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We report a genome-wide association study of melanoma
conducted by the GenoMEL consortium based on 317K
tagging SNPs for 1,650 selected cases and 4,336 controls,
with replication in an additional two cohorts (1,149 selected
cases and 964 controls from GenoMEL, and a population-based
case-control study in Leeds of 1,163 cases and 903 controls).
The genome-wide screen identified five loci with genotyped
or imputed SNPs reaching P o 5 � 10�7. Three of these
loci were replicated: 16q24 encompassing MC1R (combined
P ¼ 2.54 � 10�27 for rs258322), 11q14-q21 encompassing
TYR (P ¼ 2.41 � 10�14 for rs1393350) and 9p21 adjacent to
MTAP and flanking CDKN2A (P ¼ 4.03 � 10�7 for rs7023329).
MC1R and TYR are associated with pigmentation, freckling and

cutaneous sun sensitivity, well-recognized melanoma risk factors.
Common variants within the 9p21 locus have not previously
been associated with melanoma. Despite wide variation in allele
frequency, these genetic variants show notable homogeneity of
effect across populations of European ancestry living at different
latitudes and show independent association to disease risk.

Cutaneous melanoma is almost entirely a disease of fair-skinned
individuals. Increased risk for melanoma is associated with a family
history of the disease1, pigmentation phenotypes, the number of
melanocytic nevi2,3 and iatrogenic immuno-suppression4. Pigmentation
risk factors include fair skin, blue or green eyes, blond or red hair, sun
sensitivity or inability to tan5–8, each associated with an approximate
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doubling of risk. Variants of the MC1R (melanocortin-1 receptor)
gene are associated with the combination of red hair, freckling and
sun sensitivity, but MC1R may also have a nonpigmentation effect7–10.
A detailed genetic screen of pigmentation loci found that TYR
(tyrosinase) gene variants and a haplotype spanning the ASIP (agouti
signaling protein) locus were also associated with melanoma11.
Increased intermittent exposure to UV radiation, rather than chronic
exposure, is thought to be responsible for the continued increase in
incidence in many populations12.

The most common high-penetrance melanoma susceptibility gene
(CDKN2A) maps to 9p21 (ref. 13). Germline CDKN2A mutations are
carried by about 2% of all melanoma cases across populations14. The
more cases of melanoma in a family, the more prevalent are CDKN2A
germline mutations15, which seem to be associated with increased
numbers of nevi in at least some families16.

This study was carried out by the GenoMEL Consortium (Supple-
mentary Note), which focuses its efforts on studies of the genetic
susceptibility to melanoma. The current genome-wide association
study (GWAS) is based on population samples collected by GenoMEL

participants to identify common genetic var-
iants contributing to melanoma risk across
populations of European ancestry living at
different latitudes. In total, ten GenoMEL
groups contributed 1,650 cases and 1,065
controls of European ancestry for this
GWAS (Supplementary Table 1). Cases
were selected in an effort to enrich for indi-
viduals that may have greater genetic predis-
position to melanoma, through selection of
cases with family history, multiple primaries
or early onset of disease (see Online Meth-
ods). Genotyping results were also available
from 1,824 French controls held by Centre
National de Génotypage (CNG) and 1,447
UK controls from the 1958 Birth Cohort
genotyped by the Wellcome Trust Case Con-
trol Consortium (WTCCC)17 (Supplemen-
tary Fig. 1).

Following quality control and exclusion of
persons of apparent non-European ancestry
through principal components analysis (Sup-
plementary Fig. 2), case-control analyses
were conducted both (i) stratified (the pri-
mary analysis) and (ii) unstratified by geo-
graphical region (Fig. 1). The unstratified
analysis should provide greater power for
associations common to multiple sample
sets, whereas the stratified analysis protects
against population stratification but is likely
conservative in the absence of stratification.

