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A genome-wide association study (GWAS) for open angle glaucoma (OAG) blindness was 

conducted using a discovery cohort of 590 cases with severe visual field loss and 3956 controls. 

Genome-wide significant associations were identified at TMCO1 (rs4656461 (G) OR=1.68, 

p=6.1x10
-10

) and CDKN2B-AS1 (rs4977756 (A) OR = 1.50, p=4.7x10
-9

). These findings were 

replicated in a second cohort of advanced OAG cases (rs4656461 p=0.010; rs4977756 p=0.042) 

and two further cohorts of less severe OAG. The study wide odds ratios are 1.51 (1.35-1.68), 

p=6.00x10
-14

 at TMCO1, and 1.39 (1.28-1.51), p=1.35x10
-14

 at CDKN2B-AS1 (also known as 

CDKN2BAS and ANRIL). Carriers of 1 or more risk alleles at both loci concurrently are at >3-

fold increased risk of glaucoma. We demonstrate retinal expression of genes at both loci, and 

show that CDKN2A and CDKN2B are strongly upregulated in an animal model of glaucoma.  

Glaucoma is a group of neurodegenerative ocular diseases united by a clinically characteristic optic 

neuropathy. It is the second leading cause of blindness worldwide
1
. Primary open angle glaucoma 

(OAG) is the commonest subtype
1
. OAG pathogenesis and factors determining disease progression 

are poorly understood. Early intervention with measures to reduce intraocular pressure retards 

visual loss in most individuals
2
, but many cases of glaucoma remain undiagnosed until irreversible 

vision loss has occurred. Elucidation of SNPs associated with severe outcomes could enable better 

targeting of treatments which carry cost and morbidity, to individuals at highest risk of blindness. 

Linkage and candidate gene studies have identified several genes likely to be involved in OAG 

including myocilin
3
 and NTF4

4
, although for the latter, findings have varied in different 

populations
5
. A recent GWAS using Icelandic OAG cases of unselected severity identified 

association with variants near CAV1
6
. To identify genes predisposing individuals to OAG blindness, 

we performed a GWAS in Australian Caucasians with advanced OAG (individuals with OAG who 

have progressed to severe visual field loss or blindness). 

Advanced OAG cases (N=590 after data cleaning) were selected from the Australian & New 

Zealand Registry of Advanced Glaucoma (ANZRAG) and the Glaucoma Inheritance Study in 

Tasmania (GIST)
7,8

. Two previously described Australian samples were used as controls (N=1801 

and 2155, total 3956)
9
. Cohort demographics are given in Table 1 and recruitment and disease 

definitions are in the Supplementary Material. Samples were typed on Illumina arrays (Cases: 

Omni1; Controls: HumanHap610 or HumanHap660). Cases and controls were combined into a 

single data set for cleaning and imputation. All participants were Australian Caucasians of European 

descent. 

After cleaning, 298,778 SNPs were available for association testing. The genomic inflation factor 

(λ) in the discovery cohort was 1.06 (Q-Q plots uncorrected and corrected for λ are in 

Supplementary Fig. 1A and B). The λ reduced to 1.04 when the first 10 principal components were 

included as covariates. The association results across the genome are displayed in Figure 1; results 

are presented corrected for λ=1.06, without correction for principal components. Results with 

correction for principal components were similar (data not shown). Two regions clearly reached 

genome-wide significance (defined at p<5x10
-8

, Table 2), with p=6.1x10
-10

 at rs4656461 (G) near 

the TMCO1 gene on chromosome 1q24, and p=4.7x10
-9

 at rs4977756 (A) in the CDKN2B-AS1 gene 

on chromosome 9p21. Association results at these loci for both genotyped and imputed SNPs are 

shown in Figure 2. Imputation of SNPs from the 1000 Genomes project did not reveal any SNPs 

with substantially stronger association than the top genotyped SNPs (Fig. 2), or identify additional 

genome-wide significant loci. At both loci, the most associated SNP is supported by concordant 

results for other SNPs in moderate or high linkage disequilibrium.  

