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Abstract

Background

Data are limited on genome-wide association studies (GWAS) for incident coronary heart

disease (CHD). Moreover, it is not known whether genetic variants identified to date also

associate with risk of CHD in a prospective setting.

Methods

We performed a two-stage GWAS analysis of incident myocardial infarction (MI) and CHD in

a total of 64,297 individuals (including 3898MI cases, 5465 CHD cases). SNPs that passed

an arbitrary threshold of 5×10−6 in Stage I were taken to Stage II for further discovery. Further-

more, in an analysis of prognosis, we studied whether known SNPs from former GWASwere

associated with total mortality in individuals who experienced MI during follow-up.

Results

In Stage I 15 loci passed the threshold of 5×10−6; 8 loci for MI and 8 loci for CHD, for which

one locus overlapped and none were reported in previous GWASmeta-analyses. We took

GWAS for Incident MI and CHD
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60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs nearQKI showed

nominally significant association with MI (p-value<8.8×10−3) and three exceeded the

genome-wide significance threshold when Stage I and Stage II results were combined (top

SNP rs6941513: p = 6.2×10−9). Despite excellent power, the 9p21 locus SNP (rs1333049)

was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD

(HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during

follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent

mortality (HR = 0.90, p-value = 3.2×10−3).

Conclusions

QKI represents a novel locus that may serve as a predictor of incident CHD in prospective

studies. The association of the 9p21 locus both with increased risk of first myocardial infarc-

tion and longer survival after MI highlights the importance of study design in investigating

genetic determinants of complex disorders.

Introduction

There is strong and consistent evidence that coronary heart disease (CHD) is highly heritable

and is influenced by a wide range of genetic factors [1, 2]. Recently genome-wide association

studies (GWAS) identified common genetic variants involved in cardiovascular disease and its

risk factors [3]. The loci reported by the latest and largest GWAS altogether explain around

10% of CHD heritability [4].

To date, GWAS for CHD have been conducted mostly in cross-sectional case-control setting,

and this design, which uses prevalent cases, typically oversamples those with long post-event sur-

vival times. Although such a design often makes it possible to collect information from a large

number of patients, this approach may incorrectly identify factors that are associated with a high

or low case-fatality rate. For instance, a factor associated with a low case-fatality will be enriched

among surviving cases and may appear to increase the risk of disease when prevalent cases are

compared with controls. This bias is known as incidence-prevalence (Neyman) bias [5, 6]. One

major advantage of studying incident cases rather than prevalent cases is that incident cases

properly represent the fatal cases and persons with only brief post-event survival. To date the

strong and reliable evidence for identifying and assessing factors such as LDL-cholesterol and

systolic blood pressure that predict future clinical disease are provided by well-designed popula-

tion-based, prospective cohort studies that collect large number of incident cases [7].

Here we aimed to study genetic variants that affect the incidence of myocardial infarction

(MI) and CHD in prospective, population-based cohorts and whether the genetic variants

identified to date are also associated with risk of CHD in a prospective setting. Moreover, we

investigated whether the known genetic variants are associated with total-mortality after MI.

To this end we used the data from the Cohorts for Heart and Aging Research in Genome Epi-

demiology (CHARGE) Consortium [8] and collaborating prospective studies.

Methods

Study Population

We performed our study in two stages. Stage I studies comprised participants from five pro-

spective cohort studies that form the CHARGE consortium [8]: the Age, Gene Environment

GWAS for Incident MI and CHD
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Susceptibility Reykjavik Study (AGES) [9]; the Atherosclerosis Risk in Communities (ARIC)

Study [10]; the Cardiovascular Health Study (CHS) [11]; the Framingham Heart Study (FHS)

[12]; and the Rotterdam Study (RS) [13, 14]. Stage II comprised individuals from: The Health,

Aging, and Body Composition (Health ABC) Study; The Health Professionals Follow-Up

Study (HPFS); The Nurses’Health Study (NHS); PROSPER/PHASE Study; the Study of Health

in Pomerania (SHIP); The Women’s Genome Health Study (WGHS); the MOnica Risk, Genet-

ics, Archiving and Monograph (MORGAM) Study comprising the Alpha-Tocopherol, Beta-

Carotene (ATBC) Study; The FINRISK Study; The PRIME Study (including the PRIME

cohorts of Belfast, Lille, Strasbourg and Toulouse); The Northern Sweden Study. Participants

in Stages I and II were of European ancestry. Participants with a history of MI or CHD at base-

line were excluded. All studies had protocols approved by local institutional review boards.

Participants provided written informed consent and gave permission to use their DNA for

research purposes. The Supplementary Document provides details about the design and char-

acteristics for these studies.

Case Definitions for MI and CHD

The definitions of incident MI were consistent among the participating studies, including both

fatal and non-fatal MI. CHD included fatal or non-fatal MI, and in most studies fatal CHD or

sudden death. The definition of MI and CHD for each cohort study is summarized in S1 Table

and S2 Table.