To confirm the effectiveness of our methods for dealing with strati-
fication, we produced quantile-quantile plots (Supplementary Note).
We selected regions with multiple SNPs (within 50 kb) that each had a
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Figure 2 Stratified CA trend tests. The �log10 P values are from the CA

trend test stratified (by geographical region) for genotyped and imputed

SNPs in candidate regions for follow-up. Genotyped SNPs are shown in
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P value o10�5 from either the stratified or unstratified analysis and
conducted imputation on these regions. We found five regions, on
chromosomes 2, 5, 9, 11 and 16, in which at least one imputed or
genotyped SNP achieved genome-wide significance (P o 5 � 10�7,
Table 1, Supplementary Table 2 and Fig. 2). The chromosome 2
region showed strong evidence of association in the unstratified
analysis only and was not followed up as it contains the LCT (lactase)
gene, whose SNPs are known to vary in frequency across Europe
(Supplementary Table 2)18. To replicate the other loci harboring
genome-wide significant SNPs, we analyzed an independent set of
1,149 cases and 964 controls from GenoMEL. As in the first cohort,
cases were selected for enrichment of family history, multiple
primaries or early onset of disease (see Online Methods and

Supplementary Note). A further replication set comprised 1,163 cases
and 903 controls from population-based studies from Leeds, UK.
Samples were genotyped at the most significant SNPs from the GWAS,
and also at any imputed SNPs that showed more significant associa-
tion. If assays could not be produced or analyzed, alternative SNPs
were genotyped.

Of the four regions that we attempted to replicate, only one
(chromosome 5) showed no evidence of replication (Table 1 and
Supplementary Table 3). The strongest association was with a region
near the telomere of chromosome 16q: the three SNPs chosen for
replication covered a 340-kb region with P values ranging between
7.99 � 10�11 and 7.54 � 10�17 in the GWAS sample and between
1.16 � 10�12 and 2.54 � 10�27 in the combined (genome-wide and
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Figure 3 Forest plot of associations by geography and case category. The forest plot of the estimated per-allele OR from the CA trend test across

geographical regions and overall for (i) chromosome 9 (rs7023329, top left), (ii) chromosome 11 (rs1393350, top right), (iii) chromosome 16 (rs258322,

middle left), (iv) by case-category for these three SNPs (middle right), (v) chromosome 20 (rs1885120, only genotyped in replication set, bottom left) and

(vi) chromosome 22 (rs2284063, bottom right).
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replication phases) sample. This region includes several candidate
genes, notably MC1R, CDK10 (involved in cell cycle regulation) and
FANCA (which regulates genomic stability). A number of the 16q
SNPs were reported earlier by Han et al.19, who in a GWAS examining
hair color and skin pigmentation identified rs258322, which showed
the strongest effect in both their and our study. Han et al.19 showed
that the rs258322 signal was explained by functional MC1R variants.
In this study, stepwise regression analysis of 30 tag SNPs covering
1.4 Mb on 16q24 (Supplementary Table 4) showed evidence for
association with three SNPs (rs258322, rs4785763, rs8059973); one of
these (rs8059973) was not reported by the Han et al. study19 and
seems to have an association independent of the other two on
melanoma risk. The magnitude of the association with rs258322
(per-allele odds ratio (OR) of 1.67, 95% confidence interval (CI) ¼
1.52–1.83, Table 1) is notable, as it is comparable to that found by a
recent meta-analysis of MC1R variants9, even though this SNP is
distant from MC1R.

The chromosome 11 region (overall strongest evidence for
rs1393350, P ¼ 2.41 � 10�14) includes the TYR gene, which has
previously been associated with melanoma11; the coding variant
(rs1126809) is included in the replication panel and shows a strong
association in terms of OR for genotyped SNPs (OR ¼ 1.27, 95% CI
¼ 1.16–1.40, P ¼ 1.17 � 10�6; Table 1 and Supplementary Table 3).
Stepwise regression analysis indicates that, after accounting for
rs1393350, no other SNPs in the region were independently associated
with melanoma (Online Methods and Supplementary Table 4).

