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Abstract  34 

Machado-Joseph disease (MJD/SCA3) is the most common form of dominantly inherited ataxia 35 

worldwide. The disorder is caused by an expanded CAG repeat in the ATXN3 gene. Past studies 36 

have revealed that the length of the expansion partly explains the disease age at onset (AO) 37 

variability of MJD, which is confirmed in this study. Using a total of 786 MJD patients from five 38 

different geographical origins, a genome-wide association study (GWAS) was conducted to 39 

identify additional AO modifying factors that could explain some of the residual AO variability. 40 

We identified nine suggestively associated loci (P < 1 × 10−5). These loci were enriched for genes 41 

involved in vesicle transport, olfactory signaling, and synaptic pathways. Furthermore, 42 

associations between AO and the TRIM29 and RAG genes suggests that DNA repair mechanisms 43 

might be implicated in MJD pathogenesis. Our study demonstrates the existence of several 44 

additional genetic factors, along with CAG expansion, that may lead to a better understanding of 45 

the genotype-phenotype correlation in MJD. 46 

Keywords 47 

Machado-Joseph disease, ATXN3, MJD/SCA3, age at onset, modifier, GWAS  48 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834754doi: bioRxiv preprint 

https://doi.org/10.1101/834754


4 

 

Introduction 49 

Machado-Joseph disease, also known as spinocerebellar ataxia type 3 (MJD/SCA3), is an 50 

autosomal dominant neurodegenerative disorder that is characterized by progressive cerebellar 51 

ataxia and pyramidal signs, which can be associated with a complex clinical picture and includes 52 

extrapyramidal signs or amyotrophy [1, 2]. MJD is caused by an abnormal CAG trinucleotide 53 

repeat expansion in exon 10 of the ataxin-3 gene (ATXN3), located at 14q32.1. Deleterious 54 

expansions consensually contain 61 to 87 CAG repeats, whereas wild type alleles range from 12 55 

to 44 [2]. 56 

As with other diseases caused by repeat expansions, such as Huntington’s disease (HD) and other 57 

spinocerebellar ataxias, there is an inverse correlation between expanded repeat size and the age 58 

at which pathogenesis leads to disease onset [3]. Depending on the cohort structure, the size of the 59 

repeat expansion explains 55 to 70%  of the age at onset (AO) variability in MJD, suggesting the 60 

existence of additional modifying factors [3,4]. Although several genetic factors have been 61 

proposed as modifiers, such as CAG repeat size of normal ATXN3 (SCA3), HTT (HD), ATXN2 62 

(SCA2) and ATN1 (DRPLA) alleles, APOE status, and expression level of HSP40 [4,5,6], these 63 

were not replicated by subsequent studies [7, 8]. Since CAG tract profile and allelic frequencies 64 

of the potential modifier loci can have unique characteristics in different populations, large 65 

collaborative studies are required to identify genetic modifiers in MJD, as well as replicate the 66 

findings of such studies [8]. 67 

Previously, Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium carried out a GWA 68 

approach of HD individuals to reveal genetic modifiers of AO in HD [9,10]. A total of eleven [9] 69 

and fourteen loci [10] were found to be associated with residual age at HD onset. In the present 70 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834754doi: bioRxiv preprint 

https://doi.org/10.1101/834754


5 

 

study, we performed the first GWAS to identify some possible genetic modifiers of AO in MJD. 71 

First, we assessed the relationship between AO and  size of the expanded (CAGexp) and normal 72 

(CAGnor) alleles, biological sex and geographical origin. Next, we determined a residual AO for 73 

each subject, which is the difference between the measured AO and the predicted/estimated AO 74 

from expanded CAG repeat size alone. Using the residuals as a quantitative phenotype for a 75 

GWAS, we looked for genetic factors that modulate AO in MJD. 76 

Methods 77 

Study subjects 78 

A total of 786 MJD patients from five distinct geographical origins (Portugal, Brazil, North 79 

America, Germany and Australia) were included in the present study. The overall average age at 80 

onset (standard deviation) was 38 (± 1.82) years, with a 1:1 male to female ratio. All subjects 81 

provided informed consent, and the study was approved by the respective institutional review 82 

boards. Detailed cohort demographics are shown in Supplementary Table 1. 83 

Assessment of the ATXN3 CAG repeat length 84 

A singleplex polymerase chain reaction was performed to determine the length of the CAGexp and 85 

