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Abstract

Background: Recent studies have identified susceptibility genes of HBV clearance, chronic hepatitis B, liver cirrhosis,
hepatocellular carcinoma, and showed the host genetic factors play an important role in these HBV-related outcomes.

Results: In order to discover new susceptibility genes for HBV-related outcomes, we conducted a genome-wide association study
in 1031 Chinese participants, including 275 HBV clearance subjects, 92 asymptomatic persistence infection carriers (ASPI), 93
chronic hepatitis B patients (CHB), 188 HBV-related decompensated cirrhosis patients (DC), 214 HBV-related hepatocellular
carcinoma patients (HCC) and 169 healthy controls (HC). In the case-control study, we observed novel locus significantly
associated with CHB (SNP: rs1264473, Gene: GRHL2, P=1.57x10%) and HCC (SNP: rs2833856, Gene: EVATC, P=1.62x10;
SNP: rs4661093, Gene: ETV3, P=2.26x109). In the trend study across progressive stages post HBV infection, one novel locus
(SNP: rs1537862, Gene: LACET, P=1.85x10), and three MHC loci (HLA-DRB1, HLA-DPB1, HLA-DPAZ) showed

significant increased progressive risk from ASPI to CHB. Interestingly, underlying the evolutionary study of HBV-related genes in
public database, we found that the derived allele of two HBV clearance related locus, rs3077 and rs9277542, are under strong
selection in European population.

Conclusions: In this study, we identified several novel candidate genes associated with individual HBV infectious outcomes,
progressive stages, and liver enzymes. Moreover, we identified two SNPs that show selective significance (HLA-DPAT, HLA-
DPBT) in non-East Asian (European, American, South Asian) versus East Asian, indicating that host genetic factors contribute to
the ethnic disparities of susceptibility of HBV infection. Taken together, these findings provided a new insight into the role of
host genetic factors in HBV related outcomes and progression.

Background

Hepatitis B virus (HBV) infection is one of the most common infectious diseases, with about 248 million HBsAg positive
individuals worldwide and the largest HBsAg positive population in China [1]. HBV infection can develop a wide spectrum of liver
diseases, including chronic hepatitis B, liver cirrhosis, hepatocellular carcinoma [2—4]. Previous studies showed the host genetic
factor played a critical role in HBV infection susceptibility and identified associated SNPs with significant contribution, including
major histocompatibility complex (MHC) genes, i.e. HLA-DPAT (rs3077), HLA-DPBT (rs9277535), HLA-C (rs3130542), HLA-DQ
(rs2856718, rs7453920) [5—-7], and non-MHC genes, i.e. UBE2L 3 (rs4821116), INTS70 (rs7000921) [8, 9]. In advanced stages of
HBV disease, host genetic factors influence the outcome of HBV infection [7, 10, 11], including HLA-DQ (rs9275319), HLA-DRB1
(rs2647073,rs3997872), STAT4 (rs7574865), C2 (rs9267673), PNPLA3 (rs738408, rs738409), SLC17A2 (rs80215559), HFE
(rs1800562) [12, 13] for liver cirrhosis and KIF1B (rs17401966), HLA-DQAT1/DRBT (rs9272105), HLA-DQ (rs9275319), STAT4
(rs7574865) for hepatocellular carcinoma [14-16]. However, these reported HBV-related genes confer relatively small increments
in risk and explain a small proportion of heritability. For example, although MHC genes are important for immune response to
HBsAg, more than half the heritability is determined by non-MHC genes [17]. Moreover, previous studies showed that the MHC
genes share a common influence on HBV infection, liver cirrhosis, hepatocellular carcinoma [6, 12, 15, 16] as well as associating
with different risk in these outcomes [18]; i.e. HLA-DQ, STAT4, C2, HLA-DRBT1 for liver cirrhosis and HCC [12], HLA-DQ for CHB [6].
These consistent [12] or different [18] risks indicated shared but also modified effects for progressive HBV-related outcomes.
These results raised our interest to identify host genetic factor which increases the risk of progressive stages post HBV infection.
To reveal new susceptibility genes for HBV infection and the HBV-related outcomes, we performed a genome-wide association
study (GWAS) in 1031 participants, including 275 HBV clearance subjects, 92 asymptomatic persistence infection carriers
(ASPI), 93 chronic hepatitis B patients (CHB), 188 HBV-related decompensated cirrhosis patients (DC), 214 HBV-related
hepatocellular carcinoma patients (HCC) and 169 healthy controls (HC) (Table 1).
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Table 1

