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Hypovolemic shock (dengue shock syndrome (DSS)) is the 
most common life-threatening complication of dengue. 
We conducted a genome-wide association study of 2,008 
pediatric cases treated for DSS and 2,018 controls from 
Vietnam. Replication of the most significantly associated 
markers was carried out in an independent Vietnamese sample 
of 1,737 cases and 2,934 controls. SNPs at two loci showed 
genome-wide significant association with DSS. We identified a 
susceptibility locus at MICB (major histocompatibility complex 
(MHC) class I polypeptide-related sequence B), which was 
within the broad MHC region on chromosome 6 but outside 
the class I and class II HLA loci (rs3132468, Pmeta = 4.41 × 
10−11, per-allele odds ratio (OR) = 1.34 (95% confidence 
interval: 1.23–1.46)). We identified associated variants 
within PLCE1 (phospholipase C, epsilon 1) on chromosome 
10 (rs3765524, Pmeta = 3.08 × 10−10, per-allele OR = 0.80 
(95% confidence interval: 0.75–0.86)). We identify two loci 
associated with susceptibility to DSS in people with dengue, 
suggesting possible mechanisms for this severe complication  
of dengue.

Dengue is an acute systemic viral infection caused by one of four 
serotypes of dengue virus, and globally it is the commonest mosquito-
borne infection after malaria1. The burden of dengue is growing, with 
an estimated 100 million infections now occurring annually and with 
2.5 billion people living in areas at risk of transmission. A wide variety 
of disease manifestations is seen, ranging from subclinical infection 
to severe and fatal disease. Severe dengue in children is characterized 

by an increase in vascular permeability that leads to life-threatening 
hypovolemic shock (DSS). This is often accompanied by thrombo-
cytopenia and hemostatic dysfunction, which may result in severe 
bleeding. Children are at greatest risk of developing DSS, but with 
careful supportive care the case fatality rate is less than 1% (ref. 2). 
In southern Vietnam, serological studies have estimated that 85% of 
the population is exposed to dengue virus infection by the end of 
childhood (15 years old)3, whereas DSS is estimated to occur in less 
than 1% of exposed individuals2 (see population controls in Online 
Methods). Epidemiological studies have suggested a genetic basis in 
the host for susceptibility to severe dengue, and various candidate gene 
studies of modest sample sizes have investigated this possibility4–8.

To estimate the genetic contribution underlying severe dengue, 
we genotyped 2,118 DNA samples from Vietnamese children with 
established or incipient DSS and 2,089 cord blood controls in a 
genome-wide association study (GWAS). After exclusion of sam-
ples for discrepancies between clinical and genetically inferred 
gender, for relatedness or for per-sample call rates of less than 95% 
(Supplementary Fig. 1a), there were 2,008 DSS cases and 2,018 con-
trols available for analysis. The clinical and virological characteris-
tics of the case population are described in Supplementary Table 1. 
A total of 657,366 SNPs were initially included within the Illumina 
660W Beadchip used for genome-wide genotyping. After various 
stringent quality-control exclusions (Supplementary Fig. 1b), a total 
of 481,342 SNPs were retained for downstream association analysis.

We conducted the routine GWAS statistical tests (Online Methods) 
and identified strong evidence of disease association at two distinct 
loci (Fig. 1): MICB on chromosome 6 and PLCE1 on chromosome 10,  
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which were both represented by SNPs 
that were close to the formal threshold for 
genome-wide significance (P = 5.38 × 10−8 for rs3132468 at the 
MICB locus and P = 5.84 × 10−8 for rs3740360 at the PLCE1 locus) 
(Table 1). Together with the SNPs at MICB and PLCE1, a total of 85 
SNPs exceeded P < 1 × 10−4 on single SNP analysis (Supplementary 
Table 2). We were able to design assays for 72 out of these 85 SNPs 
using the Sequenom Mass-Array platform. The remaining 13 SNPs 
in the broad MHC region were refractory to assay design, thus neces-
sitating the design of Applied Biosystems TaqMan assays for the sen-
tinel SNP at MICB (rs3132468) and rs3134899 (also within MICB; 
GWAS P = 1.03 × 10−4, OR = 1.31). We then genotyped these 74 
SNPs (72 non-MHC SNPs and two SNPs within MICB) in a rep-
lication sample of 1,824 DSS cases and 3,019 controls. We applied 
the same GWAS quality-control filters for the replication set: five 
SNPs had poor genotyping clusters and were excluded from analysis 
(Supplementary Table 2), and 132 samples (87 cases and 85 controls) 
had per-sample call rates of less than 95%; these were excluded from 
further analysis. This left 69 SNPs to be analyzed in 1,737 cases and 
2,934 controls for the replication stage. In keeping with the GWAS 
observations, the strongest evidence of association was observed with 
SNPs at MICB (rs3132468, Prepl = 9.32 × 10−5 and rs3134899, Prepl =  
0.0082) and PLCE1 (three SNPs with Prepl ranging from 5.23 × 10−4 to 

