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Despite limited discovery stages (<1,125 cases), genome-wide association studies (GWAS)

have successfully identified 13 loci associated with risk of chronic lymphocytic leukemia/

small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we

conducted the largest meta-analysis, to date, including four GWAS totaling 3,100 CLL cases

and 7,667 controls with genotype data. In the meta-analysis, we discovered ten independent

SNPs in nine novel loci at 10q23.31 (ACTA2/FAS; P=1.22×10−14), 18q21.33 (BCL2;

P=7.76×10−11), 11p15.5 (C11orf21; P=2.15×10−10), 4q25 (LEF1; P=4.24×10−10), 2q33.1

(CASP10/CASP8; P=2.50×10−9), 9p21.3 (CDKN2B-AS1; P=1.27×10−8), 18q21.32

(PMAIP1; P=2.51×10−8), 15q15.1 (BMF; P=2.71×10−10), and 2p22.2 (QPCT;

P=1.68×10−8) as well as an independent signal at an established locus (2q13, ACOXL,

P=2.08×10−18). We also found evidence for two additional promising loci that reached

marginal genome-wide significance (P<2.0×10−7) at 8q22.3 (ODF1; P=5.40×10−8) and

5p15.33 (TERT; P=1.92×10−7). Although further studies are required, proximity of several

of these loci to genes involved in apoptosis suggests a plausible underlying biological

mechanism.

CLL is a B-cell malignancy with a strong familial component1 and an ~8.5-fold increased

relative risk in first-degree relatives.2 Previous CLL GWAS have identified 13 loci that

explain a portion of the familial risk,3–6 suggesting that additional loci of modest effects can

be found using a larger discovery sample size.7

As part of a larger initiative in non-Hodgkin lymphoma (NHL) (called the NHL-GWAS),

we genotyped 2,343 CLL cases and 2,854 controls of European descent from 22 studies

using the Illumina OmniExpress Beadchip (see Online Methods and Supplementary Table

1). Of those 5,197 subjects, 94% passed rigorous quality control criteria (see Online

Methods and Supplementary Table 2) and 549,934 SNPs successfully passed quality control

criteria with a median call rate >98%. We also utilized genotype data previously generated

on the Illumina Omni2.5 from an additional 3,536 controls and one case from three studies8

giving a total of 2,179 cases and 6,221 controls for the analysis of the NHL-GWAS

(Supplementary Table 3).

In the NHL-GWAS (Stage 1) analysis, we observed an enrichment of SNPs with small P-

values compared to the null distribution with a lambda of 1.026 in the Q-Q plot

(Supplementary Figure 1). After exclusion of previously established loci, an excess of small

P-values still remained suggesting additional novel loci were yet to be discovered. In our

Stage 1 analyses, we observed SNPs from 10 unique loci (defined as separated by at least

500kb and linkage disequilibrium (LD) r2<0.05), which reached genome-wide significance

(P<5×10−8), including eight established loci and two novel loci (Supplementary Figure 2).

We then performed a meta-analysis of the NHL-GWAS with three other independent CLL

GWAS5,9 that had a combined total of 921 CLL cases and 1,446 controls (Stage 2,

Supplementary Tables 1 and 3). Because these other CLL GWAS studies were conducted on

different commercial SNP microarrays, we imputed common SNPs from the 1000 Genomes

Project10 using IMPUTE211 (Online Methods, Supplementary Table 4). In the meta-

analysis of stages 1 and 2 data, associations for all 13 established loci showed a consistent

direction of effect with previously reported studies, and 10 loci achieved P<5×10−8

(Supplementary Table 5). However, two previously established loci, 15q25.2 and 19q13.3,

were only nominally significant in the meta-analysis (P=0.03, and P=0.008, respectively),

and no significant association was observed in stage 1 for the 15q25.2 locus (P=0.10). A

suggestive locus on 18q21.1 that had not met genome-wide significance in prior studies12

was also nominally significant (P=5.06×10−4) herein. From the meta-analysis of stages 1–2,

we identified 10 promising SNPs in the eight novel loci and one promising SNP in an

established locus that we carried forward for a de novo replication in stage 3: this included
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an additional 392 cases and 4561 controls and in silico replication in an independent CLL

GWAS with 396 cases and 311 controls (see Online Methods and Supplementary Tables 1,

3, and 4).