Statistical Analysis

The date of entry to the analysis was the date of cohort entry (AGES, ARIC, CHS, RS) or DNA

collection (FHS). Within each study, Cox proportional hazards regression models were used to

test the association between each SNP and time to incident MI or CHD, while adjusting for sex

and baseline age. FHS adjusted for familial correlation by clustering on pedigree. Analyses in

CHS and ARIC were adjusted for study site and in FHS, for generation and additionally for

ancestry using principal components [15]. The censor date was the time of MI or CHD diagno-

sis, the time of death, last date of contact, or at the end of follow-up, whichever came first. For

each SNP, additive genetic models were used to estimate the regression coefficient for the haz-

ard ratio (HR) for allele dosage and its respective standard error. For each analysis, a genomic

control coefficient (λ) was calculated, which estimated the extent of underlying population

structure. Further information on the analysis methods can be found in S3 Table and S4 Table.

Information regarding the genotyping and imputation as well as genotype quality control

are found in S5 Table and S6 Table. SNPs with a minor allele frequency of less than 1%, impu-

tation quality less than 0.3 or very large regression coefficients (absolute value larger than 5)

were excluded from meta-analysis. Results from individual studies were meta-analyzed for a

total of 2,543,842 autosomal SNPs based on Phase 2 HapMap. A fixed effects inverse variance

weighted meta-analysis approach was implemented in METAL [16] to combine the regression

coefficients and their standard errors, producing a summary regression coefficient and stan-

dard error from which a p-value was computed. An arbitrary significance threshold for follow-

up in Stage II was set at 5.0×10−6. When more than one SNP clustered at a locus, we carried

forward four SNPs with smallest p-values in the associated locus for further investigation in

Stage II.

In Stage II, three studies provided data both for incident MI and CHD (HABC, MORGAM,

andWGHS), two studies provided data only for MI (PROSPER, SHIP), and two others pro-

vided data only for CHD (HPFS, NHS). Each Stage II study used the same analytic method as

used in Stage I to examine the association of the 60 SNPs with MI or CHD. As in the Stage I

GWAS for Incident MI and CHD
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meta-analysis, we used inverse-variance weighted fixed effects meta-analysis to evaluate the

Stage II results. We applied a Bonferroni correction for 60 SNPs and set 8.3×10−4 as the signifi-

cance threshold. Finally, results from all studies in Stage I and II were combined using inverse-

variance weighted fixed effects meta-analysis.

We further studied each of the 46 SNPs reported by the CARDIoGRAMplusC4D Consor-

tium [4], for association with incident events in our meta-analysis of longitudinal cohort stud-

ies. Moreover, the SNPs were combined into a weighted genetic risk score using beta estimates

from the CARDIoGRAMplusC4D Consortium report [4]. The association of each SNP, as well

as the score from the combination of all 46 SNPs, was examined with incident MI and CHD

using the results of Stage I meta-analysis.

We applied a Cox proportional hazards model adjusted for age and sex to examine the asso-

ciation of the known SNPs with mortality after MI. Five studies including AGES, ARIC, CHS,

FHS and the Rotterdam Study provided data for this analysis and in total 2953 individuals

were followed after incidence of MI of which 1828 died. The median follow up time ranged

from 2.3 years in AGES to 4.7 years in FHS. The baseline characteristics of the study popula-

tions for this analysis are presented in S7 Table. Since this analysis was meant to explore poten-

tial reasons for weak association or lack of association with incident MI and CHD, we limited

the analysis to three SNPs with more than 80% power in Stage I to study its estimated associa-

tions with incident MI and CHD.

Results

Fig 1 describes Stage I and Stage II of the study. The Stage I panel included five prospective

cohort studies comprising a total of 24,024 participants who were free of MI and CHD at base-

line. The average age ± standard deviation ranged from 54.1±5.6 in ARIC to 74.6±5.5 in AGES.

More than half of the participants (54.5%) were women. The basic characteristics of the partici-

pating studies are shown in Table 1. A total of 1570 incident MI events (6.5%) and 2406 inci-

dent CHD events (10.0%) occurred over an average of 8.2 years and 8.1 years of follow-up for

MI and CHD, respectively. The average age at the time of MI ranged from 65.2 years in ARIC

to 80.8 years in CHS.

The λ coefficient within each cohort was small (�1.03), suggesting negligible genomic infla-

tion. We combined the results of associations for all SNPs across the five cohorts. S1A Fig and

S1B Fig presents the Q-Q plots of combined p-values against the expected p-value distribution

for MI and CHD, respectively. The evidence for population admixture was small, both for MI

(λ = 1.017) and CHD (λ = 1.022). S2A Fig and S2B Fig illustrates the p-values of the meta-anal-

ysis for each of the SNPs across the 22 autosomal chromosomes for MI and CHD, respectively.

