0.6 4.2 QTV10 C

RCBDa

S7_164955163 7 0.07 0.0026 7.37 1.6 6.4 QTV2 C

S8_131176630 8 0.27 0.0563 5.74 0.9 4.6 QTV8 C

S4_173817044 4 0.14 0.0563 5.74 1.1 4.6 NSa T

Days to silk

CS12-WSa

S7_164955163 7 0.07 0.0006 8.01 1.8 7.4 QTV2 C

CS12-WWa

S8_131176630 8 0.26 0.0092 6.82 -1 5.8 QTV8 C

S4_173817044 4 0.14 0.0304 5.91 1.2 4.9 NSa T

S8_123509373 8 0.37 0.0304 5.8 0.8 4.8 QTV9 G

S7_164955163 7 0.08 0.0304 5.63 1.3 4.6 QTV2 C

S8_123511933 8 0.38 0.0304 5.61 0.8 4.6 QTV9 G

S3_1775697 3 0.41 0.0529 5.29 0.8 4.3 QTV10 C

RCBDa

S7_164955163 7 0.07 0.0029 7.33 1.6 6.4 QTV2 C

aPhenotypic observation for the GWAS was the average for days to anthesis or days to silk

Significant markers associated after correcting for multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the association

[-log10 (p)], allele estimated effect, percentage of variation explained by marker (R2), the assigned name of the QTV in this study, and the allele of positive

effect (APE) which increased days to flowering.

doi:10.1371/journal.pone.0117737.t011
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in crops grown as hybrids. It seems likely that the true cause is partially due to all these factors

and their interactions.

GWAS for aflatoxin resistance

The GWAS analysis did not find any significant QTLs for the transformed aflatoxin data after

correcting for multiple testing (Fig. 7) despite moderately high heritability and significant vari-

ation between the experimental hybrids. Three peaks appeared consistently for the irrigated tri-

als CS11-WW and CS12-WW, and the combined MET analysis (Table 12). SNP:

S3_185272026 (bin 3.06) had an allele effect of 9.4 ng g−1 and explained 6.06% of phenotypic

variation (Table 12). This SNP corresponds to transcript GRMZM2G399433, which is highly

expressed in the pericarp, embryo and endosperm, the silks and the cob during flowering and

post-flowering [112]. These tissues are directly relevant for the infection of A. flavus to proceed

under non-wounding inoculation. A QTL for aflatoxin and/or Aspergillus ear rot resistance has

been previously reported in bin 3.06 [34,36,39]. This QTV did not have a significant effect on

any of the other traits measured (yield, height, flowering time, etc.) indicating that the effect of

this QTV is directly on aflatoxin or ear rot resistance, not via a co-varying trait.

The SNP: S4_17376432 (bin 4.03) had allele effects of 9.1 ng g−1 and explained phenotypic

variation ranging from 5.3 to 5.7%. The transcript GRMZM2G013546 corresponds to this SNP

marker and is highly expressed in the pericarp and husk of maize [36,41,112], and a strong

QTL for aflatoxin resistance coming from the resistant line Mp313E has been found in this bin

location by multiple authors [5,35]. Further evidence of the presence of a significant QTL in

this bin comes from a recent meta-analysis study [120]. After building a consensus map, the

study found linked markers extending from bins 4.02 to 4.04, which seems to contain six QTL

for the three diseases presented, including aflatoxin and Aspergillus ear rot. Multiple QTL for

ear rot resistance have been reported in bin 4.03 for resistance to ear rot diseases such as Fusar-

ium and Gibberella [36,41]. The most likely reason that this QTV was not declared statistically

Fig 7. GWAS results for aflatoxin (ng g−1). The phenotypic observation was the BLUPs for the CS12-
WW trial.

doi:10.1371/journal.pone.0117737.g007
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significant in our study is that only a fraction of the lines in the panel have the allele, thus re-

ducing our statistical power. Another possible explanation is the low marker density, which

may not have been close enough to detect the causal polymorphism. The peak at SNP:

S5_197707198 (bin 5.06) corresponds to the transcript GRMZM2G057789, which is highly ex-

pressed in the silks during the R1 stage [112]. Xiang et al. [36] reported a QTL responsible for

ear rot resistance in the same bin 5.06. One reason for the relatively poor detection of QTV for

aflatoxin could be the choice of a susceptible tester, allowing only dominant sources of resis-

tance to be found. However it is dominant sources of resistance that would be of most use in

commercial breeding, since a recessive source would require improving lines in two heterotic

groups.