Seven of the 10 SNPs in novel loci reached genome-wide significance in the meta-analysis

of all three stages: 10q23.31 (ACTA2/FAS; P=1.22×10−14), 18q21.33 (BCL2;

P=2.66×10−12), 11p15.5 (C11orf21; P=2.15×10−10), 4q25 (LEF1; P=4.24×10−10), 2q33.1

(CASP10/CASP8; P=2.50×10−9), 9p21.3 (CDKN2B-AS1; P=1.27×10−8), and 18q21.32

(PMAIP1; P=2.51×10−8) (Table 1, Figure 1). Further, within the 18q21.33 locus, a second

SNP (rs4987852) in low LD (r2=0.01) with rs4987855 and located only 372 bp away, also

reached genome-wide significance (Table 1, P =7.76×10−11); this SNP was determined to be

independent in conditional analyses (Pconditional =3.87×10−7, Table 2).

To explore these regions in greater detail and identify additional loci that we may have

missed using just the genotyped SNPs in Stage 1, we imputed Stage 1 of our NHL-GWAS

using the 1000 Genomes Project10 data (February 2012 release) and performed a meta-

analysis of the results from stage 1 and stage 2. The most significant SNPs at three of our

novel loci, 10q23.31 (rs2147420) 18q21.33 (rs4987856), and 4q25 (rs2003869), were highly

correlated (r2 ≥0.95) with our strongest genotyped SNPs, rs4406737, rs4987885, and

rs898518, respectively (Supplementary Table 6). Only modest correlation (r2 range: 0.18–

0.58) was observed for the most significant imputed SNPs at 11p15.5 (rs2521269), 2q33.1

(rs11688943), and 9p21.3 (rs1359742) and our strongest genotyped SNPs in each of the

respective regions. The most significant of the imputed SNPs at 18q21.32 (rs35748167)

appeared to be independent of our strongest genotyped SNP (rs4368253, r2=0.003,

Pconditional < 7.89×10−7 for both SNPs), suggesting a possible second, independent signal

(Table 2).

Meta-analysis of our imputed scan data revealed two novel loci, 15q15.1 (BMF;

P=2.71×10−10) and 2p22.2 (QPCT; P=1.68×10−8) (Table 1, Figure 1). In addition, although

our genotyped SNP at 5p15.33 (TERT, rs10069690, P=1.92×10−7) (Supplementary Table 7)

did not reach genome-wide significance, we did observe an imputed SNP in this region that

reached genome-wide significance (rs7705526; P=3.75×10−8). Another promising locus was

observed at 8q22.3 (ODF1; P=5.40×10−8) (Supplementary Table 7). Additional studies are

needed to confirm these findings, particularly the signal on 5p15.33, which is already known

to harbor risk variants for multiple cancers.13–20,

An examination of established loci revealed a new SNP in 2q13 (BCL2L11, rs13401811,

P=6.09×10−17; Table 1, Figure 2) that was independent of the previously reported SNP.

After conditioning on the established 2q13 SNP (rs17483466, r2=0.02), the new SNP

rs13401811 remained strongly associated with CLL risk (Pconditional=1.60×10−12, Table 2).

A putative second signal was observed at the established 2q37.3 locus (Supplementary Table

5, rs7578199, P =5.39×10−7) that was in low LD (r2=0.01) and independent of the

previously reported rs757978 SNP (Pconditional=6.10×10−6, Table 2), although rs7578199

was not genome-wide significant. Another possible second signal was observed on 6p21.32

(Supplementary Table 5, HLA, rs9273363, P=2.24×10−10). Rs9273363 showed some

evidence of conditional independence with the originally reported SNPs (r2≤0.25, Pconditional

≤3.50×10−9, Table 2); however, it may be part of a shared HLA haplotype; thus accurate

HLA typing is needed to further clarify its level of independence. Finally, we observed a

SNP at 15q21.3 (Supplementary Table 5, rs11636802, P=1.68×10−13) that had stronger

statistical significance than that of the previously reported SNP, rs7169431 (P=1.72×10−05).