Three replication cohorts were drawn from the Australian Caucasian population and are all of 

European descent (Table 1). The advanced glaucoma replication cohort consisted of 334 additional 

advanced OAG cases with 434 elderly controls. The less severe cohort consisted of 465 OAG cases 
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and 1436 controls from the Wellcome Trust Case-Control Cohort 1958 Birth Cohort (WTCCC 

58BC). The third cohort was a population based study, the Blue Mountains Eye Study, containing 

93 cases of glaucoma and 2712 examined elderly controls. The most associated SNPs at each locus 

clearly replicated in all cohorts (Table 2). Other SNPs in both of these regions were also associated 

in the replication cohorts (Supplementary Table 1A). Combining all replication cohorts gave an 

odds ratio (OR) of 1.39 (95% CI, 1.20-1.61), p=7.56x10
-6

 for rs4656461 near the TMCO1 gene and 

1.33 (1.19-1.48), p=4.19x10
-7

 at rs4977756 in the CDKN2B-AS1 gene (Supplementary Table 1B). 

All SNPs of interest are also still significantly associated following adjustments for age and sex in a 

logistic regression, indicating that the observed associations are independent of these parameters, 

despite the differences between case and control cohorts. We combined all available controls to 

enable a comparison of odds ratios for the risk alleles at both loci between the advanced OAG 

cohorts and the less severe OAG cases (Supplementary Table 1C). Stronger ORs were observed in 

the advanced cases, and these results support the hypothesis that the risk alleles identified are 

associated with all OAG, but are more strongly associated with cases which progress to advanced 

disease. Alternatively, higher diagnostic certainty in severe disease could account for this 

observation. 

 

Combined analysis of discovery and all replication cohorts generated an overall OR 1.51 (1.35-

1.68), p=6.0x10
-14

 for rs4656461, and 1.39 (1.28-1.51), p=1.35x10
-14

 for rs4977756.  Haplotype 

analyses indicate three common haplotypes around TMCO1 and two at CDKN2B-AS1. The overall 

p-value for association is 6.56x10
-12

 around the TMCO1 gene and 2.59x10
-9

 at the CDKN2B-AS1 

locus (Supplementary Table 2). In both cases the risk alleles detected in the single SNP analysis are 

present on a single common haplotype which shows significant association. The haplotype with the 

alternative allele at each location appears to be protective against OAG development. Twelve OAG 

patients homozygous for the risk allele at rs4656461 were sequenced at all coding exons of the gene 

and the 3’UTR. Several common SNPs in the 3’UTR were found to be present on the risk haplotype 

although the functionality of these SNPs is not known (Supplementary Table 3). The lack of 

identified coding variants suggests the true causative variants are likely to be located in a regulatory 

region of TMCO1. 

 

To obtain an unbiased estimate of risk for advanced glaucoma, we focused on the first replication 

cohort
10

. Taking these advanced glaucoma cases (N=334), the matched examined elderly controls 

(N=434), and similar age-matched controls from the BMES cohort (N=502), we fitted rs4977756 

and rs4656461 in a logistic regression. Assuming an additive model, individuals carrying four risk 

alleles (two at each locus) had 4.50 (95% CI=1.84-11.01) fold higher risk of advanced OAG relative 

to non-carriers. Grouping individuals with one or two risk alleles together at both loci (dominant 

model), gave a 3.03 (95% CI=1.52-6.07) fold increased risk. Eighteen percent of the normal 

population are in this risk category.  

 

Two control cohorts were used in this study; one a population sample based on parents of twins and 

the other a sample of endometriosis cases. Cases and controls were subjected to the same cleaning 

regime to ensure a well matched dataset. The male:female ratio was similar between the case cohort 

and the twin-based controls, but the endometriosis 'controls' were all female. We repeated the 

analysis excluding the endometriosis controls. The p-values at rs4656461 and rs4977756 changed to 

p=5.3x10
-9

 and p=1.1x10
-7

, respectively, with the reduced significance due to smaller sample size as 

allele frequencies are very similar between control cohorts (Supplementary Table 4A). X 

chromosome results were also similar. In addition, we utilised the Wellcome Trust Case-Control 

Cohort 1958 Birth Cohort (WTCCC 58BC) data as an alternative control cohort. Both loci reached 

genome-wide significance in this analysis, indicating that our findings do not represent an artefact 

of the historic controls utilised (Supplementary Table 4B, Supplementary Fig. 1C). 

