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Genome-wide association study identifies novel
genetic variants contributing to variation in blood
metabolite levels
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Anjali K. Henders16, Grant W. Montgomery16, Dale R. Nyholt16,24, John B. Whitfield16, Brenda W. Penninx2,25, Tim D. Spector9,

Andres Metspalu10, P. Eline Slagboom4,7, Ko Willems van Dijk11,26, Peter A.C. ‘t Hoen11, Konstantin Strauch5,27, Nicholas G. Martin16,
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Metabolites are small molecules involved in cellular metabolism, which can be detected in biological

samples using metabolomic techniques. Here we present the results of genome-wide association and

meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates

metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068

genome- and metabolome-wide significant (Z-test, Po1.09� 10� 9) associations between single-nucleo-

tide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of

the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication

in an independent sample (N¼ 1,182). The novel SNPs are located in or near genes encoding metabolite

transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or

pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is

important for progress in biological and medical research.
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Zentrum München—German Research Center for Environmental Health, Ingolstädter Landstra�e 1, Neuherberg 85764, Germany. 6Department of Psychiatry, VU University Medical Center,

Neuroscience Campus Amsterdam, VUmc, A.J. Ernststraat 1187, Amsterdam 1081 HL, The Netherlands. 7Department of Molecular Epidemiology, Leiden University Medical Center, PO Box 9600,

Leiden 2300 RC, The Netherlands. 8Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands. 9Department of Twin Research and Genetic Epidemiology,

King’s College London, Westminster Bridge Road, London SE1 7EH, UK. 10Estonian Genome Center, University of Tartu, 23b Riia Street, Tartu 51010, Estonia. 11Department of Human Genetics, Leiden

University Medical Center, S4-P, PO Box 9600, Leiden 2300 RC, The Netherlands. 12Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, P.O. Box 2040, Rotterdam

3000 CA, The Netherlands. 13Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, 300 Longwood Ave, Boston MA02115,

Massachusetts, USA. 14Medical and Population Genetics Program, Broad Institute of MITand Harvard, Cambridge, Massachusetts 2142, USA. 15Department of Genetics, Harvard Medical School, 77

Avenue Louis Pasteur, NRB 0330, Boston MA 02115, Massachusetts, USA. 16Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 300 Herston Road,

Brisbane 4006, Australia. 17Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, PO Box 9600, Leiden 2300 RC, The Netherlands. 18 Institute of Bioinformatics and
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M
etabolite levels in human blood reflect the physiological
state of the body, and may differ between individuals
because of variation in genetic makeup and environ-

mental exposure1. The study of the genetic contribution to
variation in metabolite levels is an important basis for improved
aetiological understanding, prevention, diagnosis and treatment
of complex disorders1,2. Modern high-throughput metabolomics
enables the cost-effective measurement of large metabolite panels
in blood samples obtained from many individuals. The data
generated by such metabolomic experiments have been combined
with genotypic data in several recent genome-wide association
(GWA) studies2–12. Indeed, the combined investigation of large
numbers of genetic variants and large numbers of metabolic traits
is beginning to draw a systems-wide overview of genetic
influences on human metabolism11. However, the heritability
estimates from twin and family studies9–11,13 suggest that
additional genetic variants influencing variation in serum
metabolite levels remain to be found in GWA studies.

In the current study, we set out to further characterize the
genetic contribution to variation in human blood metabolite
levels. We perform GWA and meta-analyses for the concentra-
tions of 129 serum metabolites in seven independent cohorts,
with replication analyses in one additional cohort. To functionally
characterize the significant single-nucleotide polymorphism
(SNP)-metabolite associations, we integrate the results of the
GWA meta-analyses with those from gene expression analysis in
whole blood and the liver. Finally, we compare the variance
explained by significantly associated SNPs with heritability
estimates for each metabolite.

We identify 4,068 significant SNP-metabolite associations,
involving 59 independent SNPs and 85 different metabolites. Five
of the fifty-nine independent SNPs are novel for serum metabolite
levels. The newly found SNP-metabolite associations may lead to
a better understanding of cardiovascular and metabolic disease,
and may have implications for chemotherapy. Our findings
contribute to the understanding of human metabolism.