Characteristics of participants in the genome-wide association cohorts

Disease categories

Sample size
Mean age + SD
Male/female

ALT, U/L, mean + SD
AST, U/L, mean + SD
TBIL, umol/L, mean

+SD

DBIL, pmol/L, mean

+SD

ALP U/L, mean £ SD
GGT, U/L, mean =+ SD

ALB, g/L, mean £+ SD
AFP pg/L, mean + SD

PTA, %, mean + SD

PLT, 10%/L, mean +
SD

HBV
clearance

275
49.56+8.8
105/170

2695+
30.42

25.89+
21.89

13.68+9.93
5.86+18.39
74.30 %

35.86

28.34+
30.77

43.33+6.11

2139+
47.39

95.22
52.69

147.69 £
55.40

ASPI

92
46.89+6.9
33/59
245+8.79

23.16£6.45

12.28+2.91

3.59+1.68

73.57 £

44.58

29.88 +
21.19

4416 +6.71
516+4.79
91.67
14.30

146.84 +
44.51

CHB

93
46.46 + 5.7
62/31

169.53 +
243.76

100.04 +
127.54

23.12+35.60
9.36+14.29
108.89

42.20

88.76 +
106.63

42.40+42.25
34.00+89.37

90.06 +21.76

150.27 +
49.61

DC

188
50.65+8.4
148/40

89.57
115.79

102.46 +
118.36

65.87 +83.22
35.15+51.33
13222+

61.42

80.94+
132.10

32.28+7.13

87.74+
169.83

63.97 +28.07

73.96 +45.30

HCC

214
51.34+10.5
183/31
214+381.67

120.51 £286.05

50.11+90.93

25.87+55.04

141.63+104.32

158.08 £ 183.92

37.19+7.27

7315.22

37329.94

87.31+33.96

145.72+79.24

HC

169
48.82+7.1
73/96
23.11+£7.97

22.23+7.00

12.95+4.09

4.54+9.46

70.85+

25.33

27.58 £
24.88

43.93+4.96
3.76 £+4.34
90.84 +
18.71

148.94 +
49.10

Abbreviations: ASPI, asymptomatic persistence infection; CHB, chronic hepatitis B; DC, decompensated cirrhosis; HCC,
hepatocellular carcinoma; HC, healthy controls; SD, standard deviation; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; TBIL, total bilirubin; DBIL, direct bilirubin; ALP, alkaline phosphatase; GGT, glutamyl transpeptidase.

Methods

Study Participants

A total of 1104 unrelated, age- and gender- matched, Chinese participants were recruited in the study, enrollment criteria were
consistent with a previous report [19]. The population of HBV-related phenotypes was composed of five subgroups: HBV
clearance subjects, asymptomatic persistence infection (ASPI) carriers, chronic hepatitis B (CHB) patients, HBV-related
decompensated cirrhosis (DC) patients, HBV-related hepatocellular carcinoma (HCC) patients. Healthy controls (HC) who were
HBV serum marker-negative (HBsAg, anti-HBc) and had no serological evidence of co-infection with HCV, HDV, and HIV were also
included. HBV chronic infection patients were diagnosed based on seropositivity of HBsAg at least 6 months. Then ASPI was

defined as HBsAg and anti-HBc positive at least 6 months and serum alanine aminotransferase (ALT), aspartate

aminotransferase (AST) in normal values without abnormal before. CHB is defined as HBsAg and anti-HBc positive at least 6
months and ALT, AST abnormal before or at enrollment. DC was defined as HBsAg and anti-HBc positive at least 6 months with
decompensated portal hypertension (gastroesophageal bleeding, ascites, edema or encephalopathy) or decompensated liver
function (albumin < 35 g/L and total bilirubin >35umol/L). HCC was defined at least one of following: (a) liver biopsy; or (b)

abnormal alpha fetoprotein (AFP) and sonographic, CT or MRI space occupying evidence.