CAGnor alleles at exon 10 of ATXN3 [11]. The final volume for each assay was 10 µL: 7.5 ng of 86 

gDNA, 0.2 µM of each primer, 5 µL of Taq PCR Master Mix Kit Qiagen®, 1 µL of Q-Solution 87 

from Qiagen® and H2O. Fragment length analysis was done using ABIPrism 3730xl sequencer 88 

(Applied Biosystems®, McGill University and Genome Québec Innovation Centre) and 89 

GeneMapper software [12]. A stepwise regression model was performed to assess the correlation 90 

between AO and CAGexp size, as well as gender, origin, CAGnor size, and interaction between these 91 
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variables. Residual AO was calculated for each subject by subtracting individual’s expected AO 92 

based upon CAGexp size from actual AO, to be used as the primary phenotype for following genetic 93 

approach. 94 

Genotyping, quality control and imputation 95 

Samples were genotyped using the Global Screening Array v.1.0 from Illumina (636,139 markers). 96 

Sample-based (missingness, relatedness, sex, and multidimensional scaling analysis) and SNP-97 

based quality assessments (missingness, Hardy-Weinberg equilibrium, and minor allele 98 

frequency) were conducted using PLINK version 1.9 [13]. In sample level QC, samples were 99 

excluded with one or more of the following: high missingness (missingness rate > 0.05), close 100 

relationship (pi-hat value > 0.2), discrepancy between genetically-inferred sex and reported sex, 101 

population outliers (deviation ≥ 4 SD from the population mean in multidimensional scaling 102 

analysis). All SNPs were checked for marker genotyping call rate (> 98%), minor allele frequency 103 

(MAF) > 0.05, and HWE (p-value threshold = 1.0 × 10-5).  104 

Phasing and imputation were performed using SHAPEIT [14] and PBWT [15] pipelines, 105 

implemented on the Sanger Imputation Service [16]. Haplotype Reference Consortium (HRC) 106 

reference panel r1.1 containing 64,940 human haplotypes at 40,405,505 genetic markers were used 107 

as the reference panel. Imputed variants with an allele count of 30 (MAF > 0.02), an imputation 108 

quality score above 0.3 and an HWE p-value of > 1.0 × 10-5 were included for subsequent analysis.  109 

Genome-wide association analysis 110 

A genome-wide linear mixed model based association analysis was conducted using GCTA 111 

version 1.91.7 [17]. Residual AO was modelled as a function of minor allele count of the test SNP, 112 
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sex, and the first three principal components based on the scree plot (Supplementary Figure 1). 113 

The --mlma-loco option, which takes into account the difference in allele frequency between 114 

populations, was used to control for population structure. QQ plots and Manhattan plots were 115 

generated in FUMA v.1.3.4 [18]. Regional association plots were generated using LocusZoom 116 

[19] (Supplementary Figure 3). 117 

 Functional annotation of SNPs 118 

Genomic risk loci were defined using SNP2GENE function implemented in FUMA. Independent 119 

suggestive SNPs (P < 1 × 10−5) with a threshold of r2 < 0.6 were selected within a 250 kb window. 120 

The UK Biobank release 2 European population consisting of randomly selected 10,000 subjects 121 

was used as the reference population panel. The ANNOVAR [20] categories and combined 122 

annotation-dependent depletion (CADD) [21] scores were obtained from FUMA for functional 123 

annotation. Functionally annotated variants were mapped to genes based on genomic position 124 

using FUMA positional mapping tool.  125 

Pathway analysis 126 

To identify known biological pathways and gene sets at the associated loci, an enrichment 127 

approach was applied using public datasets containing Gene Ontology (GO, 128 

http://geneontology.org), the Kyoto Encyclopaedia of Genes and Genomes (KEGG, 129 

https://www.genome.jp/kegg) and Reactome (https://reactome.org) pathways. The primary 130 

enrichment analysis was performed using the i-GSEA4GWAS v2 [22]. It uses a candidate list of 131 

a genome-wide set of genes mapped within the SNP loci and ranks them based on the strength of 132 

their association with the phenotype. Genes were mapped within 20 kb up or downstream of the 133 

SNPs with a P < 0.05. Gene and pathway sets meeting a false discovery rate (FDR)-corrected q-134 
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value < 0.05 were regarded as significantly associated with high confidence, and q-value < 0.25 135 

was regarded to be possibly associated with the phenotype of interest. We performed a secondary 136 

gene-based association test using the Versatile Gene-based Association Study (VEGAS) [23] 137 

algorithm that controls the number of SNPs in each gene and the linkage disequilibrium (LD) 138 

between these SNPs using the HapMap European population. As a third algorithm to identify 139 

enriched pathways, we used Pathway Scoring Algorithm (PASCAL) [24], which controls for 140 

potential bias from gene size, SNP density, as well as LD. ClueGO [25] and CluePedia [26] plug-141 

ins in Cytoscape were employed to visualize identified pathways and their clustering. 142 