Results
Discovery meta-analysis of GWA scans. Primary genetic
association analyses were carried out in seven cohorts (TwinsUK,
KORA, EGCUT, LLS, QIMR, ERF and NTR) with a combined
sample size of 7,478 individuals. Characteristics of the study
participants included in the analyses (all of European descent)
are given in Supplementary Table 1. Within each cohort, SNP
genotypes were imputed and analysed for association with the
concentrations of each metabolite, assuming a linear model of
association and correcting for population stratification (see
Methods and Supplementary Table 2). Supplementary Tables 3–5
and Supplementary Data 1 list the characteristics of the 129
metabolites (18 acylcarnitines, 14 amino acids, 82 glycerophos-
pholipids, 14 sphingolipids and hexose) that were measured in
the serum samples from all study participants using the Biocrates
platform. The cohort-level GWA results were pooled in inverse
variance-weighted, fixed-effects meta-analysis. The values of the
genomic control lambda (lGC, applied to the individual cohort-
level results for each metabolite before meta-analysis) varied
between 0.976 and 1.081 across all metabolites and cohorts
(see Supplementary Table 6), suggesting little residual influence
on the GWA results of population stratification and other
potential confounders. A three-dimensional Manhattan plot
providing an overview of the association P values in the discovery
phase for all metabolites is given in Fig. 1; two-dimensional
Manhattan plots and quantile-quantile plots for each metabolite
separately are given in Supplementary Figs 1 and 2, respectively.
Overall, 4,068 SNP-metabolite associations reached genome- and

metabolome-wide significance (Z-test, Po1.09� 10� 9), which
reduced to 123 associations involving 59 independent SNPs and
85 different metabolites. Of these 123 associations (listed in
Supplementary Data 2), 4 represented secondary association
signals according to approximate conditional analysis. Regional
association plots, showing the association signals in the regions
surrounding the lead metabolomic SNPs, are given for all 123
associations in Supplementary Fig. 3. SNPs representing
independent association signals were aggregated into 31 genomic
loci, which are listed in Supplementary Data 3. Figure 2 depicts all
associations between loci and metabolites as detected in the
discovery phase.

Five independent SNPs had not been associated with variation
in serum metabolite levels in previous GWA studies (see Table 1).
To further interpret the association of the remaining 54 SNPs
with serum metabolite concentrations, we compared our findings
with those from 11 published GWA studies2–12 for which at
least one of the included metabolites overlapped with the
current study. The identified associations of known SNPs with
metabolites that were significant in discovery stage meta-analysis
in the current study and that had not been reported in those
previous studies are highlighted in Fig. 2 and in Supplementary
Data 2.

Replication analysis. Replication analyses were performed in an
independent sample (N¼ 1,182) from the KORA S4 cohort
(hereafter KORA S4 replication sample) for the five new SNPs for
serum metabolite levels that had been found in the discovery
phase meta-analysis. The associations with their most strongly
associated metabolite were replicated for four of these five novel
SNPs; the only non-replicated association was that between SNP
rs7582179 and metabolite PC ae C44:5. Although the effect sign
was concordant between the discovery set and the KORA S4
replication sample (Table 1), this association was significant in
the discovery phase for the NTR and KORA cohorts only (see
Supplementary Fig. 4).

Integration with gene expression analysis results. We integrated
the results of the metabolomics discovery stage GWA meta-
analysis with the results of gene expression analyses in whole
blood and the liver. In whole blood, both cis and trans expression
quantitative trait locus (cis-eQTL and trans-eQTL, respectively)
analyses were performed in two different samples originating
from the United Kingdom, the Netherlands and Estonia: the
Dutch NTR-NESDA sample (N¼ 5,071) and the Fehrmann-
EGCUT sample comprising data from three cohorts that were
meta-analysed (total N¼ 2,360; see Methods and Supplementary
Methods). The results of cis-eQTL analysis for lead metabolomic
SNPs showing overlap with cis-eQTL SNPs are given for the
NTR-NESDA and Fehrmann-EGCUT samples in Supplementary
Data 4 and 5, respectively. Significant (false discovery rateo0.05)
trans-eQTL effects for lead metabolomic SNPs in the Fehrmann-
EGCUT sample are listed in Supplementary Data 6. We did not
detect trans-eQTL effects for the lead metabolomic SNPs in
the NTR-NESDA sample. Thirty-five lead metabolomic SNPs
identified cis-eQTLs in at least one of the searched tissues (i.e.,
whole blood and/or the liver) with a (t-, Z- or Kruskal-Wallis test)
Po0.001, defining a total of 67 SNP-gene pairs and
28 different genes (see Supplementary Data 7). The cis-eQTL
analysis results were used to support the annotation of likely
causal genes to loci that displayed significant association with
variation in serum metabolite concentrations in the discovery
stage meta-analysis (see Supplementary Data 3). Of the 28 genes,
14 were predicted to be causal on the basis of our annotation and
the other 14 were predicted to be non-causal.
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Figure 1 | Manhattan plots for all metabolites targeted by the Biocrates AbsoluteIDQ p150 kit (N¼ [1,497, 7,478]). These plots graphically display