 

SNP rs4656461 at the 1q24 locus is ~6.5 kb downstream of the TMCO1 gene. SNP rs4977756 at the 
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9p21 locus is located within the antisense RNA gene CDKN2B-AS1. This region also harbors the 

tumour suppressor genes CDKN2A and CDKN2B and is adjacent to the MTAP gene. CDKN2A also 

encodes an alternate open reading frame, ARF. We analysed expression of these genes in human 

ocular tissues by RT-PCR. All the genes are expressed in the iris, ciliary body, retina and optic 

nerve, but the expression levels varied among the analysed tissues (Fig. 3A). Furthermore, we 

determined which of the CDKN2B-AS1 splice variants were expressed in the retina, the tissue 

ultimately compromised in glaucoma. RT-PCR revealed expression of three splice variants of this 

gene in the human retina (Fig. 3B). This is consistent with expression of more than one CDKN2B-

AS1 splice variants in a tissue or cell line
11,12

. We utilized well characterized antibodies directed 

against CDKN2A, CDKN2B, MTAP and TMCO1 to explore the distribution of these proteins in rat 

retina. CDKN2A and CDKN2B were expressed in retinal ganglion cells (RGC) and other retinal 

cell types displaying nuclear patterns of localization, similar to those reported in other tissues 

(Supplementary Fig. 2). TMCO1 was also associated with all retinal cells, but strongest expression 

was observed in RGC. MTAP was expressed at low levels in retinal astrocytes (data not shown). To 

ascertain whether these genes are candidates for involvement in the pathogenesis of glaucoma, we 

performed real-time PCR analysis of their expression levels in a validated rat model of glaucoma 
13

 

(Fig. 4). Strong upregulation of expression of Cdkn2a and Cdkn2b, but not Tmco1 was observed in 

the retina one week after induction of ocular hypertension, a time-point corresponding to ongoing 

RGC death, as indicated by axonal cytoskeleton damage in the optic nerve of the animals studied. 

 

Recessive mutations in TMCO1 cause a syndrome consisting of craniofacial dysmorphism, skeletal 

anomalies and mental retardation
14

.  The gene encodes a transmembrane protein with a coiled-coil 

domain that may localise to the Golgi apparatus and endoplasmic reticulum
15

 or to the 

mitochondria
16

 in different cell types. In humans, the gene is ubiquitously expressed in developing 

and adult tissues
14

. The protein sequence is completely conserved among many mammalian 

species
14

.  Although requiring experimental confirmation, Zhang et al proposed a role for TMCO1 

in apoptosis
16

. This may suggest a mechanism for the association with glaucoma, which is 

characterised by excessive RGC apoptosis. It is also possible that other genes adjacent to TMCO1 

such as ALDH9A1 could be responsible for the glaucoma association observed in this study.  

 

CDKN2B-AS1 resides in the 9p21 region that has been clearly associated with cardiovascular 

disease 
17

, diabetes
18

, intracranial aneurysm
19

 and glioma
20

. The antisense RNA encoded by 

CDKN2B-AS1 regulates neighbouring genes at 9p21, particularly CDKN2B with which its 

expression levels are reciprocally related
21

. CDKN2B and CDKN2A activate the retinoblastoma 

tumour suppressor pathway, whereas ARF activates the p53 tumour suppressor pathway. The 9p21 

locus is activated in response to oncogenic stimuli
22

. The CAV1 gene, recently reported to be 

associated with OAG
6
, regulates mitogenic signalling and acts synergistically with CDKN2A

23
. 