The third locus replicated is on 9p21, with the combined P value
reaching 4.03 � 10�7 for rs7023329, which falls within the MTAP gene
(Table 1 and Supplementary Table 3). Stepwise regression analysis of
11 tag SNPs covering a 2-Mb region on 9p21 showed evidence for the
independent associations with one replicated SNP (rs7023329) plus
another one, rs1011970, which is 246 kb centromeric and is within
ANRIL, an antisense noncoding mRNA starting in the promoter of the
p14ARF transcript of the CDKN2A gene and overlapping CDKN2B20

(Supplementary Table 4, Supplementary Fig. 3). Notably, antisense
transcripts in the MTAP region have been suggested for CDKN2A
and CDKN2B3.

We also attempted to replicate findings from two other related
genome-wide association studies21,22. SNPs in these regions did not
achieve the critical significance level for follow-up in our GWAS study,
but the available evidence suggested these regions as strong candidates
for containing melanoma susceptibility genes. A further pigmentation
gene has been reported to be associated with melanoma (ASIP11),
adjacent to a reported melanoma locus recently identified by a pooling
study21; this chromosomal region is confirmed by the present data
(Table 1 and Supplementary Table 3). In an accompanying article in
this issue of the journal, Falchi et al. report a GWAS of nevus count
variation based on volunteer twins from the UK, with replication in an
Australian cohort22. Falchi et al. report two loci associated with nevus
count and also show these are each associated with increased risk of
melanoma. One of these loci overlaps with the chromosome 9 region
identified here (Supplementary Note). The second nevus locus reported
is on chromosome 22 and was also found to be associated with mela-
noma risk in our study (Table 1 and Supplementary Table 3).

Multiple logistic regression analysis of the three loci on chromo-
somes 9, 11 and 16 showed significant evidence for six SNPs being
associated with melanoma risk (Supplementary Table 4). No pairwise
interactions between the most significant SNPs at the three loci were
significant (all P4 0.19), showing that the pattern of association with
the three loci is consistent with a multiplicative model (Supplemen-
tary Table 4). Furthermore, examination of the associations by case

phenotype category showed similar associations for family history,
multiple primaries and early onset (Fig. 3), although for some SNPs at
the 9q21 and 16q24 loci the effect size was marginally weaker for early-
onset melanoma.

The strength of our study, which combines cases and controls from
geographically distinct sites, lies in its ability to identify genetic
variants that affect disease risk within diverse populations of European
origin and to estimate the effects by population. Despite the variation
in allele frequencies between groups (Supplementary Table 2) and
the large differences in sun exposure between sites, the effect sizes for
all three identified regions show marked homogeneity across the
groups (Fig. 3).

Given that the current study was well powered to detect variants
with OR 4 1.5, it seems unlikely that there exist many additional
common SNPs with a large effect on melanoma risk. Some of the
genetic variants found to date to be associated with melanoma risk
have also been found to be associated with pigmentation pheno-
types11–15 and nevus numbers22, but other variants may be involved.
Further, Falchi et al.22 found that adjustment of the SNP–melanoma
association for nevus count reduced the strength of the SNP asso-
ciation with melanoma, suggesting that the SNP and nevus count
are measuring in part the same disease-associated factor(s). Further
studies are required to assess whether the loci characterized by the
present study act mainly through melanoma-associated phenotypes
and/or have independent associations with melanoma risk.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Study design. The study design is based on a GWAS of melanoma cases and

controls, contributed by GenoMEL participating groups. Supplementary

Figure 1 contains an overview of the study. Groups were asked to identify,

preferentially, melanoma cases either with a family history (but confirmed as

not having a germline CDKN2A mutation), multiple primaries or onset before

age 40 years. We argued that selecting for these criteria would ‘enrich’ for

individuals with greater genetic predisposition and thereby increase power to

identify genetic associations24. Family history was restricted to three cases for

families from European populations and four cases for Australian participants

to reduce the chance of including individuals with high-penetrance mutations.

Controls were recruited by the same research groups from the same popula-

tions. Initially, the study design involved minimally 100 cases and 100 controls

from each of the 10 centers, but this was expanded subsequently. Genotyping

was conducted in two phases. The first phase involved genotyping through

ServiceXS in Leiden, The Netherlands, using the Illumina HumanHap300

BeadChip version 2 duo array (with 317K tagging SNPs). Subsequent genotyp-

ing of cases was conducted at CNG in Paris using the Illumina Humancnv370k

array. Control data were available from two further groups: French controls

from CNG genotyped on the Illumina HumanHap300 BeadChip version 2

duo array and UK controls from the WTCCC (described in ref. 17 but based

for this analysis on Illumina HumanHap300 BeadChip version 2 duo

array genotyping).