Results 143 

The inverse correlation between CAGexp and age at onset 144 

In the first phase of the study, the expanded ATXN3-CAG repeat lengths of 786 MJD patients were 145 

assessed. The mean (SD) CAGexp size were Australia: 68.2 (±3.3), Brazil: 74.3 (3.9), Germany: 146 

72.9 (±3.6), North America: 73 (±4.3) and Portugal: 72 (±4.0). Next, the relationship between AO 147 

and CAGexp size, CAGnor size, sex and ethnicity was examined (Supplementary Table 1). The 148 

previously observed negative correlation between ATXN3 CAGexp size and AO [3] was confirmed 149 

(Pearson’s correlation coefficient R2 = 0.62) (Figure 1). The CAGnor size (P = 0.39), sex (P = 0.02) 150 

and geographic origin (P [Brazil] = 0.38, P [Germany] = 0.38, P [North America] = 0.33, P 151 

[Portugal] = 0.29) were not significant and their addition had little contribution to the model (ΔR2 152 

= 0.0072). Residual AO for each sample was calculated and used as a quantitative phenotype to 153 

identify the modifiers of AO. The distribution of residual AO was close a theoretical normal 154 

distribution (Figure 1). 155 

Genome-wide association study 156 
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After post-imputation quality assessments, a total of 700 individuals with genotyping information 157 

for 6,716,580 variants remained for GWAS. The resulting Manhattan plots and quantile-quantile 158 

(QQ) plots are shown in Figure 2. The genomic inflation factor was close to one (λ = 0.98), 159 

indicating the p-values were not inflated. No association signal was identified meeting genome-160 

wide significance (P < 5 × 10−8, the genome-wide Bonferroni-corrected significance threshold); 161 

however, genome-wide suggestive associations (P < 1 × 10−5) with 204 variants across 9 loci were 162 

identified (Supplementary Table 3). The most significantly associated SNP at each locus are shown 163 

in Table 1. Positional gene mapping aligned SNPs to 17 genes by their genomic location. Fourteen 164 

of the 204 variants had a Combined Annotation Dependent Depletion (CADD)-PHRED score 165 

higher than the suggested threshold for deleterious SNPs (12.37), arguing the given loci have a 166 

functional role [27]. 167 

Interaction analysis between CAGexp and SNP genotype 168 

To assess a possible interaction between CAGexp size and the variants identified, each of the nine 169 

variants was added to the initial linear regression, modelling AO as a function of CAGexp size, 170 

SNP, sex, the first three principal components, CAGnor size, and interaction of SNP:CAGexp. 171 

Association of each independent SNP with AO revealed nominally significant p-values. Among 172 

the nine variants, only rs585809 (mapped to TRIM29) had a significant interaction with CAGexp (P 173 

= 0.01), suggesting that rs585809 might modulate AO through this epistatic interaction on CAGexp. 174 

Association of HD-AO modifier variants in MJD 175 

Association of previously identified HD-AO modifier loci in MJD were assessed. Among the 25 176 

HD-AO modifier variants in 17 loci, a total of 18 variants (MAF > 0.02) in 12 loci were tested in 177 

this study (Supplementary Table 4). None of these HD-AO modifiers reached the genome-wide 178 
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suggestive threshold. However, two variants rs144287831 (P = 0.02, effect size = - 0.98)  and 179 

rs1799977 (P = 0.02, effect size = - 0.98) in the MLH1 locus were found to be nominally associated 180 

with a later AO in MJD. 181 

Pathway and gene-set enrichment analysis 182 

A gene-set enrichment and pathway analysis was conducted using i-GSEA4GWAS. Various 183 

approaches and algorithms are currently in use to conduct similar analyses. To be able to make 184 

better comparisons with other studies that may use different approaches, we performed a secondary 185 

gene-set enrichment and pathway analysis using the VEGAS2 and PASCAL software 186 

(Supplementary Tables 5-7). We also used these results for replication purposes in our own study. 187 

A total of 13 overrepresented pathways were found, after FDR-multiple testing correction (q-value 188 