Although the CAV1 SNP (rs4236601) did not reach statistical significance in this GWAS (p=0.17 

for a 1 sided test), the observed odds ratio of 1.07 is consistent with that previously reported in 

larger European cohorts, as are the allele frequencies (cases; 0.290, controls; 0.276 for A allele). It 

should be noted that many of the cases in the current study are included in the previously reported 

Australian replication cohort
6
. Genes at the 9p21 locus are known to play a role in aberrant cell 

division, and we propose that the 9p21 OAG risk variants may predispose RGCs to gradual 

apoptosis. This hypothesis is supported by observations that the opposite risk alleles in CDKN2B-

AS1 are associated with glaucoma and glioma. For example, at rs4977756 and rs1063192, the G and 

C alleles respectively, are protective for glaucoma but are the risk alleles for glioma
20

. The direction 

of association is the same for glaucoma as for cardiovascular disease
17

 and diabetes
18

, but further 

work is required to determine whether the same causative variant/s underlie these different disease 

associations. 

 

Recently, rs1063192 in CDKN2B was reported to be associated at genome-wide significance with 

optic cup-to-disc ratio in normal individuals
24

.  Nominal association of this SNP with glaucoma in a 
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small case series was also reported
24

. In our study, this particular SNP had a p-value of 3.9x10
-7

 in 

the discovery cohort and the nearby SNPs in CDKN2B-AS1 reached genome-wide significance. 

Thus, we provide further compelling evidence that the 9p21 region is a strong genetic risk factor for 

OAG in support of the previous suggestive association with OAG at this locus. 

 

 

This study shows clear evidence of association of two genes, TMCO1 and CDKN2B-AS1 with 

advanced OAG, imparting a 3 fold increase in risk for carriers of one or more risk alleles at the two 

loci. In addition, we have shown strong upregulation of CDKN2A and CDKN2B in response to 

elevated intraocular pressure, further indicating that this region is important in the molecular 

pathways leading to glaucoma development. This discovery was made utilising a novel approach of 

selecting cases with severe blinding OAG for the GWAS, but as expected the risk alleles are also 

associated with less severe cases, demonstrating the efficacy of using extreme cases to identify 

genes for a common disease. OAG can be difficult to diagnose in the early stages, and these 

findings may be useful in the future to prioritise treatment effectively for glaucoma suspects in 

whom it is often difficult to decide upon timing of treatment initiation. As treatment for glaucoma is 

proven to slow disease progression
2
, timely initiation of conventional treatment in those at highest 

risk could reduce glaucoma blindness. In addition, we have begun to elucidate novel biochemical 

pathways involved in this disease, which could lead to more targeted OAG treatment regimes 

aiming to protect RGC in ways other than lowering intraocular pressure which has hitherto formed 

the cornerstone of treatment. 

 

 

 

WEB RESOURCES 

EIGENSOFT: http://genepath.med.harvard.edu/~reich/Software.htm 

MACH2: http://www.sph.umich.edu/csg/abecasis/MACH/index.html  

1000 Genomes: http://www.1000genomes.org 

PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/  

LocusZoom: http://csg.sph.umich.edu/locuszoom/ 

Australian & New Zealand Registry of Advanced Glaucoma: www.anzrag.com 

European Genome-phenome Archive: http://www.ebi.ac.uk/ega/page.php 
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Figure legends 

 

Figure 1: Association results for genotyped SNPs. SNPs with p-value reaching genome-wide 

significance (p<5x10
-8

) are shown in black. Results are corrected for λ=1.06. Chromosome 23 

refers to the X chromosome.  

 

 

Figure 2: Association results for SNPs at the genome-wide significant loci, corrected for lambda of 

1.06. Genotyped SNPs are indicated by solid triangles and imputed SNPs by hollow circles. The top 

ranked SNP at each locus is shown as a solid diamond. Imputation p-values for all SNPs are plotted. 

Color scheme indicates linkage disequilibrium between top ranked SNP and other SNPs in the 

region. Note imputed and genotyped p-values for genotyped SNPs differ slightly because for the 

imputed result, analysis is based on dosage scores whereas with genotyped SNPs hard genotype 

calls are used. A) chromosome 1q24 region. Imputation p-value was p=1.0x10
-9

 for top SNP 

rs7524755, with the top genotyped SNP, rs4656461 the fourth best SNP after imputation, p=1.6x10
-

9 
. B) chromosome 9p21 region. Imputation p-value was p=3.7x10

-9
 for top SNP rs10757270, with 

top genotyped SNP, rs4977756 the second best SNP after imputation, p=8.1x10
-9

.  