Major findings of this study

Association mapping using candidate genes or at a whole genome level is now routine in many

plant species [64,66,121–126] including maize. These studies have reported on average fewer

associations than linkage mapping based studies, even for genes with large phenotypic effects.

Although many maize association mapping studies have been conducted [127–129], there have

been few previous reports of mapping in a hybrid testcross background which allows dominant

alleles to be detected. This study found 10 QTV and other potential associations which were

nearly significant after correcting for*50,000 tests; several of these QTVs co-located with

QTL reported by others, which suggests that association mapping in a diverse set of germplasm

using testcrosses is consistent and relevant. For QTV co-located to QTL reported from linkage

mapping, this study identifies potential candidate genes, improves genetic resolution and pro-

vides independent confirmation of these loci. QTV novel to this study might not have been seg-

regating in previous linkage mapping populations, and detection of these is a benefit of GWAS

studies. Further investigation of these novel QTV will rule out possible false positives and vali-

date their use for maize improvement. Detection power of association mapping is affected by

several factors including sample size, population structure, the extent of LD, the magnitude of

the phenotypic effect, and the quality and density of the SNP markers used [52,60,110,130].

The results here clearly highlight the importance of larger sample size to be able to detect

Table 12. GWAS results for aflatoxin level.

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) APE ANE

CS11-WWa Aflatoxin (ng g−1)

S4_17376432 4 0.32 0.2 5.48 9.1 5.27 C G

S5_197707198 5 0.15 0.24 5.1 8.9 4.85 T C

CS12-WWa Aflatoxin (ng g−1)

S3_185272026 3 0.3 0.34 5.11 9.4 6.06 A G

CS12-WWa Aflatoxin (ng g−1)

S4_17376432 4 0.32 0.23 5.43 9.1 5.69 C G

RCBD Aflatoxin (ng g−1)

S5_197707198 5 0.15 0.27 5.22 8.9 4.98 T C

S4_17376432 4 0.32 0.27 5.05 9.1 4.79 C G

a The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using model in Eq. (3) on (log10 [aflatoxin + 10]).

Plausible significant markers associated with (log10 [aflatoxin + 10]) after correcting for multiple testing (SNP), their MAF, FDR adjusted p value of

association, p value of the association [-log10 (p)], allele estimated effect after back-transformation to (ng g−1), the percentage of variation explained by

marker (R2), and the allele of positive effect (APE) which less desirably increased aflatoxin, and the desirable allele of negative effect (ANE).

doi:10.1371/journal.pone.0117737.t012
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associations with rare SNPs and genes of small effect, likely the most important genetic basis

for complex traits such as drought tolerance and aflatoxin resistance. Yan et al. [52] reported

that using a population of 500 individuals in GWAS can detect associations that explain as little

as 3% of the phenotypic variation. Increasing the sample size to 1500 genotypes can detect as-

sociations that explain 1% of the phenotypic variation, but would not be practical given the re-

sources needed for field analyses with replication. Similar trends have been obtained for QTL

mapping, where it has been shown that increasing the number of individuals is more efficient

than increasing the number of replications [107]. The importance of large sample size was

highlighted by our results obtained for aflatoxin GWAS, where no significant associations were

detected after correcting for multiple testing. In the case of maize we feel it best to err slightly

towards type I error since it is relatively straight forward to confirm or refute candidates in sub-

sequent studies. Therefore, we used two different methods of multiple testing corrections, with

different advantages and disadvantages; improved methods with less type II error for crop spe-

cies would be desired and is an ongoing area of research [61,83].