the P values for significant (Z-test Po1.09� 10� 9) SNP-metabolite associations in the discovery phase in the current study. (a) A three-dimensional

view; orthogonal projections are given in (b) and (c). SNPs are arranged according to genomic location along the ‘Chromosome’ axes. The ordering of the

metabolites along the ‘Metabolite index’ axes is equal in both a and c, and equal to that in Supplementary Table 3. In a and b, all data points are displayed

semi-transparent and therefore opaque regions in the plot indicate clusters of significant associations. In b, loci are identified by most plausible causal gene

or, if no plausible genes found, by nearest gene. Where multiple plausible genes could be identified at the locus (possibly for different metabolites),

the gene names are separated by an underscore (‘_’) in the locus name. In c, the size of the markers scales linearly with -log10(P value). This Figure is

also supplied as a movie (see Supplementary Movie 1).
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Variance explained. It has been described previously that a
relatively small number of genetic variants can explain a relatively
large proportion of the variance observed for serum metabolite
levels4,5,9. Therefore, we compared the variance in serum
metabolite levels explained by significantly associated SNPs,
with the heritability as estimated in a monozygotic twin sample
from the NTR cohort (N¼ 181 pairs; see Fig. 3)13. Among all
metabolites, the largest proportion of phenotypic variance was
explained for C9 (13%; see Supplementary Data 2). In the current
study, this metabolite associated significantly with SNPs in
the THEM4 and CPS1_ACADL loci. The largest proportion
of heritability was explained for lysoPC a C20:4 (19%;
corresponding with 10% of the phenotypic variance), which was
associated with a SNP in the FADS1–3 locus. The results of
polygenic score (PGS) analyses (see Supplementary Fig. 5 and
Supplementary Note 1) suggest different genetic background of

variation in serum levels for different metabolites, ranging from
close-to-monogenic to highly polygenic.

Discussion
We set out to enhance the current understanding of the genetic
underpinnings of variation in circulating metabolite levels in
humans. To this end, we employed a well-established targeted
metabolomics platform (Biocrates) in combination with genome-
wide SNP genotyping and imputation in eight independent
cohorts of European descent. By meta-analysis of GWA analyses
carried out for each of 129 metabolites measured in the serum
samples of all individual study participants, the current study
identified 123 significant SNP-metabolite associations between
59 independent SNPs and 85 different metabolites. Five of the
independent SNPs were new for variation in serum metabolite
levels.
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Figure 2 | Associations between loci and metabolites detected in stage 1 meta-analysis in the current study (N¼ [1,588, 7,478]). Loci significantly

associated with at least one metabolite are depicted as grey circles. Biochemical classes (see Supplementary Table 3) of the metabolites (hexagons) are

indicated by node colours: green, acylcarnitines; blue, amino acids; purple, glycerophospholipids; yellow, sphingolipids. Arrows point from each locus to the

associated metabolite(s); arrow widths scale linearly with -log10(association P value). Grey arrows denote previously known associations; red arrows

denote associations that were newly discovered on the basis of stage 1 meta-analysis in the current study (that is, either associations with new SNPs

for serum metabolite levels, or an association of a known SNP with a new metabolite with respect to 11 previous GWA studies for serum metabolite levels2–

12). Loci are identified by most plausible causal gene or, if no plausible genes found, by nearest gene. Where multiple plausible genes could be identified at

the locus (possibly for different metabolites), the gene names are separated by an underscore (‘_’) in the locus name. At this significance threshold

(P¼ 1.09� 10� 9), the locus-metabolite association network separates into 12 connected components or disconnected sub-networks, each including

metabolites from maximally two chemical classes. This figure was created using Cytoscape52.
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Consistent with previous reports, for the majority of all 59
independent SNPs we were able to annotate a likely causal gene,
which in most cases encoded a metabolite transporter protein or
enzyme. The five new SNPs for serum metabolite levels are also
all located nearby such genes, and their associations with
metabolites tend to match the known function of these genes.
SNP rs7582179 in the AGPS gene is associated with the choline
plasmalogen PC ae C44:5. Mutations in AGPS (encoding the
enzyme alkylglycerone phosphate synthase) are known to cause
rhizomelic chondrodysplasia punctata type 3 (RCDP3;
OMIM:600121 (ref. 14)), a rare autosomal recessive disorder
that is fatal, with death occurring often early in childhood.
Clinically, RCDP3 is characterized by significantly delayed and
abnormal physical and mental development, with shortness of the
proximal limb bones (‘rhizomelia’) being one of the hallmarks.
RCDP3 has been shown to result from reduced production of
plasmalogens (a type of ether phospholipids) by alkylglycerone
phosphate synthase in peroxisomes. The association in the