 

 

Figure 3: Ocular expression of the genes at the glaucoma associated loci. A) Expression of the 

TMCO1, CDKN2A/ARF, CDKN2B, CDKN2B-AS1 and MTAP genes was analyzed in various human 

eye tissues by RT-PCR using gene-specific primers (Supplementary Table 5). GAPDH was 

amplified to control for the amount of cDNA template used from each tissue for PCR. The expected 

size of each PCR product is indicated in Supplementary Table 5B) Expression of CDKN2B-AS1 

splice variants in human retina. RT-PCR was performed with gene-specific primers in exon 1 and 

19 of the CDKN2B-AS1 gene (Supplementary Table 5C). Lanes 1, 2 and 3 correspond to the splice-

variants amplified upon primer annealing at 52°C, 54°C and 56°C respectively. The variant in lane 

1 results from splicing of exons 1-5-6-7-19, in lane 2 from splicing of exons 1-5-6-7-10-11-13-14-

15-16-17-18-19 and in lane 3 from splicing of exons 1-5-6-7-15-16-17-18-19. These variants are 

different to previously reported CDKN2B-AS1 variants 
11,12

. The full-length variant (DQ485453) 

and alternatively spliced variants (DQ485454 and GQ495924) 
11,12

 were undetectable in human 

retina (data not shown). M, molecular weight markers in basepairs; RT
-
, reverse transcription 

negative control; -ve C, PCR negative control. 

 

 

Figure 4:  (A) Expression of Tmco1 Cdkn2a and Cdkn2b mRNAs in rat retina 7 days after 

induction of experimental glaucoma (mean intraocular pressure at time of death of 32±3.7 mmHg) 

as determined by quantitative real-time RT-PCR, where n=4. Error bars indicate standard error of 

the mean. (B) Axonal degeneration in the distal optic nerve of one representative animal, as 

evaluated by immunolabelling for non-phosphorylated neurofilament heavy protein. Numerous 

axonal swellings and abnormalities are visible in the optic nerve of the treated eye compared with 

the control optic nerve, which appears normal. Scale bar panels B-C: 25 µm. 
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Tables 

 

 

Table 1: Demographic features of the cohorts. 

 
 n  age  % female 

Cohort Case Control  Case Control p-value  Case Control p-value 

Discovery 615 3956 
 

76.6±13.9 43.4±11.5 <1.0x10-6 
 

52.1 78.9* <1.0x10-6 

Advanced 

replication 
334 434 

 
74.9±11.7 78.7±9.1 2.0x10-6 

 
55.6 59.1 0.35 

Less Severe 

replication 
465 1436 

 
71.8±12.6 52.0±0 <1.0x10-6 

 
61.4 49.7 1.2x10-5 

Blue 

Mountains 

Eye Study 

93 2712 

 

76.5±9.4 70.1±10.1 <1.0x10-6 
 

8.5 45.4 <1.0x10-6 

Combined 

replication 
892 4582 

 
72.0±13.0 64.9±12.4 <1.0x10

-6 
 

51.1 47.4 0.050 

* one of the two control cohorts was entirely female, discussed in main text. 
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Table 2: Association results for genome-wide significant genotyped SNPs in the discovery cohort and three replication cohorts. The frequency of the risk 

allele in cases and controls is given. All tests were performed under an allelic model. 