In Stage I, 27 SNPs in 8 loci reached our arbitrary threshold of 5×10−6 for MI and 29 SNPs

in 8 loci reached this threshold for CHD (Table 2). The most significant association with MI

was seen for rs6941513 located on chromosome 6 upstream of QKI (Hazard Ratio = 1.22 [95%

Confidence Interval: 1.13, 1.31], p-value = 2.0×10−7). For CHD, rs986080, a SNP located on

chromosome 1 between two genes (SNX7 and PAP2D) showed the strongest association

(HR = 1.19 [95%CI: 1.12, 1.27], p-value = 6.6×10−8).

In Stage II, we sought additional evidence for associations in eight loci for MI (QKI, ODZ3,

DGKB, FOXL1, CALCOCO2, BARD1, COL8A1, ATXN1) and eight loci for CHD (PAP2D,

GPC5, CTNNA3, BARHL2, IGFBP3, LRFN2, ATXN1, SNCA) using four SNPs per locus, for a

total of 60 SNPs in 15 loci (ATXN1 was associated with both MI and CHD). Baseline character-

istics of the participants of Stages II are shown in S8 and S9 Tables. The results for all 60 SNPs

are presented in S10 Table and S11 Table, for MI and CHD, respectively. None of the SNPs

passed the Bonferroni adjusted threshold of 8.3×10−4. The results for the best association in

GWAS for Incident MI and CHD
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Fig 1. Study design for identification and validation of SNPs associated with MI and CHD.

doi:10.1371/journal.pone.0144997.g001

GWAS for Incident MI and CHD
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Table 1. Baseline characteristics of participants included in incident MI/CHD analysis stratified by cohort.

Characteristic AGES ARIC CHS FHS RS

Participants, n 3219 7406 3291 4134 5974

Age, years 76.4 (5.5) 54.1 (5.57) 72.3 (5.4) 64.5 (12.8) 69.4 (9.1)

Women, % 58.0 54.7 39.1 56.7 59.4

Hypertension1, % 80.6 25.7 52.8 45.3 33.4

Diabetes2, % 11.5 7.7 11.8 10.2 10.6

Current smoker3, % 12.7 24.8 11.3 14.0 22.4

Total cholesterol, mg/dL 217 (45) 214 (41) 213 (39) 203 (40) 255 (47)

HDL cholesterol, mg/dL 61 (17) 51 (17) 55 (16) 52 (17) 52 (14)

Triglyceride, mg/dL 107 (59) 135 (91) 140 (76) 144 (127) NA

Body mass index, kg/m2 27.1 (4.4) 27.0 (4.9) 26.3 (4.5) 27.7 (5.2) 26.3 (3.7)

Incident MI, N cases 86 486 537 165 296

Mean MI follow-up time 2.7 9.2 12.0 5.5 10.1

Incident CHD, N cases 209 575 660 201 761

Mean CHD follow-up time 2.6 9.1 12.0 5.5 9.9

Incident MI Age, years 79.1 (5.5) 65.17 (6.9) 80.8 (6.2) 75.2 (12.2) 80.6 (10.1)

Numbers in table are Mean (SD) or percentage. AGES = Age, Gene/Environment Study; ARIC = Atherosclerosis Risk in Communities Study;

CHS = Cardiovascular Health Study; FHS = Framingham Heart Study; HDL = high density lipoprotein; RS = The Rotterdam Study

1 Hypertension was defined as blood pressure �140/90 mmHg or on anti-hypertensive medication

2 Diabetes was defined as fasting blood glucose >125 mg/dL, a random blood glucose of >200 mg/dL, or use of insulin or oral hypoglycemic agents

(Rotterdam: diabetes definition: Using anti-diabetic medication or random glucose or oral glucose test more than 200 mg/dl)

3 Current cigarette smoking was defined as self-reported cigarette smoking of at least 1 cigarette per day for a year at any attended exam

doi:10.1371/journal.pone.0144997.t001

Table 2. Description and association of SNPs of the top loci associated with incident MI and CHD in Stage I.