current study of a SNP within the AGPS gene with the serum
concentration of the choline plasmalogen PC ae C44:5 is therefore
perfectly concordant with the known gene-disease link between
AGPS and RCDP3. PC ae C44:5 also associated significantly with
the new SNP rs7700133 located near the ACSL1 gene, encoding
long-chain acyl CoA synthetase 1. Previous studies have shown
links between genetic and transcriptional variation of ACSL1 and
the metabolic syndrome15,16. The new SNP rs12210538, located
within the SLC22A16 gene, associated with the two acylcarnitines
C18:1 and C18:2. This gene encodes a carnitine transporter that
mediates the uptake of anticancer drugs such as bleomycin and
doxorubicin into tumour cells, and its activity correlates with
treatment response17,18. Significant associations were found for
two SNPs (rs17657817 and rs2246012) located inside the ARG1
gene (coding for the enzyme arginase) with serum concentrations
of the amino acid ornithine that participates in the urea cycle.
Importantly, the global arginine bioavailability ratio (that is, the
ratio of arginine to ornithine and citrulline19) is of interest as a

Table 1 | Novel SNPs for serum metabolite levels identified in the current study.

Lead
metabolomic
SNP

Lead
metabolite

Cytoband P value in
discovery
phase

EA/
NEA

EAF in
discovery
phase

Beta in
discovery
phase

Total N in
discovery
phase

Nearest
gene

Beta in
replication

phase

P value in
replication

phase

EAF in
replication

phase

Replicated Locus
name

rs12210538 C18:2 6q21 5.03� 10� 21 A/G 80.8% 0.086 6,574 SLC22A16 0.099 2.65� 10� 13 75.9% * SLC22A16_
SLC16A10

rs17657817 Orn 6q23.2 1.32� 10� 11 T/C 98.0% �0.156 2,991 ARG1 �0.123 1.40� 10�4 97.5% * ARG1

rs2246012 Orn 6q23.2 6.43� 10� 12 T/C 83.9% 0.045 7,476 ARG1 0.044 1.57� 10� 3 84.5% * ARG1

rs7582179 PC ae
C44:5

2q31.2 4.07� 10� 10 A/G 16.8% �0.048 5,360 AGPS �0.021 0.147 16.5% AGPS

rs7700133 PC ae
C44:5

4q35.1 3.35� 10� 11 T/C 30.5% 0.036 7,476 CENPU 0.038 1.12� 10� 3 30.9% * ACSL1

Abbreviations: EA/NEA, effect allele/non-effect allele. EAF, frequency of EA; SNP, single-nucleotide polymorphism.

Lead metabolite, metabolite displaying strongest association with SNP in discovery phase GWA meta-analysis in current study. P values in discovery and replication phases were calculated by Z- and

t-tests, respectively. Loci that were replicated in the KORA S4 replication sample (Po0.05 after Bonferroni correction for 5 tests) are indicated by *. Loci are identified by most plausible causal gene or, if

no plausible genes found, by nearest gene. Where multiple plausible genes could be identified at the locus (possibly for different metabolites), the gene names are separated by an underscore (‘_’) in the

locus name.
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Figure 3 | Decomposition of variation in serum metabolite levels. This figure displays the proportions of variance in serum metabolite level explained by

significantly associated SNPs; heritability not explained by significantly associated SNPs and unexplained (environmental) variance. Seventy-six metabolites

are included for which both heritability estimates (monozygotic twin correlations taken from reference13; N¼ 181 pairs; Pearson correlation) were available,

and that displayed genome- and metabolome-wide associations with SNPs in stage 1 GWA meta-analysis in the current study (N¼ [1,588, 7,478]).

Proportion of variance explained by significantly associated SNPs was estimated as Pearson’s phi coefficient squared. Metabolites are grouped according to

biochemical class.
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potential biomarker for endothelial dysfunction, which is a
known risk factor for the development of cardiovascular
disease20. The two newly identified SNPs associated with serum
ornithine levels might now be used as instrumental variables in
cost-effective Mendelian randomization studies in large samples
of individuals, to investigate the possible causal relationship
among ornithine, endothelial dysfunction and subsequent
cardiovascular disease21. Among three meta-analyses of
coronary artery disease and myocardial infarction as carried out
by the CARDIoGRAMplusC4D Consortium, the association with
SNP rs2246012 was the strongest in the CARDIoGRAM GWA
study (P¼ 0.002) involving 22,233 cases and 64,762 controls22.
This suggests that the link between genetic variation at SNP
rs2246012 and variation in serum ornithine levels as identified in
the current study will indeed be useful to further establish the
possible link between the ARG1 gene and cardiovascular disease.