Conclusions

This study used a diverse maize association mapping panel to identify genomic regions associ-

ated with grain yield, aflatoxin resistance and important agronomic traits in Southern US envi-

ronments. Useful variation in diverse germplasm for aflatoxin resistance and drought tolerance

was identified. Additionally, this diverse germplasm, when testcrossed to an elite, although

older, Texas version of B73, has the potential to out-yield commercial hybrids sold in Texas

but bred in the best Midwestern environments. This study found 10 QTVs for grain yield,

plant and ear height, days to anthesis and days to silk with some co-localizing to previously re-

ported linkage QTL, while others were novel, demonstrating the utility of GWAS to resolve

and discover useful variation. Comparing different statistical adjustment models was useful to

maximize the power of the data and to detect consistent QTVs. Once these QTVs are validated,

they will be useful for molecular improvement of Southern maize germplasm and, if cloning is

pursued, for understanding the basic biology of improvement of these traits.

Supporting Information

S1 Fig. Heatmap of genetic distances between lines. The pairwise genetic distances between

lines according to Nei’s 1972 genetic distance were plotted in a heat map. The distribution of

pairwise distance values in the upper left also shows the color legend. In the main figure, the

dendrogram and relatedness are shown on the top and left. The names of the lines are shown

on the right and bottom of the main figure.

(PDF)

S1 Table. Raw phenotypic data. The raw phenotypic data is provided to allow genetic map-

ping using this panel with SNPs discovered in the future. Column headings are as follows:

Rows—The number of rows in a plot; RowWidth—the Row width in centimeters; Range

Length—the plot length in meters; Loc—the location of the test; Year—the year of the test;

Trial:$9—a unique combination of location, year, and treatment; Trial:$92—a unique combi-

nation of location, year, and test; Pedigre:$160.—the pedigree of the testcross hybrid inbred

lines which were crossed to Tx714; Common name—another version of the inbred pedigree;

Entry:$ a coded entry for analysis; Entry_No—the entry number; Panel:$15.—a stock number

for the inbred; Inbredtag:$15.—a stock number for the testcross hybrid seed that was planted;

Tagtrial:$15.- the unique barcode/ plot location in the field; Lox:$—the knocked out lipoxygen-

ase gene in the Tx714 isogenic tester (must be either lox-4 or lox-5); Plot:$—the plot number,
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only unique within a trial; Row—the range in the field, only unique within a field location; Col-

umn—the row in the field, only unique within a field location; Pos—an identifier of row and

column only unique within a field location; Rep—the replication only unique within a trial;

DTA—days from planting to anthesis; DTS—days from planting to silk; ASI—anthesis silking

interval; PH—plant height in centimeters; EH—ear height in centimeters; STD—the stand

count in number of plants; PlotWt_gr—the total plot weight from the combine and hand har-

vest in grams; Moist—the percentage of moisture in the grain; kernel500Wt—the weight of 500

kernels in grams; Yield_plot—the yield in kilograms per hectare; Yield_BuAc—the yield in

bushels per acre; PlotWt_Combine_gr—the plot weight from the combine in grams; Wt_Shel-

led_grs—the weight from hand shelling hand-harvested ears in grams; EarCount—the number

of ears hand-harvested and hand shelled; poln_per—the percentage of pollinated kernels on

hand-harvested ears; abortion_per—the percentage of kernel abortion on the ears; flav_per—a

visual rating of the amount of Aspergillus flavus sporulation on the ears; NoKerRow1, NoKer-

Row2, NoKerRow3—the number of kernel rows on each of three randomly selected hand har-

vested ears; type:$—a visual rating of the kernel type (flint or dent); the amount of Aflatoxin in

ng g−1; Log(Aflatoxin+10)—the log of aflatoxin in ng g−1 plus 10.

(XLSX)
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