Phenotype SNP Band Alleles* HR (95%CI) P-value Gene Location

MI rs6941513 6q26 G/A 1.22 (1.13–1.31) 2.0×10−7 QKI Closest gene

rs13139636 4q35.1 T/A 1.44 (1.25–1.66) 6.4×10−7 ODZ3 Intron

rs217597 7p21.2 T/C 1.26 (1.15–1.38) 1.3×10−6 DGKB Intron

rs9923194 16q24.1 C/T 1.88 (1.44–2.44) 1.9×10−6 FOXL1 Closest gene

rs6504582 17q21.32 A/G 1.20 (1.11–1.30) 2.1×10−6 CALCOCO2 Closest gene

rs7591615 2q35 T/C 1.21 (1.12–1.32) 3.3×10−6 BARD1 Intron

rs17777478 3q12.1 T/A 1.73 (1.37–2.20) 4.4×10−6 COL8A1 Intron

rs2299063 6p22.3 A/C 1.24 (1.13–1.37) 4.8×10−6 ATXN1 Intron

CHD rs986080 1p21.3 C/T 1.19 (1.12–1.27) 6.6×10−8 PAP2D Intron

rs16945166 13q31.3 G/A 1.34 (1.20–1.51) 4.7×10−7 GPC5 Closest gene

rs10740220 10q21.3 G/T 1.20 (1.11–1.29) 1.0×10−6 CTNNA3 Intron

rs10922855 1p22.2 T/G 1.22 (1.12–1.33) 1.9×10−6 BARHL2 Closest gene

rs7794677 7p12.3 T/C 1.20 (1.11–1.29) 2.3×10−6 IGFBP3 Closest gene

rs2916260 6p21.2 T/C 1.21 (1.12–1.31) 2.8×10−6 LRFN2 Intron

rs3812189 6p22.3 C/T 1.21 (1.12–1.31) 3.1×10−6 ATXN1 Intron

rs356228 4q22.1 G/C 1.16 (1.09–1.23) 3.2×10−6 SNCA Closest gene

*Coded/non-coded allele

HR = Hazard Ratio; CI = Confidence Interval

doi:10.1371/journal.pone.0144997.t002

GWAS for Incident MI and CHD
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each locus are shown in Table 3. Four SNPs located upstream of QKI showed nominal evidence

in Stage II for association with MI. The analysis of the combined Stage I and Stage II yielded

genome-wide significant associations for three SNPs close to QKI, (rs6941513: HR = 1.21 [95%

CI: 1.13, 1.28], p-value = 6.2×10−9). Fig 2 presents the linkage disequilibrium (LD) and p-values

of regional markers for this locus. We tested for evidence of replication of this association in

8201 African American individuals including 546 incident cases from the PAGE Study [17],

however, rs6941513 was not significantly associated with risk of MI in this population

(p = 0.49).

We sought evidence for the association of 46 SNPs recently reported in the largest GWAS to

date for coronary artery disease [4] with the incidence of MI and CHD (Table 4). Despite excel-

lent power, we found only modest evidence for replication of the association with 9p21 locus

(CDKN2A/B), the most established finding from previous cross-sectional case-control GWAS.

The most replicated SNP at 9p21 locus, rs1333049, was nominally associated with MI (HR:

1.09 [95%CI: 1.01, 1.18], p-value = 0.02) and marginally with CHD (HR = 1.06 [95%CI: 0.99,

1.13], p-value = 0.08). The most significant association with MI was found for rs15563, a SNP

in UBE2Z (HR: 1.12 [95%CI: 1.04, 1.20], p-value = 1.9×10−3) and the most significant associa-

tion with CHD was found for rs10947789, a SNP within the KCNK5 locus (HR: 1.13 [95%CI:

1.05, 1.22], p-value = 5.6×10−4). We found nominally significant associations (p<0.05) with

SNPs annotated to CDKN2A/B for MI, LIPA for CHD and COL4A2, TCF21, PDGFD, KCNK5,

VAMP8,MRAS, UBE2Z and TCF21 for both MI and CHD (Table 4). A weighted genetic risk

score composed of these 46 SNPs was associated with MI (p-value = 1.3×10−3) and CHD (p-

value = 1.2×10−3) in the Stage I meta-analysis.

Among individuals who experienced MI during follow-up, the risk allele of rs1333049 was

associated with a significantly decreased risk of mortality (HR: 0.90 [95% CI: 0.84, 0.97], p-

value = 5.5×10−3) (Table 5). In both SNPs at 9p21 locus the “risk allele” from cross-sectional

Table 3. Description and association of top SNPs with incident MI and CHD in Stage II and their combined results with Stage I.