We compared the significant SNP-metabolite associations from
the current study with those reported in 11 previous publications
that employed high-resolution methods to assay the serum
metabolome. For several SNPs that were associated with variation
in metabolite levels in the previous studies, we identified new
associations with individual metabolites. These new associations
strengthen the evidence for the associations of these known SNPs
with specific metabolites, demonstrating their extended effect on
phenotypes that are closely related to the metabolites with which
their association was discovered initially4,23. Also, it has been
demonstrated that GWA studies with the more refined metabolic
phenotypes provided by metabolomics often yield effect sizes that
are larger than those observed in GWA studies of composite
measures such as high-density lipoprotein cholesterol, suggesting
that these more refined metabolomic phenotypes provide better
intermediate traits8,9. In this context, it is interesting to note that
the large proportion of explained heritability we observed for
lysoPC a C20:4 (19%) was caused exclusively by the association
with a single SNP in the FADS1–3 locus, an observation that is in
line with the results from previous studies4,5,9.

In conclusion, the results obtained in the current study
contribute to the understanding of the genetic background of
variation in serum metabolite levels, and are important for
further progress in biomedical and pharmaceutical research.

Methods
Participants. The meta-analysis included GWA data from 7,478 participants
from seven cohorts originating from five countries (the Netherlands, Germany,
Australia, Estonia and the United Kingdom). The independent test sample (‘KORA
S4 replication sample’) consisted of 1,182 additional KORA participants. The
following local research ethics committees approved the individual studies: KORA,
Ethics Committee of the Bavarian Medical Association (Bayerische Landes-
ärztekammer); NTR, Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Center, Amsterdam; EGCUT, Ethics Review
Committee on Human Research of the University of Tartu; TwinsUK, St Thomas’
Hospital ethics committee; ERF, medical ethics board of the Erasmus MC Rot-
terdam, the Netherlands; LLS, Medical Ethical Committee of the Leiden University
Medical Centre; QIMR, QIMR Human Research Ethics Committee. Informed
consent was obtained from all participants. Sample characteristics for all cohorts
included in this study and detailed study sample descriptions are given in
Supplementary Table 1 and in the Supplementary Methods, respectively.

Biocrates metabolite quantification. Targeted metabolomic measurements were
performed using electrospray–flow injection analysis–tandem mass spectrometry
methods and the Biocrates AbsoluteIDQ p150 kit (BIOCRATES Life Sciences AG),
which enables quantification of a total of 163 metabolites (see Supplementary
Table 3 for an overview of all metabolites targeted by this kit)24. The method of
AbsoluteIDQ p150 kit has been proven to be in conformance with FDA Guideline
‘Guidance for Industry—Bioanalytical Method Validation (May 2001)’25, which
implies proof of reproducibility within a given error range. For all cohorts,
metabolite measurements were carried out at the Metabolomics Platform of the
Genome Analysis Center at the Helmholtz Zentrum München, Germany as per the
manufacturer’s instructions4,24,26,27. In brief, the used metabolomic measurement
technique is based on a targeted profiling scheme that is used to quantitatively

screen for known small-molecule metabolites by multiple reaction monitoring,
neutral loss and precursor-ion scans. Internal standards served as reference for the
calculation of all metabolite concentrations, which are reported as micromolar.
Data evaluation for quantification of metabolite concentrations and quality
assessment have been performed with the MetIDQ software package, which is an
integral part of the AbsoluteIDQ kit. Stability of the assay was assessed using the
measurement results of five aliquots of the same reference blood sample on every
plate. Quality control of the Biocrates metabolite concentration measurement data
was performed by each participating cohort as follows27: for each cohort,
metabolite profile measurements for all individuals were performed on multiple
plates. For each metabolite i and plate j, the coefficient of variation (CVi,j) was