< 0.05) in the primary GSEA analysis and replicated using at least one of the secondary gene-set 189 

enrichment algorithms (Table 2). Overall, the most significantly enriched gene-sets and pathways 190 

were vesicle transport, olfactory signaling, and synaptic pathways. Visualization and clustering of 191 

pathways are shown in Figure 3.  192 

 193 

Discussion 194 

Using five cohorts from different geographical origins, we performed the first GWAS to examine 195 

the presence of genetic factors that could modify AO in MJD. We identified a total of nine loci 196 

that were potentially associated with either an earlier or later AO. Concomitantly, we confirmed 197 

the previously observed negative correlation between CAGexp and AO [3]. It was shown previously 198 

that normal ATXN3 allele (CAGnor) had a significant influence on AO of MJD [28]; however, 199 
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several studies did not replicate this effect [6,8]. Indeed, we did not observe an association between 200 

CAGnor and AO. However, it had little contribution to our model, with a minor difference in the 201 

correlation coefficient (ΔR2 = 0.0012).  202 

In our GWAS, the strongest signal is for the rs11529293 variant (P = 3.30 × 10-6) within the 203 

C11orf72 and RAG loci at 11p12. Within this locus, two RAG genes, recombination-activating 204 

genes RAG1 and RAG2, were shown to be implicated in DNA damage response and DNA repair 205 

machineries [29,30]. The rs585809 variant, which was mapped to the TRIM29 gene, was found to 206 

interact with CAGexp, suggesting that it might have an effect on AO through this interaction. Both 207 

RAG and TRIM29 loci were identified as AO-hastening modifiers. TRIM29 encodes for tripartite 208 

motif protein 29, which is implicated in mismatch repair and double strand breaks pathways 209 

[31,32]. TRIM29 is involved both upstream and downstream of these pathways, in the regulation 210 

of DNA repair proteins into chromatin by mediating the interaction between them. One of these 211 

DNA repair proteins is MLH1, which is implicated in mismatch repair complex [32]. Previously, 212 

the MLH1 locus was identified as an AO modifier in another neurodegenerative disease caused by 213 

CAG repeat expansion, Huntington’s disease [9,10,33]. Additionally, in a genome-wide genetic 214 

screening study, MLH1-knock out was shown to modify the somatic expansion of the CAG repeat 215 

and slow the pathogenic process in HD mouse model [34]. Overall, the association of TRIM29 and 216 

RAG loci suggests that DNA repair mechanisms may be implicated in the alteration of AO of MJD, 217 

as well as HD, and may have a role in the pathogenesis of other CAG repeat diseases. Interestingly, 218 

in a previous study, we found variants in three transcription-coupled repair genes (ERCC6, RPA, 219 

and CDK7) associated with different CAG instability patterns in MJD [35]. 220 

We identified gene-sets enriched in olfactory signaling, vesicle transport, and synaptic pathways. 221 

Olfactory dysfunction is one of the main non-motor symptoms that was already described in 222 
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patients with MJD [36,37]. In a previous study, transplantation of olfactory ensheathing cells, 223 

which are specialized glial cells of the primary olfactory system, were found to improve motor 224 

function in an MJD mice model, and were suggested as a novel potential strategy for MJD 225 

treatment [38]. Vesicle transport and synaptic pathways were also implicated in MJD, as well as 226 

in other neurodegenerative diseases [39,40]. An interruption of synaptic transmission caused by 227 

an expanded polyglutamine repeat and mutant ataxin-3 aggregates were shown in Drosophila and 228 

Caenorhabditis elegans models of MJD. Therefore, the interaction between synaptic vesicles and 229 

mutant aggregates supports the role of synaptic vesicle transport in the pathogenesis of MJD 230 

[41,42]. Overall, we suggest that these gene-sets and pathways might construct a larger molecular 231 

network that could modulate the AO in MJD. 232 

In summary, our study identified nine genetic loci that may modify the AO of MJD. Identification 233 

of TRIM29 and RAG genetic variants, as well as our gene-set enrichment analyses, implicated 234 

DNA repair, olfactory signaling, synaptic, and vesicle transport pathways in the pathogenesis of 235 

MJD. Although we used different cohorts from five distinct geographical ethnicities, a replication 236 

study in similar or additional populations would add valuable evidence to support our findings. 237 

  238 
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Table 1. Suggestive loci associated with residual age at onset in MJD. Chr: chromosome, MAF: minor allele frequency, 1KGP: 1000 257 