Although only modestly correlated (r2=0.16), rs11636802 explained all of the risk

associated with rs7169431 in a conditional analysis (Table 2) suggesting that this SNP may

be a better marker for the locus.
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Heritability analysis indicated that the ten independent SNPs in our novel loci together with

the new independent SNP at 2q13 (Table 1) explain approximately 5% more of the familial

risk in addition to ~12% for the established loci. When we explored the contribution of all

common variants to the genetic heritability of CLL (using a method that estimates the

variance explained by fitting all genotyped autosomal SNPs simultaneously21,22, Online

Methods) 21,22 21,22 we estimate that common SNPs have the potential to explain up to

~46% of the familial risk, suggesting more common loci, likely of small effects, are still yet

to be discovered. However, the analysis also implies that common SNPs probably do not

explain all of the familial risk and other factors, such as uncommon SNPs with modest

effects or rare highly penetrant variants, are likely to also play a role.

Five of the novel loci (10q23.31, 18q21.33, 2q33.1, 18q21.32, and 15q15.1) identified in

this study as well as the new SNP at the established 2q13 locus are located in or near genes

involved in apoptosis. Rs4406737 is located on 10q23.31 between the first and second exons

of FAS, a member of the tumor necrosis factor receptor superfamily that has a crucial role in

the initiation of the signaling cascade of the caspase family in apoptosis. Mutations in FAS

leading to defective Fas-mediated apoptosis have been documented in inherited

lymphoproliferative disorders associated with autoimmunity,23,24 and families with

germline FAS mutations have a substantially increased risk of other lymphoma subtypes.25

The two newly identified SNPs at 18q21.33 (rs4987855 and rs4987852) map to the 3′-UTR

of B-cell CLL/lymphoma 2 (BCL2), which encodes an essential outer mitochondrial

membrane protein that blocks lymphocyte apoptosis. Constitutive expression of BCL2

through t(14:18) and other translocations is common in follicular lymphomas, but the

translocation is also seen in CLL albeit rarely.26 Both SNPs are located within a narrow

region of BCL2 where the majority of t(14;18) translocation breakpoints occur.27 rs4987855

is in linkage disequilibrium with a SNP (rs4987856, r2=1.0) that is located within 200bp of a

putative microRNA binding site for mir-19528 and was found to be nominally correlated

with BCL2 expression (Supplementary Table 8, P=0.02)29. Forced overexpression of BCL2

in mice leads to an increased incidence of B-cell lymphomas.30

The novel SNPs at 18q21.32 and 15q15.1 as well as the new SNP at the established 2q13

locus are located near Bcl-2 family member genes. Rs4368253 is located approximately

51kb downstream from phorbol-12-myristat-13-acetate-induced protein 1 (PMAIP1), which

encodes the proapoptotic BCL2 protein, NOXA. Regulation of apoptosis through NOXA is

critical for B-cell expansion after antigen triggering.31 Down-regulation of NOXA

contributes to the persistence of CLL B-cells in the lymph node environment.32 Rs8024033

is located approximately 5.4kb upstream of Bcl-2 modifying factor (BMF), which encodes

an apoptotic activator that binds to BCL2 proteins. BMF has been implicated in the survival

of chronic lymphocytic leukemia cells33, and loss of BMF in mice leads to B-cell

hyperplasia and an accelerated development of radiation-induced thymic lymphomas34. The

new SNP (rs13401811) at 2q13, a locus previously implicated in risk of CLL3,35,36 and

more generally B-cell non-Hodgkin lymphomas,37 is located approximately 262kb upstream

of BCL2-like 11 (BCL2L11). BCL2L11 encodes a pro-apoptotic member of the BCL2

family, BIM, which plays a key role in the regulation of apoptosis in T- and B-cell

homeostasis. Loss of BIM accelerates Myc-induced leukemia in mice,38 and this SNP has

been previously reported to be nominally associated with CLL in a small candidate gene

study.39

The novel 2q33.1 SNP (rs3769825) resides in intron 2 of caspase-8 (CASP8) and is in LD

with a missense SNP (rs13006529, r2=0.71) in the nearby caspase-10 (CASP10)