calculated as: CVi;j ¼
s:d:i;j

meani;j
, where the standard deviation (s.d.) and mean were

calculated over all reference measurements per plate j (five per plate). Summary
statistics for the metabolite concentration data for each cohort were compared with
the measurement detection limit specifications as reported by the manufacturer of
the AbsoluteIDQ p150 kit (BIOCRATES). A metabolite was excluded from further
analyses for a particular cohort if its concentration measurement data did not
meet all of the following criteria: (i) mean CVi over all plates o25%; (ii) r5%
missing values; (iii) median Zlower limit of quantification (for metabolites
reported as absolute concentrations) orZlimit of detection (for semiquantitatively
measured metabolites). Outlying metabolite concentration values (data points)
and outlying samples were also removed, and the missing data points were
imputed with the ‘R’28 package ‘mice’27. The resulting concentration data
for each metabolite were natural log-transformed in order to attain a normal
distribution. Throughout the article, names of lipids detected by the Biocrates
AbsoluteIDQ p150 platform are abbreviated as follows: acylcarnitines, Cx:y;
hydroxylacylcarnitines, C(OH)x:y; dicarboxylacylcarnitines, Cx:y-DC;
sphingomyelins, SMx:y; N-hydroxylacyloylsphingosylphosphocholine, SM (OH)
x:y; phosphatidylcholines, PC (aa¼ diacyl, ae¼ acyl-alkyl). Lipid side chain
composition is abbreviated as Cx:y, where x denotes the number of carbons in the
side chain and y the number of double bonds.

Association analyses and meta-analyses. Genome-wide SNP genotyping
was performed in each cohort with standard genotyping technologies (see
Supplementary Table 2 and Supplementary Methods). For the samples con-
tributing to the stage 1 (discovery) meta-analysis, imputation was conducted with
reference to HapMap phase 2 build 36 release 22 or 24 CEU (Utah residents of
Northern and Western European ancestry)29 phased genotypes. For the KORA S4
replication sample, SNP genotypes were imputed against the 1,000 g phase1
integrated haplotypes reference set. Association analysis was performed assuming a
linear regression model for each SNP, adjusting for relatedness, age, sex and study
specific (for example, ancestry-informative principal component scores) covariates
as necessary (see Supplementary Table 2). Positions of all SNPs described in the
current manuscript were mapped to those as in the HapMap 2 Build 36 release 24
reference set (hg18). Meta-analysis of GWA results obtained in the cohorts
participating in stage 1 was performed as follows: the expected minor allele count
(eMAC) was computed at the cohort level for each SNP as

eMAC ¼ N�MAF�2�IA ð1Þ

where N is the study sample size, MAF is the minor allele frequency and IA is the
SNP genotype imputation quality measure. SNPs for which eMACo25 were
filtered out of the GWA results for the cohort under consideration. After applying
genomic control at the individual cohort level, two independent analysts carried
out additive model fixed-effects meta-analysis of association data for imputed
autosomal SNPs, using two different software packages (METAL30 and
GWAMA31). For a given SNP, cohort-specific effect size estimates were weighted
inversely with their variance. Throughout the manuscript, we report the P values as
resulting from Z-tests of association as carried out by METAL. A P value equal to
5.0� 10� 8 was adopted as the threshold for genome-wide suggestive association
between a SNP and the concentration of a metabolite, based on the approximate
number of independent SNPs in samples of European ancestry32. To obtain a
threshold for significant association, taking account of the number of metabolites
tested and their intercorrelations, the threshold value for suggestive association was
divided by the number of independent tests (Meffli) in the metabolomic data as
estimated using the method of Li and Ji33. The value of Meffli was estimated on the
basis of the metabolite profiling data in two independent cohorts (ERF and NTR).
Meffli was estimated to be equal to 46 in both ERF and NTR, rendering the P value
threshold for genome- and metabolome-wide significance in the present study to
be equal to 5.0� 10� 8/46¼ 1.09� 10� 9.