Clinical Parameters
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Clinical parameters including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL),
direct bilirubin (DBIL), alkaline phosphatase (ALP), glutamyl transpeptidase (GGT), albumin (ALB), globulin (Glo), alpha
fetoprotein (AFP), prothrombin time activity (PTA), platelets (PLT), HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc were collected
from hospital information system. Other baseline characteristics were recorded during each patient’s clinical examination. In
brief, liver biochemistry and virological tests were carried out by Bechman Coulter AU chemistry analyzers, chemiluminescence
immunoassays (AxSYM or ARCHITECT 12000, Abbott, USA) or Ortho/Chemi-luminescent assay (Johnson and Johnson Co.,
USA) with commercially available kits; Anti-HAV IgM antibody, HDV antigen (HDAg) and anti-HDV antibody, and anti-HEV
antibody were determined by commercially ELISA kits in China. For HBV DNA level, it was quantified using commercial real-time
polymerase chain reaction kit with a lower limit of detection (LLOD) of 100 IU/ml (Daan company, China) or Roche Cobas
Ampliprep/Cobas Tagman™ PCR assay with LLOD of 20 IU/ml (Roche, USA).

Genome-wide SNP Genotyping and Quality Control

Genotyping was performed on Affymetrix 500 k Genome-Wide Human SNP Array 6.0
(http://www.affymetrix.com/Auth/analysis/downloads/na35/genotyping/GenomeWideSNP_6.na35.annot.csv.zip). SNPs met
the following quality control procedures were excluded: 1) call rate < 95%; 2) minor allele frequency (MAF) < 1%; 3) genotype in
controls deviated from the Hardy Weinberg equilibrium (HWE test P-value< 10~ %). Overall, 1,031 samples and 607,153 variants
on 22 chromosomes were included in the final analysis.

Statistics Analysis

GCTA tool [20] was used to perform principal component analyses for estimating population substructure. The first two
eigenvectors, pc1 and pc2, were used to display the population structure. PLINK 1.9 [21] software was used to perform logistic
regression for identifying susceptibility SNPs of HBV infection and HBV-related outcomes. Gender and age were used as
covariates in logistic regression. Chi-square test for trend in proportions was used to identify SNPs with increased effectiveness
on disease progression. We used the Bonferroni method to adjust the false positive rate caused by multiple test. The number of
independent LD block was used to represent the number of independent multiple test. We calculated a total of 21,077
independent LD blocks via GEC [22] and then set 0.05/21077 as the threshold of genome-wide significance. The genomic
control method was used to measure population stratification by calculating the genomic inflation factor (A) from median P-
value. ANOVA was used to evaluate the significance of the association between biomarkers and genotypes in healthy controls.
Using the SNPs in HBV infection-related loci in 1000 Genomes Project [23], we performed evolutional analyses, including
building phylogenetic tree, detecting the signatures of selection, displaying the core haplotypes, estimating effective population
size. Derived allele and ancestral allele of SNPs were accessed from Ensemble human ancestral genome
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phasel/analysis_results/supporting/ancestral_alignments). PoMo [24], an allele
frequency-based approach, was used to build the racial tree based on the allele frequency of SNPs in each population. Fgy [25], a
classical metrics of population differentiation, was widely employed in detecting signatures of selection [26] in human genome
[27, 28] and animal genome [29—-31]. In our study, F5; was implemented to detect the selective signature between East Asian
population and each other population. Vcftools [32] was used to calculate the Fgy statistics of SNPs in paired populations. Fgr
statistics accesses 0.15 [33] was used as a threshold to detect the signature of selection. Rehh package [34, 35] was used to
display the haplotype bifurcation diagrams of the associated SNPs in different populations. Relate [36], a method for genome-
wide genealogy estimation for thousands of samples, was used to estimate the historical population size at default setting.