We categorized the research groups by their geographical locations, but to

enhance power we identified six geographical regions within which the data

from individual groups were pooled. These geographical regions were Sweden

(Lund and Stockholm), Australia (Brisbane, Sydney and Australian Melanoma

Family Study (AMFS) sites), Italy (Genoa and Emilia-Romagna), UK/Leiden,

France and Spain. Replication was carried out in a further independent set of

enriched cases and controls supplemented by a population-based case-control

study conducted in Leeds, UK (Supplementary Fig. 1).

Sample sets. The cases and controls were selected from sets of samples accrued

by the various contributing groups; these samples were recruited in different

ways as described in the relevant publications. The contributing groups for the

genome-wide genotyping were Barcelona25, Brisbane (cases26, controls27),

Emilia-Romagna28, Genoa29, Leiden, Leeds16,30, Lund31, Paris32, Stockholm33

and Sydney34,35. The samples from Sydney included population-based early-

onset cases and matching controls from the Australian Melanoma Family

Study21 (AMFS, recruited in Sydney, Brisbane and Melbourne). Genotyping

within the replication studies included samples from Poland36, Slovenia37 and

Tel Aviv. Ethical consent was obtained from all participants.

The Leeds-based case-control study recruited 1,274 population-based inci-

dent melanoma cases diagnosed between September 2000 and December 2006

from a geographically defined area of Yorkshire and the Northern region of the

UK (63% response rate). Cases were identified by clinicians, pathology registers

and via the Northern and Yorkshire Cancer Registry and Information Service to

ensure overall ascertainment. For all but 18 months of the study period,

recruitment was restricted to individuals with Breslow thickness of at least

0.75 mm. Some of these cases were genotyped genome-wide if they satisfied

the criteria for case selection as described in Online Methods; the remainder

(1,163 cases) were genotyped in the replication set.

Controls were ascertained by contacting general practitioners to identify

eligible individuals. These controls were frequency-matched with cases for age

and sex from general practitioners who had also had cases as part of their

patient register. Overall there was a 55% response for controls (496 subjects); a

subset of these controls was genotyped genome-wide and hence is excluded

from the replication set. Controls were supplemented by a population-based

group of 574 women who, following informed consent, agreed to participate in

a study recording their history of sun exposure and sun bathing and for whom

various measures of skin aging were recorded. DNA samples were also

provided. A total of 903 controls was genotyped in the replication phase.

Sample handling and DNA preparation. Genome-wide genotyping for this

study was conducted in Leiden by ServiceXS (SXS in Supplementary Table 1)

and in Paris by Centre National de Génotypage (CNG in Supplementary

Table 1) (Supplementary Fig. 1). Samples genotyped at ServiceXS were

processed by the Department of Human and Clinical Genetics, Leiden Uni-

versity Medical Centre (LUMC). Sample lists were provided by the contributing

GenoMEL centres and sample tubes and barcodes were returned to the centers

from LUMC. Samples returned from the GenoMEL centers were then cross-

checked against the manifest list. At the same time, phenotypic information

was sent to the analysis center in Leeds. Processed samples were then checked

for quality control by performing a single PCR test and examining DNA

concentration and quantities; a round of sample replacement proceeded for

samples that were considered to have failed quality control. A similar process

applied to samples genotyped at CNG.

Quality control was performed for all samples before processing on the

Illumina arrays. DNAs with a minimum concentration of 30 ng/ml (measured

by NanoDrop(r) ND-1000) were subjected to a test PCR and checked on an

agarose gel.

Replication genotyping was carried out using Taqman SNP genotyping assay

(Applied Biosystems), with the exception of rs4911442, which was genotyped

using the KASPar competitive allele-specific PCR system (KBiosciences) for the

Leeds case-control study.