Definition of loci and secondary signals analysis. Independent signals of
association were identified in the GWA meta-analysis results for each metabolite
separately, using the linkage disequilibrium-based ‘clumping’ procedure as
implemented in PLINK34. This procedure takes all SNPs that show a P value of
association with a phenotype below a threshold (‘--clump-p1’), and forms clumps
of these ‘index’ SNPs together with all other SNPs that are in linkage disequilibrium
with (controlled by the parameter ‘--clump-r2’) and in physical proximity
(controlled by parameter ‘--clump-kb’) to these index SNPs. For the current study,
we used the following parameter settings: ‘--clump-p1’, 5.0� 10� 8; ‘--clump-r2’,
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0.1; ‘--clump-kb’, 1,000. As input for the ‘clumping’ procedure, we used association
P values from the discovery phase meta-analysis results and linkage disequilibrium
patterns as estimated from the HapMap 2 Build 36 release 24 reference set. For
each metabolite separately, secondary association signals at a locus were verified by
approximate conditional analysis as implemented in GCTA35. In this analysis, the
association for the secondary association signal ‘top’ SNP (that is, the SNP with the
lowest P value of association with variation in serum metabolite level at the
secondary association signal) was conditioned on the top SNP for the locus and
metabolite under consideration. As input for the approximate conditional analysis,
we used the discovery phase GWA meta-analysis results and the imputed SNP
genotype data from the NTR cohort as a reference for LD structure36. We report
only secondary signal top SNPs for which the P value remained o1.09� 10� 9 in
this approximate conditional analysis. In the current manuscript, the term ‘lead
metabolomic SNP’ refers to a top SNP at a locus or secondary association signal for
one or more metabolites. We identified genomic loci significantly associating with
metabolite levels by grouping lead metabolomic SNPs located within 1Mb from
each other over all metabolites.

Identification of new SNP–metabolite associations. The approach used in the
current study to identify novel associations between SNPs and serum metabolite
levels is described in Supplementary Fig. 6 and in the Supplementary Methods. In
brief, we applied two complementary methods: the first method identified novel
SNPs associated with variation in serum metabolite levels, and the second method
identified novel SNP-metabolite associations with respect to 11 previous GWA
studies that included at least one metabolite that was also included in the
current study.

Replication analyses. Replication analyses were performed in the KORA S4
replication sample for the associations of the five new SNPs for serum metabolite
levels (listed in Table 1) with their lead metabolites (that is, the metabolites
that were most strongly associated with these SNPs in the discovery phase
meta-analysis).

Lookup of association with cardiovascular disease. Data on coronary artery
disease/myocardial infarction have been contributed by CARDIoGRAMplusC4D
investigators and have been downloaded from www.CARDIOGRAMPLUSC4D.
ORG. We performed a lookup of the associations with SNP rs2246012 in the
results from all three meta-analyses as provided on this website22,37,38.

Association and Manhattan plots. For each lead metabolomic SNP, the
LocusZoom39 tool was used to generate association plots in the region between
500 kb before the locus minimum position and 500 kb after the locus maximum
position. Manhattan plots for each metabolite were generated based on the
discovery phase meta-analysis results using in-house developed Python40 code.

SNP annotation. To facilitate the manual process of selecting plausible candidate
genes for each locus, we used an automated workflow developed in-house to
generate reports containing the associated protein, enzyme, metabolic reaction,
pathway and disease phenotypes of each gene within a ±500 kb window of each
lead metabolomic SNP. SNPs within this window that were published in GWAS
Catalog41 or in GTEx-eQTL (http://www.ncbi.nlm.nih.gov/gtex/GTEX2) were also
listed. In detail, the reports created by our workflow were based on the
NCBI-Gene (http://www.ncbi.nlm.nih.gov/gene), GTEx-eQTL, GWAS Catalog,
ConsensusPathDB42, UniProtKB43, OMIM44, Gene Ontology45, TCDB46,
ExPASy47 and KEGG databases48. These databases had been downloaded earlier
from the respective File Transfer Protocol servers and have been integrated offline
in MATLAB (R2009a, The Mathworks Inc.). Overlap of lead metabolomic SNPs
with cis-eQTL SNPs was also used as evidence to support the annotation of likely
causal genes to loci. In case no biologically plausible gene could be found, the locus
was given the name of the nearest gene; a similar approach was followed in the
study by Shin et al.11

Variance explained. We estimated the proportion of phenotypic variance
explained by each independent association signal (lead SNP for a locus or
secondary association signal) as Pearson’s phi coefficient squared:

f2 ¼
w21
N

ð2Þ

where w21 ¼ z2 ¼ ðb̂1

.

SEðb̂1ÞÞ
2 ; N is the sample size in the discovery phase meta-

analysis for the SNP–metabolite association under consideration; b̂1 is the ordinary
least-squares estimate of b1 (that is, the regression coefficient for the SNP as
estimated in the discovery phase meta-analysis); and SEðb̂1Þ is its standard error.
For each metabolite, we added up the proportions of variance in metabolite level
explained by independent association signals to estimate the total proportion
of phenotypic variance explained. We also estimated for each metabolite the
proportion of heritability of metabolite level variability explained by approximately
independent association signals. As an estimate of heritability for this analysis we

used the monozygotic twin correlations for each metabolite, based on data from
181 pairs from the NTR cohort13. The proportion of heritability in metabolite level
variation explained by independent association signals was estimated by dividing
the proportion of phenotypic variance explained by independent association
signals, by the monozygotic twin correlation. The total proportion of heritability
explained for a particular metabolite was estimated by adding up the proportions of
variance explained by all approximately independent association signals for that
metabolite.