Results

The demographic and clinical characteristics of 1031 study participants included in our association study are presented in
Table 1. All participants were genotyped by Affymetrix 500 k SNP Array. A total of 607,153 SNPs passed through quality control
(Supplementary Figure S1). These SNPs filtered minor allele frequency of < 1% and a call rate of <95%.

To demonstrate that there is no genetic stratification in the population, we performed a principal component analysis on the
SNPs of all participants. The first two principal components show absence of population structure (Supplementary Figure S2).
To identify susceptibility SNPs for HBV infection, we performed a GWAS in HBV infection similar with previous design [8, 9]. HBV
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clearance was used as a control group versus ASPI, CHB, DC, HCC as HBV chronic infection (case group). We observed
associations of two novel MHC loci with progression to certain HBV stages (SNP: rs2395166, Gene: HLA-DRA, P=1.42x1077;
SNP: rs615672, Gene: HLA-DRB1T, P=8.54 x 10" 7) and two reported MHC locus (SNP: rs3077, Gene: HLA-DPA1, P=6.60x 10°,
SNP: rs9277542, Gene: HLA-DPB1, P=1.53 x 10”8) (Table 2; Fig. 1). These MHC loci variants replicated association results of
previous studies affirming that MHC gene alleles confer risks of susceptibility of HBV infection in East Asian. Interestingly, we
founded that these reported MHC loci (rs2395166:C, rs615672:G, rs3077:A, rs9277542:T, rs9277341:T) present significant
differences in allele frequency between East Asian and non-East Asian population in gnomAD database (Table 3), as well as the
differences between HBV infection group and HBV clearance group. Since different groups may not present an identical minor
allele, here, we used the derived allele against the ancestral allele for studying the allele frequency across different populations.
The derived allele frequencies in East Asian are much closer to the HBV chronic infection group, while other populations, such as
European, are much closer to the HBV clearance group. These genetic differences may suggest a selective signal in non-East
Asian population versus East Asian population. To confirm this, we firstly build a phylogenetic tree based on these loci and then
showed the genetic diversity in world-wide populations, in which the East Asian population is at the root. We set the East Asian
as the ancestral group in these loci according to the derived allele frequencies and the phylogenetic tree. Subsequently, we
identified two strong phylogenetic signals (HLA-DPAT, HLA-DPBT) in the European population (Fig. 2) via Fgr method. Haplotype
bifurcation diagrams of the two core SNPs (rs3077, rs9277542) presented that the resisted allele lead to a long-range, and a
high frequency homozygosity in European population (Fig. 3), confirming the natural genetic selection. These evidences
revealed that the resisted alleles were under positive selection in European population strongly. We estimated the historic
population size and then showed these two loci (HLA-DPAT, HLA-DPBT) were under selection during the past 26,000 years
(Supplementary Figure S3). These results may provide a context for the racking influence of HBV infectious diseases in history.

Table 2
The significance of HBV-related outcomes study
Case-control studies SNP Gene P OR Minor  Minor Allele Report A
value Allele Frequency
Case(n)  Control (n) Case Control
Infection  Clearance  rs2395166 HLA- 142x 04534 C 0.1269 0.2182 MHCregion 1.003
(587) (275) DRA 10-7
rs615672 HLA- 8.54x 05697 G 0.405 0.5276  MHC region
DRB1 10” 7
rs3077 HLA- 6.60x 0.5007 A 0.2675 0.4145 (Kamatani
DPAT 10-9 et al., 2009)
rs9277542  HLA- 1.53x 05353 T 0.3735 0.5347 (Kamatani
DPB1 10-8 etal.,, 2009)
CHB (93) ASPI (92) rs1264473 GRHLZ2 1.57x  3.931 C 0.4402 0.1957  Novel 1.052
1076
HCC CHB (93) rs2833856 EVAIC 1.62x 0.3515 C 0.2243 0.4086  Novel 1.022
(214) 1076
l(—|CC) DC (188) rs4661093 ETV3 2.26x  2.841 A 0.2104 0.0882  Novel 1.022
214 10 6

Abbreviations: OR, odds ratio; ASPI, asymptomatic persistence infection; CHB, chronic hepatitis B; DC, decompensated
cirrhosis; HCC, hepatocellular carcinoma; MHC, major histocompatibility complex; A: statistic of genomic control.