 

 

 
   Discovery Cohort Advanced glaucoma replication Less severe glaucoma replication Blue Mountains Eye Study 

SNP:Risk 

allele 
Chr 

Build 36 

position 

Frequency 

case/control 

P- 

value* 

OR (95% 

CI) 

Frequency 

case/control

P-

value 

OR  

(95% CI) 

Frequency 

case/control

P-

value 

OR  

(95% CI) 

Frequency 

case/control

P-

value 

OR  

(95% CI) 

rs4656461:G 1 163953829 0.19/0.12 6.1x10-10 
1.68 

(1.43-1.98) 0.17/0.12 0.010 
1.47 

(1.09-1.97) 0.15/0.12 0.026 

1.28 

(1.03-1.59) 0.17/0.12 0.022 

1.57 

(1.07-2.32) 

rs7518099:C 1 164003504 0.18/0.12 4.7x10-10 

1.67 

(1.42-1.96) 0.16/0.12 0.032 

1.38 

(1.03-1.86) 0.15/0.12 0.022 

1.29 

(1.04-1.61) 0.18/0.12 0.007 

1.68 

(1.15-2.46) 

rs4977756:A 9 22058652 0.69/0.60 4.7x10-09 
1.50 

(1.31-1.70) 0.69/0.63 0.042 

1.25 

(1.01-1.56) 0.64/0.58 0.013 

1.21 

(1.04-1.41) 0.68/0.60 0.015 

1.48 

(1.08-2.04) 

rs10120688:A 9 22046499 0.58/0.48 1.4x10-08 

1.44 

(1.28-1.63) 0.56/0.52 0.153 

1.16 

(0.95-1.43) 0.51/0.46 0.003 

1.27 

(1.08-1.48) 0.57/0.48 0.025 

1.40 

(1.04-1.88) 

* corrected for lambda of 1.06 
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ONLINE MATERIALS & METHODS: 

Participant Recruitment: 

See Supplementary Note online. 

 

Genotyping and data quality control: 

Following DNA extraction Australian twin and endometriosis sample controls were genotyped at 

deCODE Genetics (Reykjavik, Iceland) on Illumina HumanHap 610W Quad and Illumina 

Human670Quad Beadarrays, respectively. Cases were genotyped in the laboratory of MAB, on 

Illumina Human1M-Omni arrays. SNPs with a mean BeadStudio GenCall score <0.7 were excluded 

from the controls. All samples had successful genotypes for >95% of SNPs. SNPs with call rates 

either <0.95 (minor allele frequency, MAF > 0.05) or <0.99 (MAF > 0.01), Hardy-Weinberg 

equilibrium in controls P<10
-6

, and/or MAF <0.01 were excluded. Cryptic relatedness was 

identified through the production of a full identity by state matrix and 0 cases and 72 controls were 

removed. Ancestry outliers were identified by principal component (PC) analysis, using data from 

11 populations of the HapMap 3 and five Northern European populations genotyped by the 

GenomeEUtwin consortium, using the EIGENSOFT package
25

 using a subset of 160,000 

independent SNPs. Individuals (n=25 cases and 219 controls) lying ≥ 2 standard deviations from the 

mean PC1 and PC2 scores were removed
30

. Following these exclusions there were 590 cases, 

genotyped for 790,038 SNPs and 3,956 controls, genotyped for 518,687 SNPs. Our primary 

analysis was based on a common set of 298,778 SNPs. To investigate population stratification in the 

cleaned data set, we generated Q-Q plots. These same SNPs were used to generate the first 10 

principal components for case and control samples combined using EIGENSOFT.  

 

Genomic imputation: 

Imputation for the Australian twins was performed using MACH2 with data obtained by the Centre 

d'Etude du Polymorphisme Humain from the 1000 Genomes reference panel 2010_03 release. 

Imputation was based on a set of autosomal SNPs common to all samples (n=292,883). The total 

number of SNPs imputed with imputation r
2
>0.5 was 5,548,553 and these were taken forward for 

analysis. 

 

Association analysis: 

Association analysis was performed using PLINK
26

. Dosage scores from imputation analysis was 

performed using MACH2DAT
27

. Analysis was conducted with and without the first 10 principal 

components included as covariates (with negligible difference to results, data not shown). Figure 2 

was prepared using LocusZoom
28

.  