Phenotype SNPID Alleles* Stage II Combined Closest Gene

HR (95%CI) P-value HR (95%CI) P-value

MI rs6941513 G/A 1.16 (1.04–1.31) 8.8×10−3 1.2 (1.13–1.28) 6.2×10−9 QKI

rs7692395 T/G 1.03 (0.75–1.40) 0.86 0.69 (0.59–0.79) 2.5×10−7 ODZ3

rs4721377 T/G 0.98 (0.87–1.10) 0.73 1.26 (1.14–1.38) 1.9×10−6 DGKB

rs9923194 C/T 1.04 (0.69–1.58) 0.84 1.58 (1.27–1.97) 4.3×10−5 FOXL1

rs6504582 A/G 1.03 (0.91–1.15) 0.65 1.15 (1.08–1.22) 1.8×10−5 CALCOCO2

rs7591615 T/C 0.89 (0.78–1.02) 0.09 1.11 (1.03–1.19) 3.8×10−3 BARD1

rs17777478 T/A 1.15 (0.80–1.64) 0.45 1.54 (1.26–1.88) 1.6×10−5 COL8A1

rs2299063 A/C 0.93 (0.81–1.07) 0.29 1.13 (1.05–1.23) 1.6×10−3 ATXN1

CHD rs986080 C/T 0.97 (0.91–1.04) 0.39 0.97 (0.91–1.04) 1.1×10−3 PAP2D

rs16945166 G/A 1.02 (0.92–1.14) 0.69 1.02 (0.92–1.14) 2.2×10−4 GPC5

rs10509258 C/T 1.02 (0.96–1.09) 0.50 1.02 (0.96–1.09) 3.0×10−4 CTNNA3

rs12031583 G/A 0.89 (0.79–1.00) 0.05 0.89 (0.79–1.00) 7.8×10−3 BARHL2

rs1551837 A/G 1.03 (0.94–1.12) 0.58 1.03 (0.94–1.12) 2.3×10−4 IGFBP3

rs6925172 C/T 1.12 (1.01–1.25) 0.04 1.12 (1.01–1.25) 3.3×10−6 LRFN2

rs9297015 T/A 0.93 (0.86–1.01) 0.07 0.93 (0.86–1.01) 0.12 ATXN1

rs356228 G/C 1.02 (0.96–1.09) 0.50 1.02 (0.96–1.09) 1.7×10−4 SNCA

*Coded/non-coded allele

Chr. = Chromosome; HR = Hazard Ratio; CI = Confidence Interval

doi:10.1371/journal.pone.0144997.t003
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case-control GWAS was associated with longer survival after MI and would have been enriched

in surviving prevalent cases. Fig 3 illustrates the inverse association of 78 top SNPs at the 9p21

locus as reported by CARDIoGRAMplusC4D Consortium [4] with survival after MI. We also

examined the association of rs6941513 with mortality after MI, however, the association was

not significant.

Discussion

We performed a GWAS on incident MI and CHD and examined whether the gene variants

identified to date are also associated with risk of CHD in a prospective setting. In a two-stage

design, involving 37,561 participants with 2,328 cases of incident MI, we identified a novel

genome-wide significant locus, QKI, associated with incident MI. This finding requires further

replication. The results also highlighted the difference between the genes identified in prospec-

tive versus cross-sectional case-control studies. The 9p21 locus was associated with both an

increased risk of incident MI and, during follow-up post-MI, a decreased risk of total mortality,

indicating that genetic variants may operate differently in an alternative setting.

Fig 2. Regional plots for the association of SNPs with MI in the region ofQKI.

doi:10.1371/journal.pone.0144997.g002
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Table 4. Association of the known SNPs for coronary artery disease with incident MI and CHD in Stage I.

SNP Chr. Freq. Alleles* Reported
GWAS

GWAS on Incident MI GWAS on Incident CHD Gene

OR P-value Power HR (95% CI) P-value Power HR (95% CI) P-value

rs3217992 9 0.38 A/G 1.16 7.8×10−57 0.98 1.07 (0.99–1.15) 0.10 0.99 1.04 (0.98–1.11) 0.21 CDKN2A/B

rs1333049 9 0.47 C/G 1.23 1.4×10−52 0.99 1.09 (1.01–1.18) 0.02 0.99 1.06 (0.99–1.13) 0.08 CDKN2A/B

rs602633 1 0.77 C/A 1.12 1.5×10−25 0.73 1.08 (0.99–1.17) 0.10 0.89 1.05 (0.97–1.12) 0.21 PSRC1

rs9369640 6 0.65 A/C 1.09 7.5×10−22 0.62 1.05 (0.98–1.13) 0.17 0.78 1.03 (0.97–1.10) 0.27 PHACTR1

rs11556924 7 0.65 C/T 1.09 6.7×10−17 0.62 1.05 (0.97–1.14) 0.26 0.78 1.06 (0.99–1.14) 0.07 ZC3HC1

rs9982601 21 0.13 T/C 1.13 7.7×10−17 0.63 0.98 (0.88–1.09) 0.68 0.79 1.01 (0.93–1.10) 0.81 MRPS6

rs6725887 2 0.11 C/T 1.12 1.2×10−15 0.51 1.06 (0.95–1.18) 0.29 0.67 0.99 (0.90–1.08) 0.78 WDR12

rs1122608 19 0.76 G/T 1.10 6.3×10−14 0.62 1.07 (0.98–1.16) 0.13 0.77 1.04 (0.97–1.12) 0.23 SMARCA4

rs12190287 6 0.59 C/G 1.07 4.9×10−13 0.45 1.13 (1.04–1.23) 4.4×10−3 0.60 1.09 (1.01–1.16) 0.02 TCF21

rs7173743 15 0.58 T/C 1.07 6.7×10−13 0.45 1.05 (0.97–1.13) 0.23 0.60 1.04 (0.98–1.10) 0.23 MORF4L1

rs17114036 1 0.91 A/G 1.11 5.8×10−12 0.39 1.12 (0.97–1.28) 0.11 0.52 1.06 (0.95–1.19) 0.27 PPAP2B

rs9515203 13 0.74 T/C 1.08 5.9×10−12 0.46 1.06 (0.95–1.17) 0.31 0.61 1.07 (0.99–1.17) 0.09 COL4A2