(Supplementary Table 9), both of which play a central role in cell apoptosis. SNPs within

this region have been associated with breast cancer,40 esophageal cancer,41 and melanoma42
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susceptibility. SNPs in CASP8/CASP10, including one in moderate LD with ours

(rs11674246, r2=0.66), were previously nominally associated with CLL risk in smaller case-

control studies.43,44

The remaining four novel loci (11p15.5, 4q25, 9p21.3 and 2p22.2) map to other biologically

interesting genes. The 4q25 SNP, rs898518, is located between the fourth and fifth exons of

lymphoid enhancer-binding factor 1 (LEF1), which encodes a transcription factor involved

in the Wnt signaling pathway, an essential component for the normal homeostasis of

hematopoietic stem cells.45 Aberrant protein expression of LEF1 has been observed in CLL

cells as well as monoclonal B-cell lymphocytosis, suggesting that LEF1 plays an early role

in CLL leukemogenesis.46 Rs1679013 maps to an inter-genic region on 9p21.3, roughly

200kb upstream fromCDKN2B-AS1, an antisense non-coding RNA implicated in the risk of

acute lymphocytic leukemia.47 The 2p22.2 SNP (rs3770745) is located approximately 52kb

upstream of protein kinase D3 (PRKD3), which interacts with transcriptional repressor, B-

cell lymphoma 6 (BCL-6). Lastly, the 11p15.5 region contains many imprinted genes and

has been implicated in Beckwith-Wiedemann syndrome,48 a disorder characterized by

excessive growth and a high incidence of childhood tumors.49

In conclusion, our large GWAS of CLL identified ten SNPs in nine novel loci and one new

independent SNP in a previously discovered locus. Together with the previously established

loci, the cumulative set of SNPs correspond to an area-under-the-curve (AUC) of 0.73.

Although further studies are required to fine-map the regions, the proximity of several of

these loci to genes involved in apoptosis suggests a possible underlying mechanism of

biological relevance. Our results further support a substantial contribution of common gene

variants in the pathogenesis of CLL.

ONLINE METHODS

Stage 1: NHL-GWAS

As part of a larger initiative, we conducted a genome-wide association study (GWAS) of

CLL using cases and controls of European descent from 22 studies of non-Hodgkin

lymphoma (NHL) (Supplementary Table 1), including nine prospective cohort studies, eight

population-based case-control studies, and five clinic or hospital-based case-control studies.

All studies obtained informed consent from their participants and approval from their

respective Institutional Review Boards for this study. As described in Supplementary Table

1, cases were ascertained from cancer registries, clinics or hospitals, or through self-report

verified by medical and pathology reports. The phenotype information for all NHL cases

was reviewed centrally at the International Lymphoma Epidemiology Consortium

(InterLymph) Data Coordinating Center and harmonized according to the hierarchical

classification proposed by the InterLymph Pathology Working Group based on the World

Health Organization (WHO) classification (2008).50,51

All CLL cases with sufficient DNA (n=2,343) and a subset of available controls frequency-

matched by age and sex to cases (n=2,854) including 4% quality control duplicates were

genotyped on the Illumina OmniExpress at the NCI Cancer Genomic Research Laboratory

(CGR). Genotypes were called using Illumina GenomeStudio software, and quality control

duplicates showed >99% concordance. Extensive quality control metrics were applied to the

data. Monomorphic SNPs and SNPs with a call rate <93% were excluded. Samples with a

call rate ≤93%, mean heterozygosity <0.25 or >0.33 based on the autosomal SNPs, or

gender discordance (>5% heterozygosity on X chromosome for males and <20%

heterozygosity on the X chromosome for females) were excluded. Unexpected duplicates