 

Replication study genotyping and analysis 

All genome-wide significant SNPs were further examined in an independent replication, along with 

additional SNPs at each locus. SNPs chosen for genotyping were those mapping to each locus 

defined as within annotated genes TMCO1 (4 SNPs), CDKN2A (2 SNPs), CDKN2B (2 SNPs) or 

CDKN2B-AS1 (5 SNPS) and ranked within the top 1000 genotyped SNPs. In addition, SNPs 

previously reported as associated with other phenotypes at the 9p21 locus but not typed in the 

discovery phase were also included if the assay design allowed them to multiplex with the other 

SNPs (4 SNPs). SNPs were genotyped using iPLEX Gold chemistry (Sequenom Inc, San Diego, 

CA, USA) in a single plex on an Autoflex Mass Spectrometer (Sequenom Inc.) at the Australian 

Genome Research Facility (Brisbane, Australia). Genotypes for controls from the BMES cohort 

were extracted from a previously conducted genome-wide association scan using Illumina 

HumanHap 670 arrays. Genotypes of the WTCCC 58BC cohort typed on the Illumina 

HumanHap550 array were downloaded from the European Genome-phenome Archive and the 

relevant SNPs extracted. Each SNP in the replication phase was checked for consistent strand and 
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flipped in one dataset if necessary. Association analysis was conducted in PLINK.  Advanced 

replication cases were compared to 434 elderly examined controls. 465 less severe cases were 

compared to the WTCCC 58BC data (n=1436) and glaucoma cases from within the BMES (n=93) 

was analysed compared to all other participants with available genotype data (n=2712). Data were 

pooled for the combined replication cohort analyses. Age and sex were included in a logistic 

regression under an additive model. 

 

Haplotype analysis: 

The haplotype analysis was conducted on the combined dataset of all cases, the discovery controls 

and a subset of BMES controls that were genotyped in house. Analysis was conducted in PLINK. 

All four TMCO1 SNPs from the replication phase were included in the haplotype. Prior to analysis, 

the chromosome 9 locus was assessed in this data for linkage disequilibrium structure using 

Haploview
29

 . The “solid spine of LD” block definition was used and identified a block between 

SNPs rs3217992 and rs4977756, and haplotypes were calculated in this block. Inclusion of SNPs 

outside this block resulted in a large number of rare and less common haplotypes. Only haplotypes 

with frequency >1% were considered. 

 

Resequencing: 

The coding exons, 3’UTR and all splice sites of TMCO1 were sequenced in twelve cases who were 

homozygous for the risk allele (G) at rs4656461. Primers  are given in Supplementary Table 5. Each 

fragment was amplified by PCR with 0.5U of Hotstart Taq (Qiagen, Doncaster, Australia). 

Following clean-up of PCR products by incubation at 37
o
C with 2U of Shrimp Alkaline 

Phosphatase (USB, Clevland, OH) and 10U of Exonuclease I (New England Biolabs, MA), 

products were directly sequenced on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, 

Foster City, CA) with BigDye Terminators (Applied Biosystems) according to standard protocols.  

 

Estimates of effect size in replication cohort 

To calculate an unbiased estimate of risk for advanced glaucoma we focused on the replication 

cohort. Taking advanced glaucoma cases (N=334), and the full set of examined replication controls 

(N=936) we fitted rs4977756 and rs4656461 in a logistic regression using R
30

. Additive effects 

were modelled by coding SNPs as 0/1/2 risk alleles and dominance effects were modelled by 

coding homozygotes as 0 and heterozygotes as 1.  

 

Expression analysis in human ocular tissue 

Ocular tissues from post-mortem human eyes were obtained through the Eye Bank of South 

Australia, according to guidelines of the Southern Adelaide Health Service/Flinders University 

Human Research Ethics Committee. Total RNA was extracted using the RNeasy Mini Kit (Qiagen). 

First strand cDNA was synthesised using the Superscript III reverse transcriptase (Invitrogen, 

Australia) and random hexamers. Human retinal cDNA was synthesised using an oligo-dT primer. 

PCR was performed using the Hot Star Taq polymerase (Qiagen) and gene-specific primers 

(Supplementary Table 5B). For amplification of CDKN2B-AS1 splice variants, PCR was performed 

with gene specific primer Exon 1F (forward) in combination with either Exon 19R, Exon 12-3’R or 

Exon 13R primer (reverse) (Supplementary Table 5C) in the presence of Q Solution (Qiagen). 