1.6 × 10−4, Table 1). Using inverse-variance weights, data from both 
the GWAS and replication cohorts (N = 3,745 DSS cases and N = 4,952 
controls) were combined in a formal meta-analysis, and this identified 
strong evidence of association with rs3132468 at MICB (P = 4.41 ×  
10−11; per-allele OR = 1.34 (95% confidence interval: 1.23–1.46)) and 
seven SNPs at PLCE1 (4.18 × 10−9 ≤ P ≤ 3.08 × 10−10; 0.75 ≤ OR ≤ 0.87,  
Table 1). To aid in refining the original signal of association, we per-
formed imputation analysis at regions flanking both loci (30–32 Mb 
on chromosome 6 and 95.5–96.5 Mb on chromosome 10). This did 
not identify signals of association beyond those from the directly 
genotyped SNPs. The associations observed at MICB and PLCE1 were 
not specific to any dengue virus serotype on subgroup analysis of 
viral serotype, nor were they associated with the degree of thrombo-
cytopenia or the degree of clinical shock (data not shown).

Found within the broad MHC locus, MICB lies just outside both the 
type I and type II human leukocyte antigen (HLA) regions, ~140,000 
base pairs centromeric to the nearest class I gene (HLA-B) and 
slightly less than 1 million base pairs away from the nearest class II  
gene (HLA-DRA). Apart from the peak signal at rs3132468 that was 
observed directly within MICB, 12 other SNPs in this region also 
showed association signals exceeding P < 1 × 10−4 on single-SNP  
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Figure 1 Manhattan plot showing directly 
genotyped SNPs plotted according to 
chromosomal location (x axis), with –log10  
P values (y axis) derived from the 1-degree-
of-freedom score test. The lower horizontal 
dashed line indicates the threshold for 
bringing SNPs forward to the replication  
stage (P < 1 × 10−4). SNPs surpassing  
P < 1 × 10−8 (upper horizontal dashed line) 
on combined analysis of both GWAS and 
replication data are shown in red, and gene 
names are given for these loci. SNPs in MICB 
and PLCE1 have significant associations.

table 1 Association analysis between dengue shock syndrome and sNP genotypes at MICB and PLCE1 