Table 3: Divided allele frequency of significant SNPs in MHC region
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SNP

rs2395166

rs615672

rs3077

rs9277341

rs9277542

Study

our study
our study

our study

Kamatani
etal,
2009 [5]

Guo et
al,, 2011
[55]

Nishida
etal,,
2012 [56]

Wong et
al., 2013
[57]

our study
Guo et
al., 2011
[55]

our study
Kamatani

etal,
2009 [5]

Population

Chinese C
Chinese G

Chinese A

Japanese

Chinese

Japanese,
Korean

Southern
Chinese

Chinese T

Chinese

Chinese T

Japanese

Derived
Al

Derived Allele Frequency

Case-control studies

Infection

0.127
0.405

0.268
0.245

0.314

0.213

0.206

0.142
0.133

0.374
0.246

Clearance  Healthy

0.218

0.528

0.415

0.447

0.393

0.276

0.242
0.237

0.535

0.183

0.512

0.379
0.392

0.443

0.288

0.196
0.237

0.482
0.437

gnomAD

East
Asian

0.128
0.388

0.283

0.159

0.339

non-
East
Asian

0.367

0.590

0.723

0.582

0.627

P value

East Asian
vs non-East
Asian

4.367x107195

6.003x107117
0

0

2.005x107225

Abbreviations: East Asian, East Asian population in gnomAD database; non-East Asian, combined all other population excepted
East Asian in gnomAD database; P value, compared allele frequency between East Asian and non-East Asian population via

fisher exact test. Derived Allele was accessed from human ancestral genome (Ensembl-59).

To identify new susceptibility locus for HBV-related outcomes, we performed association studies for CHB, DC, and HCC.
Significantly, we observed three associated gene SNP loci: 1) (SNP: rs1264473, Gene: GRHL2, P=1.57 x 10™®) associated with
CHB versus ASPI; 2) (SNP: rs2833856, Gene: EVATC, P=1.62 x 10 %) associated with HCC versus CHB; and 3) (SNP: rs4661093,
Gene: ETV3, P=2.26 x 10~ ®) associated with HCC versus DC (Table 2; Fig. 1). No SNP associated with DC versus CHB were

apparent.

HBV clearance, ASPI, CHB, DC, and HCC are progressive stages post HBV infection [4]. We hypothesized that the host genetic
factor contributes to the development of outcomes, as well as to the individual outcome. To investigate this hypothesis, we test
two progressive stages upon HBV infection: 1.) HBV infection itself (CHB, ASPI, and HBV clearance) and 2.) development of CHB
(CHB, DC, and HCC). We performed a chi-square test for trend in proportions of allele to identify SNPs increasing risk of HBV-
related outcomes in the progressive stages. We observed association with one novel locus (SNP: rs1537862, Gene: LACET, P=
1.85%x10° 6), one association with a reported locus (SNP: rs9277542, Gene: HLA-DPB1, P=1.50 x 10'9), and two association
variants at MHC genes (SNP: rs615672, Gene: HLA-DRB17, P=1.39 x 10”%; SNP: rs3128923, Gene: HLA-DPA2, P=2.06 x 10~°)
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with trend test of allele frequency across three outcomes (Table 4; Fig. 4A). The three reported MHC genes were demonstrated to
play a critical role in the resistance of HBV infection, and two (HLA-DPB:rs9277542, HLA-DRB1:rs9277542) were identified to be
associated with HBV clearance (Table 2). We did not observe any SNPs achieve genome-wide significant association with
development of CHB; Two additional loci (SNP: rs6942409, Gene: AC077288.2, P=3.08 x 10~ ®) and the HCC associated locus
(SNP: rs2833856, Gene: EVATC, P=1.62 x 10™ °) were associated with increased risk of DC and HCC during the development of
CHB (Table 5; Fig. 4B).