Specificity of each amplified products was confirmed by sequencing. Coding exons in each variant 

were determined from alignment with the CDKN2B-AS1 reference sequence NR_003529.3. 

 

Immunohistochemistry in rat ocular tissue 

Tissue sections were deparaffinized in xylene and rinsed in 100% ethanol, before treatment with 

0.5% H2O2 for 30 min to block endogenous peroxidase activity. Antigen retrieval was achieved by 

microwaving the sections in 10 mM citrate buffer (pH 6.0). Tissue sections were then blocked in 

3% normal horse serum/ phosphate buffered saline (PBS) , incubated overnight at room temperature 

in primary antibody, followed by consecutive incubations with biotinylated secondary antibody 
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(Vector, Burlingame, CA) and streptavidin-peroxidase conjugate (Pierce, Rockford, IL). Color 

development was achieved with NovaRED (Vector). Sections were counterstained with 

hematoxylin, dehydrated and mounted. Specificity of antibody staining was confirmed by 

incubating adjacent sections with mouse IgG1 isotype control (BD Pharmingen) or normal rabbit 

serum for the monoclonal antibody and polyclonal rabbit antibodies, respectively. Primary 

antibodies used: anti-mouse CDKN2A (Abcam, clone 2D9A12, 1:1000), CDKN2B (Cell Signaling 

Technology, #4822, 1:1000), anti-rabbit TMCO1 (Aviva Systems Biology, ARP49429_P050, 1:500 

to 1:1000). 

 

For Western blotting to confirm specificity of the TMCO1 antibody, samples from rat liver, brain, 

retina and optic nerve were sonicated in freshly prepared 20mM Tris/HCl buffer (pH 7.4) 

containing 2mM EDTA, 0.5mM EGTA, the protease inhibitors phenylmethyl-sulphonyl fluoride 

(0.1mM), leupeptin (50 µg/ml) and aprotinin (50 µg/ml) plus a phosphatase inhibitor cocktail. An 

equal volume of sample buffer (62.5 mM Tris/HCl, pH 7.4, 4% SDS, 10% glycerol, 10% β-

mercaptoethanol and 0.002% bromophenol blue) was added and samples were boiled for 3 min. 

Samples were size fractionated by SDS-PAGE and transferred onto PVDF membrane. Blot was  

blocked with 5% skimmed milk/Tris buffered saline containing 0.1% Tween 20, probed with 

antibodies to actin or TMCO1 followed by appropriate secondary antibodies conjugated to biotin, 

and then streptavidin-peroxidase conjugate. Blot was developed with a 0.016% solution of 3-amino-

9-ethylcarbazole in 50 mM sodium acetate (pH 5) containing 0.05% Tween-20 and 0.03% H2O2. 

 

Evaluation of gene expression levels in a rat model of glaucoma 

Sprague-Dawley rats were anaesthetised with an intraperitoneal injection of 100 mg/kg ketamine 

and 10 mg/kg xylazine and local anesthetic drops applied to the eye. Ocular hypertension was 

induced in the right eye of each animal by laser photocoagulation of the trabecular meshwork as 

previously described
13

. IOPs were measured in both eyes at baseline, 8h, day 1, 3 and 7 using a 

rebound tonometer calibrated for use in rats. All rats were killed by transcardial perfusion with 

physiological saline under deep anaesthesia. The retinas were dissected for RT-PCR, while the 

chiasm from each rat was taken for immunohistochemistry to verify that the procedure had induced 

an appropriate injury response using the same method detailed above. Total RNA was isolated from 

each retina and first strand cDNA synthesised from 2 µg DNase-treated RNA. Duplicate real-time 

PCR reactions were carried out using the cDNA equivalent of 20 ng total RNA for each sample in a 

total volume of 25 µl containing 1 × SYBR Green PCR master mix (BioRad), in an IQ5 icycler 

(Bio-Rad)..Primer sets used are detailed in Supplementary Table 5. After the final cycle of the PCR, 

primer specificity was checked by the dissociation (melting) curve method. The relative expression 

in each sample was calculated using Gapdh as reference mRNA as previously described
31

. 
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