rs2505083 10 0.42 C/T 1.06 1.4×10−11 0.35 1.05 (0.97–1.13) 0.19 0.47 1.03 (0.97–1.10) 0.36 KIAA1462

rs4773144 13 0.42 G/A 1.07 1.4×10−11 0.45 1.09 (1.01–1.18) 0.03 0.60 1.09 (1.02–1.16) 0.01 COL4A2

rs7692387 4 0.81 G/A 1.06 2.7×10−11 0.39 1.00 (0.91–1.09) 0.95 0.52 1.01 (0.93–1.09) 0.83 GUCY1A3

rs974819 11 0.29 A/G 1.07 3.6×10−11 0.39 0.91 (0.83–0.98) 0.02 0.53 0.93 (0.87–1.00) 0.04 PDGFD

rs3184504 12 0.40 T/C 1.07 5.4×10−11 0.44 1.03 (0.95–1.11) 0.47 0.60 1.04 (0.98–1.11) 0.22 SH2B3

rs2075650 19 0.14 G/A 1.11 5.9×10−11 0.53 1.03 (0.91–1.16) 0.67 0.68 1.01 (0.91–1.13) 0.79 TOMM40

rs2048327 6 0.35 G/A 1.06 6.9×10−11 0.33 1.00 (0.93–1.08) 0.98 0.45 1.01 (0.95–1.08) 0.65 SLC22A3

rs9319428 13 0.32 A/G 1.05 7.3×10−11 0.32 0.99 (0.91–1.09) 0.91 0.43 1.03 (0.96–1.11) 0.44 FLT1

rs17514846 15 0.44 A/C 1.05 9.3×10−11 0.45 1.00 (0.93–1.08) 0.94 0.60 1.02 (0.96–1.09) 0.52 FURIN

rs1561198 2 0.45 A/G 1.05 1.2×10−10 0.35 1.09 (1.01–1.17) 0.02 0.48 1.09 (1.02–1.15) 6.9×10−3 VAMP8

rs515135 2 0.83 G/A 1.08 2.6×10−10 0.29 1.09 (0.98–1.20) 0.10 0.40 1.03 (0.95–1.12) 0.52 APOB

rs4845625 1 0.47 T/C 1.04 3.6×10−10 0.36 1.01 (0.94–1.08) 0.86 0.48 1.03 (0.97–1.10) 0.28 IL6R

rs2895811 14 0.43 C/T 1.06 4.1×10−10 0.35 1.03 (0.95–1.11) 0.44 0.48 1.03 (0.96–1.10) 0.39 KIAA1822

rs4252120 6 0.73 T/C 1.06 4.9×10−10 0.38 0.99 (0.92–1.07) 0.82 0.51 0.99 (0.93–1.06) 0.74 PLG

rs273909 5 0.14 C/T 1.09 9.6×10−10 0.26 1.04 (0.91–1.17) 0.59 0.35 1.01 (0.91–1.12) 0.84 SLC22A4

rs12936587 17 0.59 G/A 1.06 1.2×10−9 0.35 1.00 (0.92–1.08) 0.94 0.47 0.97 (0.91–1.04) 0.40 RAI1

rs2047009 10 0.48 C/A 1.05 1.6×10−9 0.27 1.02 (0.94–1.09) 0.68 0.36 1.03 (0.97–1.1) 0.30 CXCL12

rs501120 10 0.83 A/G 1.07 1.8×10−9 0.29 1.08 (0.96–1.21) 0.18 0.39 1.00 (0.91–1.09) 0.96 CXCL12

rs9818870 3 0.14 T/C 1.07 2.6×10−9 0.26 1.10 (1.00–1.21) 0.05 0.35 1.09 (1.01–1.18) 0.02 MRAS

rs264 8 0.86 G/A 1.05 2.9×10−9 0.53 0.99 (0.89–1.10) 0.83 0.68 1.05 (0.96–1.14) 0.31 LPL

rs2281727 17 0.36 C/T 1.05 7.8×10−9 0.25 1.07 (0.99–1.15) 0.09 0.34 1.02 (0.96–1.09) 0.50 SMG6

rs445925 19 0.9 C/T 1.13 8.8×10−9 0.54 1.16 (0.97–1.39) 0.10 0.56 1.05 (0.92–1.19) 0.46 APOC1

rs10947789 6 0.76 T/C 1.06 9.8×10−9 0.36 1.12 (1.02–1.22) 0.01 0.48 1.13 (1.05–1.22) 5.6×10−4 KCNK5

rs579459 9 0.21 C/T 1.07 2.7×10−8 0.33 1.06 (0.97–1.17) 0.20 0.45 1.03 (0.96–1.12) 0.39 ABO

rs2252641 2 0.46 G/A 1.04 5.3×10−8 0.36 1.00 (0.92–1.07) 0.91 0.48 0.97 (0.91–1.03) 0.34 ZEB2