Table 4
The significance of progressive HBV infection study
SNP Gene P value 'Izﬁsistant Resistant Allele Frequency Related Risk
ele
CHB ASPI Clearance CHB (vs Clearance (vs
ASPI) ASPI)
rs615672 HLA- 1.39 x G 0.3297 0.4185 0.5276 0.82 1.12
DRB1 10-6
rs9277542  HLA- 1.50 x T 0.3011 0.375 0.5347 0.84 1.17
DPB1 10 9
rs3128923  HLA- 2.06 x G 0.3804 0.4348 0.5636 0.89 1.14
DPA2 10 6
rs1537862 LACET 1.85x% C 0.6 0.6374 0.7647 0.92 1.19
107

Abbreviations: ASPI, asymptomatic persistence infection; CHB, chronic hepatitis B. RR was calculated with the comparison
of CHB and ASPI, Clearance and ASPI respectively.

Table 5
The suggestive significance of progressive CHB study
SNP Gene P value Risk Allele  Risk Allele Frequency Related Risk
CHB DC HCC DC(vsCHB) HCC (vs CHB)
rs6942409 AC071288.2 308x10°¢ G 0.6129 0.7287 0.7958 1.20 1.37
rs2833856 EVAIC 162x10°5 T 0.5914 0.75 0.7757 1.30 1.35

Abbreviations: CHB, chronic hepatitis B; DC, decompensated cirrhosis; HCC, hepatocellular carcinoma. RR was calculated
with the comparison of HCC and CHB, DC and CHB respectively.

Host genetic factors were demonstrated to influence concentrations of liver enzymes in plasma, which are widely used to
indicate liver disease [37, 38] Here, to investigate the functional change in liver influenced by the HBV related loci described
above, we performed a variance analysis in 10 clinical parameters of serum liver enzymes (ALT, AST, TBIL, DBIL, ALP, GGT, ALB,
AFP PTA, and PLT) between different genotypes in healthy controls (Supplementary Figure S4-9). Six loci (rs1537862,
rs3128923, rs9277542,rs9277341,rs9277378, rs4661093) showed modest associations with concentrations of liver enzymes,
including ALB, ALP, AFP. and PTA (Fig. 5). These associations suggest pathways linking the host genetic factors, metabolism,
and liver function for understanding the mechanisms of infection and disease progression.

In sum, our study identified susceptibility SNPs associated with HBV related outcomes and SNPs increased the risk of
progressive outcomes from HBV clearance to HBV chronic infection, DC, and HCC in a Chinese population (Supplementary
Figure S10).

Discussion
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HBYV infection leads to a wide spectrum of clinical outcomes, including spontaneous clearance, asymptomatic carrier, chronic
hepatitis B, liver cirrhosis, and hepatocellular carcinoma. Previous studies showed that MHC genes played an important role in
outcomes of HBV infection [7]. Alleles associated with HBV infection versus HBV clearance affect infection risk, and a low-risk
allele indicated an effect on virus clearance. By contrast loci associated with CHB versus ASPI indicated risk for the severe
progression, while a low-risk allele affected tolerance of virus. The tolerance-related gene, GRHL2, was demonstrated to
influence the inflammation in hepatocytes by regulating microRNA 122 (MIR722) and the target of MIR722, HIF1a [39]. Levels of
GRHLZ2 were increased in liver tissues of patients with alcoholic liver disease and correlated with decreases in levels of MIR722.
Increased levels of MIR722in hepatocytes of mice with ethanol-induced liver disease and advanced fibrosis reduced levels of
HIF1a and reduced serum levels of alanine aminotransferase (ALT). Taken together, we propose that the low-risk allele
rs1264473:T at GRHLZ2 ablates severe persistent inflammation through increased the levels of MIR722.