SNP (alleles)
Chromosome  

(position)
Candidate 

gene Stage
MAF  
cases

MAF  
controls OR P ORmeta (95% CI) Pmeta

rs3132468 (C/T) 6 (31583465) MICB GWAS 0.176 0.132 1.41 5.39 × 10−8 1.34 (1.23–1.46) 4.41 × 10−11

Replication 0.163 0.134 1.27 9.32 × 10−5

rs3134899 (G/A) 6 (31581265) MICB GWAS 0.130 0.102 1.31 1.09 × 10−4 1.26 (1.14–1.38) 4.08 × 10−6

Replication 0.114 0.096 1.20 0.0082

rs3765524* (T/C) 10 (96048288) PLCE1 GWAS 0.249 0.300 0.77 2.68 × 10−7 0.80 (0.75–0.86) 3.08 × 10−10

Replication 0.265 0.302 0.83 1.60 × 10−4

rs2274223* (G/A) 10 (96056331) PLCE1 GWAS 0.250 0.303 0.77 1.19 × 10−7 0.81 (0.75–0.86) 6.89 × 10−10

Replication 0.267 0.300 0.85 5.23 × 10−4

rs3740360 (C/A) 10 (96015481) PLCE1 GWAS 0.219 0.271 0.75 5.84 × 10−8 0.80 (0.75–0.86) 1.15 × 10−9

Replication 0.242 0.273 0.85 0.0012

rs12263737 (A/G) 10 (96034903) PLCE1 GWAS 0.250 0.301 0.77 3.73 × 10−7 0.81 (0.75–0.87) 1.22 × 10−9

Replication 0.266 0.300 0.84 3.95 × 10−4

rs11187842 (T/C) 10 (96042501) PLCE1 GWAS 0.219 0.269 0.76 1.19 × 10−7 0.80 (0.75–0.86) 1.78 × 10−9

Replication 0.240 0.271 0.85 0.0011

rs753724 (T/G) 10 (96041407) PLCE1 GWAS 0.219 0.269 0.76 1.28 × 10−7 0.81 (0.75–0.86) 2.27 × 10−9

Replication 0.242 0.272 0.85 0.0012

rs3781264 (G/A) 10 (96060365) PLCE1 GWAS 0.229 0.278 0.77 3.43 × 10−7 0.81 (0.76–0.87) 4.18 × 10−9

Replication 0.250 0.280 0.85 0.0011

MAF cases, minor allele frequency in DSS cases; MAF controls, minor allele frequency in the controls; OR, odds of DSS per copy of the minor allele; P, P value using the one 
degree of freedom score test; ORmeta, odds ratio for the combined GWAS and replication cohorts; Pmeta, P value for the combined GWAS and replication cohorts; 95% CI, 95% 
confidence interval for the OR; GWAS, sample size of 2,008 DSS cases and 2,018 cord blood controls; replication, sample size of 1,737 DSS cases and 2,934 cord blood  
controls. All SNPs are intronic to their respective genes except those marked with an asterisk (*), which are exonic.
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analysis. We thus performed conditional analysis to assess the  
independence of the association observed at MICB rs3132468 from 
that of the nearby genes. Although the most significant SNP from the 
GWAS (rs3132468) could account for the majority of the association 
signal across the locus, we observed residual signals of association 
(0.0003 < P < 0.05) with SNPs near the vicinity of HLA-B and HLA-C 
as well as other neighboring genes (Supplementary Fig. 2a). These 
residual associations indicate that definitive identification of MICB 
as a gene associated with DSS could be complicated by its location 
within the broad MHC region, which is known for its extensive link-
age disequilibrium spanning multiple genes (Supplementary Fig. 2b). 
This precludes definitive identification of the causative gene without 
extensive further fine-mapping and resequencing. With regard to 
PLCE1 on chromosome 10, association analysis conditioning for the 
lead SNP (rs3743060, directly genotyped) did not identify any second-
ary signals of association (Supplementary Fig. 3a), which suggests 
that the lead SNP—or any of its close correlates in complete linkage 
disequilibrium with it and confined within their distinct genomic 
region (Supplementary Fig. 3b)—best explains the association signal 
at the locus. We did not observe any evidence of epistasis between 
SNPs at MICB and PLCE1 (P = 0.11).

MICB seems to be a promising candidate on the basis of the present 
strength of the statistical associations observed in the chromosome 6  
hit region. MICB encodes an inducible activating ligand for the 
NKG2D type II receptor on natural killer and CD8+ T cells9,10.  
Ligation of NKG2D by MICB stimulates antiviral effector functions 
in natural killer cells, including cytokine expression and the cyto-
lytic response11. We have previously reported that MICB, together 
with other genes associated with natural killer cell activation, are 
highly expressed in the leukocytes of people with acute dengue12. We 
therefore propose that the association between the MICB rs3132468 
genotype and susceptibility to severe dengue might reflect altered 
or dysfunctional natural killer and/or CD8+ T cell activation early 
in infection that results in a higher viral burden in vivo, which is a 
recognized factor in clinical outcome13,14. The recent finding that a 
SNP near the closely related MICA gene (rs2596542) is associated 
with hepatitis C virus–induced hepatocellular carcinoma is sugges-
tive of a pivotal role for MIC proteins in the pathogenesis of these 
Flaviviridae infections15.

Mutations within PLCE1 are associated with nephrotic syndrome16. 
Nephrotic syndrome is a kidney disorder in which dysfunction of the 
glomerular basement membrane results in proteinuria and hypopro-
teinemia that, when severe, leads to reduced vascular oncotic pressure 
and edema. These elements of nephrotic syndrome have striking simi-
larities with severe dengue and suggest a key role for PLCE1 in main-
taining normal vascular endothelial cell barrier function. In summary, 
our study identifies common variants in MICB and PLCE1 that are 
associated with susceptibility to severe dengue.

URLs World Health Organization Guidelines for Diagnosis, 
Treatment, Prevention and Control of Dengue, http://whqlibdoc.
who.int/publications/2009/9789241547871_eng.pdf; Sequenom,  
http://www.sequenom.com/; Applied Biosystems, http://www.
appliedbiosystems.com/absite/us/en/home.html; R Project, http://
www.r-project.org/.

MetHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Accession codes MICB mRNA, NM_005931; PLCE1 transcript 
variant 1 mRNA, NM_016341; PLCE1 transcript variant 2 mRNA, 
NM_001165979.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINe MetHODS
Patient enrollment and diagnosis. Blood samples for genotyping were col-
lected from patients enrolled into one of two research studies of children 
with dengue. In both studies, children were eligible if they were ≤15 years 
of age and had clinical signs, symptoms and hematological findings that led 
to a clinical diagnosis of incipient or established DSS, as defined by World 
Health Organization criteria (see URLs). All patients were resuscitated with 
bolus intravenous fluid therapy (≥15 ml per kg body weight in the first hour). 
Summary laboratory and clinical findings were recorded into case record 
forms during the inpatient period until the patient was discharged from hos-
pital, died or was transferred to another hospital. Blood samples for research 
and diagnostic tests were collected at the time of enrollment and again before 
patient discharge from hospital. The first study enrolled patients in the pediat-
ric intensive care unit of the Hospital for Tropical Diseases (Ho Chi Minh City, 
Vietnam) between 2001 and 2009. The second study enrolled patients in high 
dependency rooms or the intensive care departments of Children’s Hospital 
No. 1 and Children’s Hospital No. 2 (Ho Chi Minh City, Vietnam), Tien Giang 
Provincial Hospital (My Tho City, Vietnam), Dong Thap Provincial Hospital 
(Cao Lanh City, Vietnam) and Sa Dec Hospital (Sa Dec Town, Vietnam) 
between 2008 and 2010. The parent or guardian of each participant gave writ-
ten informed consent to participate. The Scientific and Ethical Committees 
of each study site approved the study protocols, as did the Oxford University 
Tropical Research Ethical Committee.

The GWAS was performed on DNA samples (n = 1,039) from patients 
enrolled between 2001 and 2009 at the Hospital for Tropical Diseases and from 
patients (n = 969) enrolled at the other five participating hospitals during 2008 
only. The replication study was performed in patients (n = 1,737) enrolled 
between 2009 and 2010 at Children’s Hospital No. 1, Children’s Hospital No. 2,  
Tien Giang Provincial Hospital, Dong Thap Provincial Hospital and Sa Dec 
Hospital. All patients represented in the GWAS and replication phases had 
laboratory evidence of dengue, as shown by reverse transcription PCR detec-
tion of viral RNA in plasma collected at the time of enrollment and/or by 
serological detection of dengue-virus–reactive IgM or IgG in single or paired 
plasma specimens.

Cord blood DNA samples. Blood from the cord of newborn infants was col-
lected in one of two prospective studies. The first study was conducted at 
Hung Vuong Hospital (Ho Chi Minh City, Vietnam) between 2004 and 2006. 
The second study was conducted at Hung Vuong Hospital and Dong Thap 
Hospital between 2009 and 2010. All participants gave written informed con-
sent to participate. The Scientific and Ethical Committees of each study site 
approved the study protocols, as did the Oxford University Tropical Research 
Ethical Committee. DNA was extracted from cord blood using Nucleon BACC 
Genomic DNA Extraction Kits (GE Healthcare, USA).

The use of population controls. The number of potentially misclassified 
cord blood controls in the GWAS and replication stages was estimated to be 
11 (out of 2,018) in the GWAS stage and 15 (out of 2,934) in the replication 
stage, based on the following three assumptions: that all individuals in a given 
birth cohort will experience two sequential infections by different serotypes 
during their lifetime17; that only up to 25% of these infections are clinically 
apparent18–23; and that 2% of clinically apparent secondary infections develop 
DSS. These assumptions estimate a lifetime population risk of DSS to be 0.5%. 
This is consistent with estimates of the prevalence of DSS cases expected over 
the first 15 years in a given birth cohort under the assumption that the inci-
dence of DSS is constant (DSS incidence in southern Vietnam in 2009 was 
26.59/100,000; based on statistics obtained from the Dengue Control program, 
Ministry of Health Vietnam, 2010). Under this assumption, we would expect 
0.4% of a birth cohort to experience DSS before the age of 15 years.

Genotyping. Cases and controls were randomized on plates and were geno-
typed with Illumina Human 660W Quad BeadChips following manufacturer 
instructions. The successful use of this chip has been previously documented24. 
For the replication stage, 72 of the selected SNPs that were not on the broad 
MHC region were genotyped with the Sequenom (see URLs) MassArray 
primer extension iPLEX system. MICB rs3132468 and rs3134899 were geno-
typed using the Applied Biosystems (see URLs) TaqMan platform.

Statistical analysis. Stringent quality control filters were applied to remove 
poorly performing SNPs and samples using tools implemented in PLINK 
(version 1.7)25. The quality control criteria were as follows: SNPs that had 
genotypes with more than 5% missing, showed gross departure from Hardy–
Weinberg equilibrium (a departure of P < 10−7) or had a minor allele frequency 
below 1% were excluded from downstream analysis. For sample quality con-
trol, samples with an overall genotyping call rate of <95% were excluded from 
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