rs12413409 10 0.89 G/A 1.10 6.3×10−8 0.38 1.05 (0.92–1.20) 0.49 0.52 1.01 (0.90–1.13) 0.91 CNNM2

rs9326246 11 0.10 C/G 1.09 1.5×10−7 0.51 0.93 (0.79–1.08) 0.32 0.41 0.93 (0.82–1.06) 0.26 BUD13

rs11203042 10 0.44 T/C 1.04 6.1×10−6 0.19 1.05 (0.98–1.13) 0.15 0.25 1.07 (1.01–1.14) 0.03 LIPA

rs15563 17 0.52 C/T 1.04 9.4×10−6 0.19 1.12 (1.04–1.20) 1.9×10−3 0.25 1.07 (1.01–1.13) 0.03 UBE2Z

rs2246833 10 0.38 T/C 1.06 9.5×10−6 0.34 1.07 (1.00–1.16) 0.06 0.46 1.06 (1.00–1.13) 0.05 LIPA

rs11206510 1 0.84 T/C 1.06 1.8×10−5 0.22 1.02 (0.92–1.14) 0.67 0.30 1.01 (0.93–1.10) 0.80 PCSK9

rs12205331 6 0.81 C/T 1.04 4.2×10−5 0.14 1.03 (0.93–1.13) 0.58 0.17 1.05 (0.97–1.13) 0.24 ANKS1A

rs17464857 1 0.87 T/G 1.05 6.1×10−5 0.15 1.11 (0.97–1.27) 0.13 0.19 1.09 (0.97–1.22) 0.14 TAF1A

(Continued)
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In this two-stage design, we found evidence for MI-associated genetic variants nearby QKI

(KH domain containing, RNA binding). The combined p-value for three out of four genetic

variants that were examined in the region exceeded genome-wide significant threshold.

Although these data provide evidence for an association between the QKI locus and incident

MI, this finding should be confirmed by further studies since these variants attained conven-

tional levels of genome-wide significant p-value only in the combined meta-analysis.

If confirmed, the QKI finding may represent a novel pathway in developing CHD. QKI is

known to be involved in cell cycle regulation, a pathway for which there is emerging evidence for

a key role in developing atherosclerotic plaques and cardiovascular disease [18, 19]. A functional

study has reported thatQKI is a central regulator of vascular smooth muscle cell phenotypic plas-

ticity and that intervention inQKI activity can improve pathogenic fibro-proliferative responses

to vascular injury [20]. Moreover, a recent paper shows that the RNA-binding properties of QKI

play a critical role in regulating humanmonocyte to macrophage differentiation [21]. de Bruin

and co-workers identified that the conversion of monocytes to both pro- and anti-inflammatory

macrophages with GM-CSF or M-CSF, respectively, markedly increased expression of the QKI,

which all were readily detected in CD68+ macrophages of fibrous cap atheromata and atheroscle-

rotic lesions with intraplaque hemorrahage. Furthermore, reduced expression of QKI in mono-

cytes delayed their differentiation into macrophages, perturbed their capacity to become lipid-

engorged foam cells, and led to a reduction in monocyte infiltration in atherosclerotic lesions

[21]. Altogether we propose that QKI is involved in inflammatory responses to injury and could

be a potential thrapeutic target to prevent cardiovascular disease. Further functional investigation

is needed to robustly identify mechanisms involved for this locus.

Prior GWAS which included extremely large sample sizes did not report QKI though they

should have had enough statistical power to detect a locus with such an effect. However

rs6941513 was not associated with CAD in the Cardiogram plusC4D GWAS (OR = 1.01, p-

value = 0.45). In contrast to former GWAS, we have used a prospective, longitudinal cohort

design to examine genetic association with incident cases of MI and CHD. It is possible that

the magnitude of the effect with prevalent cases is smaller than with incident cases; thus the

locus was not detected by previously published GWAS that primarily use a case-control design.

Although CHD includes MI events by definition, the loci we found for MI and CHD over-

lapped only for one locus (ATX1). One reason could be differences in mechanisms involved in

the restrictive diagnosis of MI versus the broader diagnosis of CHD. However, unstable effect

Table 4. (Continued)

SNP Chr. Freq. Alleles* Reported
GWAS

GWAS on Incident MI GWAS on Incident CHD Gene

OR P-value Power HR (95% CI) P-value Power HR (95% CI) P-value

rs12539895 7 0.19 A/C 1.08 5.3×10−4 0.39 1.03 (0.94–1.12) 0.57 0.52 0.99 (0.92–1.07) 0.87 GPR22

Chr. = Chromosome; Freq. = Frequency; OR = Odds Ratio; HR = Hazard Ratio; CI = Confidence Interval

*Coded / Non-coded allele

doi:10.1371/journal.pone.0144997.t004

Table 5. Association of the known SNPs for coronary artery disease with mortality after MI.