Our previous studies [40, 41] showed that NTCP S267F mutation significantly affected the disease progression to cirrhosis (P=
0.017), and hepatocellular carcinoma (P=0.023) versus CHB [40] and the rs3077:T allele was associated with decreased risk of
chronic HBV infection (OR = 0.62, P=0.001) [41]. In this study, we searched for host genetic factor with increased risk of the
development-related outcomes in GWAS. One novel locus, LACET, and three infection-related MHC loci were associated the
progression of HBV infection. These results showed that the host genetic factors, both MHC and non-MHC genes, increased the
risk of progressive outcomes post HBV infection, as well as HBV mutation. It is reported that HBV infection altered the
mitochondrial metabolism and mitochondrial dynamics, which result in mitochondrial injury and liver disease [42]. LACET was
reported to affect mitochondrial protein homeostasis [43]. Knockdown of LACET converted the expression of a crucial
component of regulating mitochondrial dynamics, OPAT [43—-45]. In addition, we found that the risk allele, LACET:rs1537862:T,
decreased the level of ALB significantly (P=0.025, Fig. 5). ALB is a critical marker decreasing with the deterioration of chronic
liver diseases [46—48]. Biosynthesis of ALB was affected by proinflammatory cytokines [49, 50] and excess amounts of
oxidative agents released by mitochondria from injured liver [46, 51]. Taken together, we proposed LACET may affect hepatic
infection by changing the hepatic mitochondrial metabolism and leading to the progression of HBV infection.

There is a limitation in our study, that is we do not have an additional cohort for replicate study. In spite of that, we showed the
reported loci in MHC region are significantly related to HBV infection. These replicate results of previous studies confirm our
findings are reliable and provide confidence for our study in this cohort. Here, we provide novel candidate genes related to
individual outcomes, progressive stages, and liver enzymes. Moreover, we identified two SNPs that show selective significance
(HLA-DPA1, HLA-DPBT) in non-East Asian (European, American, South Asian) versus East Asian. East Asian populations seem
more susceptible to HBV infection than non-EAS Asian, and the differences of susceptibility were affected by HBV genotype [52],
immunity [53], and environmental exposure [53, 54]. Even in an identical environment (United States), Asian are more prevalent
in chronic HBV infection than non-Asian [53]. It seems likely that host genetic factors contribute to the ethnic disparities of
susceptibility of HBV infection. Taken together with the genetic associations and evolutionary signals, our findings provide a
new insight for HBV study.

Conclusion

In case-control study, we identified one novel locus (SNP: rs1264473, Gene: GRHL2, P=1.57 x 10~ %) significantly associated
with CHB, two novel locus (SNP: rs2833856, Gene: EVATC, P=1.62x 10”5 SNP: rs4661093, Gene: ETV3, P=2.26x 107°)
significantly associated with HCC. In trend study across multiple outcomes, we identified one novel locus (SNP: rs1537862,
Gene: LACET, P=1.85x 10™®) and three MHC loci (HLA-DRB1, HLA-DPB1, HLA-DPA2) significantly increased progressive risk
from CHB through ASPI to HBV clearance. In evolutionary study, we showed the derived allele of two HBV clearance related
locus, rs3077 and rs9277542, are under strong selection in European population. We suggested these selected alleles may play
a role in resisting the susceptibility of HBV in Europeans. Our findings provided a new insight into the role of host genetic factors
in HBV related outcomes and progression.
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Hepatitis C Virus

Hepatitis D Virus
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SD Standard Deviation

SNP Single Nucleotide Polymorphism
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Figure 4

The raising allele frequency in HBV related outcomes during the progression. Four SNPs with increased resistance in CHB, ASPI,
HBV clearance during HBV infection (A) and two SNPs with increased risk in the CHB, DC, HCC during the development of CHB
(B). Abbreviation: ASPI, asymptomatic persistence infection; CHB, chronic hepatitis B; DC, decompensated cirrhosis; HCC,
hepatocellular carcinoma.
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