(>99.9% concordance) and first-degree relatives based on identity by descent (IBD) sharing

with Pi-hat>0.40 were removed. Ancestry was assessed using the GLU struct.admix module
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based on the method proposed by Pritchard et al,52 and participants with <80% European

ancestry were excluded (Supplementary Figure 3). After exclusions, 2,178 (93%) cases and

2,685 (94%) controls remained (Supplementary Table 2). Genotype data previously

generated on the Illumina Omni2.5 from additional 3,536 controls and 1 case from three of

the studies (ATBC, CPSII, and PLCO) were also included,8 resulting in a total of 2,179

cases and 6,221 controls for the stage 1 analysis. Of these additional controls, 703 (~235

from each study) were selected to be representative of their cohort and cancer-free8. The

remaining 2,823 controls were cancer-free controls from an unpublished study of prostate

cancer in PLCO. SNPs with call rate <99%, with Hardy-Weinberg equilibrium P-

value<1×10−6 or minor allele frequency <1% were excluded from analysis, leaving 549,934

SNPs for analysis. To evaluate population substructure, a principal components analysis

(PCA) was performed using the Genotyping Library and Utilities (GLU), version 1.0,

struct.pca module, which is similar to EIGENSTRAT.53 Plots of the first ten principal

components are shown in Supplementary Figure 4. Association testing was conducted

assuming a log-additive genetic model, adjusting for age, sex, and significant principal

components. All data analysis and management was conducted using GLU.

Stage 2: Three Independent CLL GWAS

Three independent CLL GWAS provided genotype data for a meta-analysis (Supplementary

Table 1). In all three studies, subjects with a genotyping call rate <95%, duplicates, related

individuals, and SNPs with a call rate <95% were removed prior to imputation

(Supplementary Table 4). Imputation was conducted separately for each study using

IMPUTE211 and a hybrid of the 1000 Genomes Project version 2 (February 2012 release)

and Division of Cancer Epidemiology and Genetics (DCEG) European reference panels.8,10

SNPs were imputed for a total of 921 cases and 1446 controls. Association testing was

conducted for each study using SNPTEST version 2, adjusting for age, sex, and significant

principal components for GEC and UCSF2. No principal components were significant for

the Utah study.

Stage 3: Replication studies and technical validation

In stage 3, 10 SNPs in the most promising loci and one SNP from an established locus were

taken forward for de novo replication in an additional 392 cases and 4561 controls from the

NCI replication study (NCI Rep) and from the Utah/Sheffield Chronic Lymphocytic

Leukemia study (Utah-Sheffield) (Supplementary Table 1). Additionally, these 10 SNPs

were also taken forward in an in silico replication in 396 CLL cases and 311 controls from

the International Cancer Genome Consortium (ICGC) (Supplementary Table 1). Genotyping

for the NCI Rep study was conducted using custom TaqMan genotyping assays (Applied

Biosystems) at the NCI Core Genotyping Resource and genotyping for the Utah-Sheffield

study was conducted at the Core Research Facilities at the University of Utah. Blind

duplicates (~5%) yielded 100% concordance. The ICGC study provided results for eight

SNPs (or proxies) that were genotyped on the Affymetrix 6.0 SNP microarray

(Supplementary Table 4). Association results for the NCI Rep and Utah-Sheffield studies

were adjusted for age and sex, and results from the ICGC were adjusted for age, sex, and

significant principal components. A comparison of the genotyping calls from the

OmniExpress microarray and confirmatory TaqMan assays (n=384) yielded 99.9%

concordance.