PGS analysis. We investigated evidence for the polygenic nature of variation in
serum metabolite levels by building a multi-SNP predictor from the meta-analysis
results for each metabolite to predict the levels of the same metabolite in an
independent target cohort (KORA S4 replication sample). Such a multi-SNP
predictor, or PGS, reflects the weighted sum of multiple SNPs associated with a
phenotype. The discovery meta-analysis forms the basis to select SNPs based on
liberal significance thresholds (for example, 0.001, 0.01 and so on). In the target
sample, PGSs are calculated for each individual for each set of SNPs by multiplying
the number of effect alleles per SNP (0, 1 or 2) with the beta from the
meta-analysis, summed over all SNPs in the set of SNPs. We performed the
PGS analysis49 using the regression coefficients (betas) from the discovery phase
meta-analyses as weights. Analyses were performed for the 127 metabolites for
which concentration data were available both in the discovery sample and in the
KORA S4 target sample. For each of these metabolites, SNPs representing
approximately independent association signals were selected in the discovery phase
meta-analysis results using the PLINK clumping procedure. SNPs with P values of
association with metabolite concentration levels in the discovery meta-analysis
below the following thresholds were included: Po1.0� 10� 8; Po1.0� 10� 7;
Po1.0� 10� 6; Po1.0� 10� 5; Po1.0� 10� 4; Po1.0� 10� 3; Po1.0� 10� 2;
Po5.0� 10� 2; Po0.1; Po0.2; Po0.3; Po0.4; Po0.5; Po0.6; Po0.7; Po0.8;
Po0.9; Po1.0. For each clump of SNPs, the index SNP was taken for possible
inclusion in the score computation. From the resulting set of SNPs eligible for
inclusion in the PGS analysis, A/T and G/C SNPs for which (0.35oMAFo0.50)
were excluded because these SNPs are potentially ambiguous and therefore may
lead to spurious association in the case of strand flips50. From the imputed SNP
genotype data for the KORA S4 target sample, the SNPs corresponding with the
remaining clump index SNPs were selected. A PGS was constructed for each
individual in the KORA S4 replication sample using the ‘--score’ procedure as
implemented in PLINK v. 1.07 (http://pngu.mgh.harvard.edu/Bpurcell/plink/
profile.shtml). The resulting PGS was included as a covariate in a multiple linear
regression analysis that was similar to the regression that was carried out in the
primary single SNP-based GWA analysis:

y ¼ aþ b1PGSþ b2ageþ b3sexþb4ðstudy� specific covariatesÞ ð3Þ

where y represents log(metabolite) values, and the study-specific covariates include
adjustments for, for example, population stratification (and thus b4 can be a
vector). The Biocrates metabolite values were obtained and preprocessed using the
same methods as described for the primary GWA in the Section ‘Biocrates
metabolite quantification’. The proportion of variance explained by the PGSs was
assessed by comparing the raw (that is, unadjusted) R2 values for the ‘full’ model
(that is, a model including the genetic score as a covariate) with the raw R2 values
when fitting a ‘reduced’ model that did not include the genetic score as a
covariate51. The significance of the association of the PGSs with serum metabolite
levels was estimated on the basis of the P value of association for b1 according to
the full model.

EQTL analyses. Data from two independent samples originating from the United
Kingdom, the Netherlands and Estonia (the Dutch NTR-NESDA sample and the
Fehrmann-EGCUT sample) were used for cis- and trans-eQTL mapping in whole
blood. Details of these analyses, and of the integration of the cis-eQTL analysis
results with the results from the metabolomics genome-wide meta-analysis, are
provided in the Supplementary Methods. We also assessed the overlap of lead
metabolomic SNPs with cis-eQTL signals in the liver as catalogued in the
GTEx-eQTL database, following the method of Shin et al.11: for each lead
metabolomic SNP, we retrieved all SNPs with r240.8 in the 1000 Genomes Project
pilot phase (CEU population). All cis-eQTLs within a 1-Mb window centred on the
lead SNP were retrieved from the GTEx-eQTL database, and the best eQTL P value
was noted. The cis-eQTL results for which overlap with lead metabolomic SNPs
was shown and that displayed association P values o0.001 are given in
Supplementary Data 7.

Meta-analysis. The full meta-analysis results for all metabolites are available at
www.tweelingenregister.org/engagebiocratesgwama
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