Genomes Project 258 

SNP Chr Position 
(GRCh37) Nearest gene 

Minor 
allele 

Major 
allele 

MJD 

MAF 

1KGP 

MAF 

b  
(SNP effect) P-value 

rs62171220 2 137802855 THSD7B G C 0.13 0.11 2.71 4.45 × 10−6 

rs2067390 2 191209028 HIBCH, INPP1 A T 0.04 0.06 4.74 6.39 × 10−6 

rs144891322 5 85135387 RPL5P17, C T 0.02 0.007 6.10 5.18 × 10−6 

rs11529293 11 36855388 

C11orf74, RAG1, 

RAG2 

T C 0.14 0.26 -2.71 3.30 × 10−6 

rs7480166 11 42984753 HNRNPKP3 A G 0.40 0.40 -1.86 4.17 × 10−6 

rs585809 11 119949979 TRIM29 T C 0.06 0.17 -3.76 9.50 × 10−6 

rs72660056 13 113507543 ATP11A A G 0.08 0.05 -3.29 3.94 × 10−6 

rs11857349 15 99924857 

TTC23, SYNM, 

LRRC28 

G A 0.04 0.02 -4.58 3.43 × 10−6 

rs8141510 22 42821185 

NFAM1, CYP2D6, 

NAGA, NDUFA6 

C T 0.43 0.49 1.83 3.94 × 10−6 
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Table 2. Pathways significant after multiple-correction (q < 5 x 10-2) in the primary GSEA analysis and replicated using at least one of 261 

the secondary gene-set enrichment algorithms. NA means that the pathway was not enriched by at least two significant genes in VEGAS. 262 

Pathway Description 
p-value 

(GSEA) 

q-value 

(GSEA) 

p-value 

(VEGAS) 

permuted p-

value (VEGAS) 

p-value 

(PASCAL) 

GO:0030133 transport vesicle < 1.0 x 10-3 8.20 x 10-3 6.15 x 10-40 4.46 x 10-1 6.70 x 10-3 

KEGG:04740 olfactory transduction < 1.0 x 10-3 8.30 x 10-3 NA NA 3.89 x 10-4 

R-HSA:381753 olfactory signaling pathway  < 1.0 x 10-3 8.80 x 10-3 1.10 x 10-27 7.71 x 10-1 2.51 x 10-4 

GO:0044456 synapse part < 1.0 x 10-3 9.30 x 10-3 1.25 x 10-182 < 1.0 x 10-6 < 1.0 x 10-7 

R-HSA:74217 purine salvage  < 1.0 x 10-3 1.06 x 10-2 1.06 x 10-2 2.15 x 10-1 6.48 x 10-3 

GO:0045202 synapse < 1.0 x 10-3 1.15 x 10-2 1.15 x 10-2 < 1.0 x 10-6 < 1.0 x 10-7 

GO:0004177 aminopeptidase activity  < 1.0 x 10-3 1.50 x 10-2 1.50 x 10-2 3.41 x 10-1 1.24 x 10-2 

GO:0008238 exopeptidase activity < 1.0 x 10-3 1.80 x 10-2 1.80 x 10-2 2.80 x 10-2 8.31 x 10-3 

GO:0006898 receptor mediated endocytosis < 1.0 x 10-3 2.25 x 10-2 2.25 x 10-2 2.03 x 10-1 6.64 x 10-3 

GO:0016917 GABA receptor activity < 1.0 x 10-3 2.26 x 10-2 2.26 x 10-2 1.30 x 10-4 2.30 x 10-5 

GO:0030140 
trans Golgi network transport 

vesicle 
< 1.0 x 10-3 2.36 x 10-2 2.36 x 10-2 2.80 x 10-2 1.28 x 10-1 

GO:0009725 response to hormone stimulus < 1.0 x 10-3 2.73 x 10-2 2.73 x 10-2 1.32 x 10-1 1.30 x 10-4 

GO:0030425 Dendrite < 1.0 x 10-3 3.86 x 10-2 3.86 x 10-2 < 1.0 x 10-6 < 1.0 x 10-7 
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 264 

Figure 1. The inverse correlation between CAGexp and AO (left) and the distribution of residual AO (right) observed in our MJD cohort. 265 

  266 

Figure 2. Manhattan plot (a) and QQ plot (b) of the GWAS for residual AO of MJD. Imputed using the HRC panel, 6,716,580 variants 267 

that passed QC are included in the plot. The x-axis shows the physical position along the genome. The y-axis shows the −log10(p-value) 268 

for association. The red line indicates the level of genome-wide suggestive association (P = 1 × 10−5). 269 
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Figure 3. Visualization of the gene-sets and pathways enriched in primary GSEA analysis (a) and replicated in VEGAS and PASCAL 271 

(b). The size of the nodes corresponds to the number of the genes associated with a term. The significance is represented by the color of 272 

the nodes (P < 0.05, 0.05 < P < 0.1 and P > 0.1 are represented by red, yellow and gray, respectively).  273 
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