SNP Closest Gene Alleles HR(95%CI) P-value

rs1333049 CDKN2A/B C/G 0.90 (0.84–0.97) 5.5×10−3

rs3217992 CDKN2A/B A/G 0.94 (0.88–1.01) 0.10

rs602633 PSRC1 C/A 1.01 (0.93–1.09) 0.93

doi:10.1371/journal.pone.0144997.t005
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estimates and p-values due to lack of statistical power could have contributed to this observa-

tion as well.

Despite excellent statistical power, we identified only a modest signal at the 9p21 locus. This

locus, initially identified by GWAS, has been validated by numerous studies in different geo-

graphic and ethnic subgroups. However, our study is not the first study to report a weak signal

or lack of association at this locus. In fact, prominent differences have been observed between

cross-sectional case-control versus longitudinal studies. For instance, in a meta-analysis by

Chan et al [22], cross-sectional analyses of angiographically defined cases and controls show a

strong per allele association with 9p21 (OR: 1.31, 95% CI: 1.20, 1.43). However, in a meta-anal-

ysis of follow-up studies by Patel et al [23], the per allele hazard ratio of the 9p21 variants for

fatal and non-fatal adjudicated MI was 1.09 (95% CI: 1.03–1.16). The latter is the same as what

we report in this study, though the meta-analysis includes earlier reports from some of our

studies. One explanation for this inconsistency is the incidence-prevalence bias. Most GWAS

for coronary artery disease to date have consisted of cross-sectional case-control studies, a

design that over represents patients who survived their MI or CHD event. Using data from five

population based cohort studies we found that the reported risk alleles for this locus are associ-

ated with longer survival after MI. This finding that was previously reported as well [23–25]

supports the conjecture. Thus, the high prevalence of the risk allele in various types of cross-

Fig 3. The association of top 79 SNPs with coronary artery disease as reported by CardiogramplusC4D for 9p21 locus and their association with
total mortality after MI.

doi:10.1371/journal.pone.0144997.g003
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sectional analyses may not be due entirely to a high risk of experiencing MI or CHD, but also

to an improved chance of survival after MI.

The molecular biology behind the protective effect of the risk alleles at 9p21 is yet unclear,

however, there is a growing body of evidence to show that 9p21 locus is only increasing the risk

of CHD for the first event and not for the subsequent events. For instance, Patel et al found no

association with subsequent CHD events in a recent meta-analysis of 25,163 individuals with

established CHD [23]. Thus, it could be concluded that 9p21 locus is contributing to the forma-

tion and progression of plaques and not to their instability prior to events; therefore, the associa-

tion is merely observed in early stages of the disease. This is in agreement with the report by

Palomaki [26] that suggests a diminished effect of 9p21 locus by age, a finding that is confirmed

by Patel et al for secondary events. It should be noted that the mean age of participants was more

than 70 years old in two and more than 60 years old in four of the participating cohorts. In this

context, the older mean age of our population could be another reason why our findings do not

replicate known loci such as 9p21.Our study is the largest collection of population-based pro-

spective GWAS on incident MI and CHD and includes high quality genotyping and phenotyping

data from well-known cohort studies in the field of cardiovascular disease. Moreover, similar

case definitions for MI and CHD, comparable quality control for genotyped data, harmonized

imputation strategies and collaboratively designed analysis plans are further strengths of our

study. Despite these strengths, there are several limitations that merit discussion. First, nearly all

studies who contributed to our GWAS are also members of the CARDIoGRAMPlusC4D Con-

sortium [27], however, they have used only their prevalent cases in CARDIoGRAMPlusC4D

project and therefore there is no overlap between the two GWAS. Second, since our sample size

was limited, further susceptibility variants of weaker effects may have been missed in our study.

Third, we have tried to use consistent definitions for MI, however, slight differences exist between

the definitions for CHD. This might have introduced heterogeneity in our case definition. Finally,

our findings may not be directly generalizable to non-European populations.

A potential clinical application of risk alleles identified from GWAS is the prospective pre-

diction of cardiovascular disease. To date, the totality of evidence from prospective studies sug-

gests that there is only modest, independent prediction of increased cardiovascular disease risk

using genetic information with small to modest incremental reclassification for prediction

beyond the known clinical CVD risk scores [28]. This lack of success has been attributed to the

small percentage of variance explained by known genetic factors. However, our results also sug-

gest that genetic risk prediction needs to consider differences in genetic variants that predict

the risk of cardiovascular disease in prospective and cross-sectional settings.

In summary, using the largest collection of population- based prospective genome-wide

association studies we have identified QKI as a potential locus for incident myocardial infarc-

tion. Furthermore, we have shown that the genes associated with risk of cardiovascular disease

may differ in effect size when studied in a cross-sectional case-control versus cohort settings.

The role of 9p21 locus may be complex, increasing the risk of incident MI and decreasing mor-

tality among those with CHD. This highlights the importance of examining longitudinal cohort

studies in the study of etiology even for genetic factors. These findings may have implications

for application of genetic variants in risk estimation for cardiovascular disease, an effort that so

far has not provided strong evidence for incremental risk prediction by genetic markers.
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