Meta analysis

Meta-analyses were performed using the fixed effects inverse variance method based on the

beta estimates and standard errors from each study. For all SNPs in Tables 1 and 2, no

substantial heterogeneity was observed among studies in stage 1 or among studies in stages

1–3 combined after Bonferroni correction (Pheterogeneity ≥ 0.02 for all SNPs).
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Further follow-up analyses

Using 1000 Genomes data, we identified SNPs with r2>0.7 with our lead SNP that were

reported to be non-synonymous or nonsense variants. We utilized HaploReg54 which is a

tool for exploring non-coding functional annotation using ENCODE data, to evaluate the

genome surrounding our SNPs (Supplementary Table 9). In addition, we evaluated cis

associations between all novel and promising SNPs discovered in this study and the

expression of nearby genes in lymphoblastoid cell lines from subjects of European descent

from three publically available datasets29,55,56 (Supplementary Table 8).

Heritability analyses

To evaluate the familial risk explained by the novel loci identified in this study, we

estimated the contribution of each SNP to the heritability using the equation7,

h2
SNP=β22f(1−f), where β is the log-odds ratio per copy of the risk allele and f is the allele

frequency, and then summed the contributions of all novel SNPs. Using the equation derived

by Pharoah et al57 to estimate the total heritability from the sibling relative risk (RR=8.5

from Goldin et al2), we then calculated the proportion of familial risk explained by dividing

the summed contributions of the novel SNPs by the total heritability.

To estimate the contribution of all common SNPs to familial risk, we used the method

proposed by Yang et al21, (which was extended to dichotomous traits22 and implemented in

the Genome-wide Complex Trait Analysis (GCTA) software.58 The genetic similarity

matrix was estimated from our discovery scan using all genotyped autosomal SNPs with a

minor allele frequency >0.01. We used restricted maximum likelihood (REML), the default

option for GCTA, to fit the appropriate variance components model that included the top 10

eigenvectors as covariates. The final estimate of heritability on the underlying liability scale

assumed that the lifetime risk of CLL was 0.005. From this estimate, we calculated the

proportion of familial risk explained based on a familial relative risk of 8.5. Details of fitting

the variance components model and transforming from the observed to liability scale have

been previously documented.22

Estimate of recombination hotspots

To identify recombination hotspots in the region we used SequenceLDhot59, a program that

uses the approximate marginal likelihood method60 and calculates likelihood ratio statistics

at a set of possible hotspots. We tested five unique sets of 100 control samples. PHASE v2.1

program was used to calculate background recombination rates61,62 and LD heatmap was

visualized in r2 using snp.plotter program.63

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results, recombination hot-spots, and linkage disequilibrium (LD) plots for
the regions newly associated with CLL

Top, association results of GWAS data from Stage 1 NHL-GWAS (grey diamonds), Stage 2

combined data (blue diamond), Stage 3 combined data (purple diamond), and Stages 1–3

combined data (red diamond) are shown in the top panel with −log10(P) values (left y axis).

Overlaid are the likelihood ratio statistics (right y axis) to estimate putative recombination

hotspots across the region on the basis of 5 unique sets of 100 randomly selected control

samples. Bottom, LD heatmap based on r2 values from total control populations for all SNPs

included in the GWAS. (a) 10q23.31 region; (b) 18q21.33 region; (c) 11p15.5 region; (d)

4q25 region; (e) 2q33.1 region; (f) 9p21.3 region; (g) 18q21.32 region; (h) 15q15.1 region;

(i) 2p22.2 region.
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Figure 2. Association results, recombination hot-spots, and linkage disequilibrium (LD) plot for
the new independent CLL susceptibility SNP in the 2q13 established locus

Top, association results of GWAS data from Stage 1 NHL-GWAS (grey diamonds), Stage 2

combined data (blue diamond), Stage 3 combined data (purple diamond), and Stages 1–3

combined data (red diamond) are shown in the top panel with −log10(P) values (left y axis).

Overlaid are the likelihood ratio statistics (right y axis) to estimate putative recombination

hotspots across the region on the basis of 5 unique sets of 100 randomly selected control

samples. Bottom, LD heatmap based on r2 values from total control populations for all SNPs

included in the GWAS.
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