Quality control. Genotypes were called using the proprietary software supplied

by Illumina (BeadStudio, version 3.2), with imported cluster centers based on

HapMap samples (supplied by Illumina) and call threshold set at 0.15 as

recommended by Illumina. Initially, no SNP was excluded from the analysis on

the basis of quality control, but SNPs showing some evidence of association

were screened intensively for signs of poor quality control. Some problems with

poor chip quality were identified, and where possible samples with low

(o97%) call rates were re-genotyped.

Sample exclusions. Samples were excluded for any of the following reasons:

(i) call rate of less than 97% (of the total number of SNPs on the array);

(ii) evidence of non-European origin from principal components analysis

(PCA); (iii) sex as inferred from genotyping not matching reported sex;

(iv) evidence of first-degree relationship or genetic identity with another

sample. Sex was ascertained from genotype data by calculating the hetero-

zygosity rate on the 9035 X-chromosome markers within Beadstudio;

persons with 410% heterozygosity were classified as female, otherwise male.

Relationship analysis was carried out in PLINK38 using estimated identity-by-

descent sharing.

SNP quality control. SNP quality control was assessed by considering a range

of measures: (i) test of Hardy-Weinberg equilibrium for the different control

groups; (ii) call rate; (iii) minor allele frequency (MAF); (iv) differences in

MAF between genotyping centers; (v) test for homogeneity of ORs across

regions; (vi) concordance of results with neighboring SNPs; (vii) where possible

review of clusters from Bead Studio. Rather than using fixed thresholds, we

considered these measures for all SNPs showing evidence of association at 10�5.

We had no formal exclusion quality control criteria for SNPs; most SNPs either

clearly failed quality control on multiple measures or raised no concern on

any measure.

Principal components analysis and population stratification. To identify

individuals of non-European ancestry, we thinned the SNPs to reduce linkage

disequilibrium (LD) to a set of 67,315 SNPs such that no pair had r2 4 0.2.

The data were then combined with the HapMap data from 270 individuals of

European, Asian and African origin. Before thinning, a quality control step was

implemented; SNPs with call rate less than 97% were excluded as were SNPs

with a Hardy-Weinberg P value o0.0001 in any case-by-genotyping-laboratory

(SXS or CNG) or control-by-genotyping-laboratory analysis. PCA was applied

to the remaining SNPs using EIGENSTRAT39,40 with the first two principal

components (PCs) clearly separating the HapMap data into three distinct

clusters according to ancestry. Most of our samples were clustered with the

HapMap European samples (Supplementary Fig. 2b); those that were not were

excluded from subsequent analysis. The first two PCs captured 72% of the

variation in the first 20 PCs (and 83% of the variation in the first 10 PCs).

The remaining European ancestry–only data were analyzed similarly by PCA

implemented in EIGENSTRAT. After applying quality control, we thinned the

SNPs such that pairwise r2 never exceeded 0.5 (167,517 SNPs). Despite the fact

that PCA makes no use of the geographical origin of the samples, plotting the
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first two PCs clearly grouped the samples by the center from which they were

collected, with little overlap between centers (Supplementary Fig. 2a). The first

PC corresponded roughly to latitude and the second PC to longitude as has

been predicted elsewhere18. The third PC separated those groups from the

NE or SW from those groups from the NW or SE (also predicted18). This

demonstrated that most of the individuals had ancestry reflective of the regions

they had been collected from, although a few were clearly outliers from

elsewhere in Europe.

For instance, although the majority of the Australian samples were clustered

with the UK samples, several appeared to be more similar to the Italian

samples, as did several of the French samples, suggesting that some had a

southern European origin. Here the first three PCs capture 77% of the variation

in the first 20 PCs (87% of the variation from the first 20 PCs is in the first 10).

We were thus able to confirm that our groupings were roughly correct and we

could account for stratification within Europe by adjusting for the first two or

three PCs. Furthermore, by examining the loadings on the PCs, we could

identify particular SNPs or regions with particularly strong loadings suggesting

that these showed considerable variation across Europe. The regions with

notably high loading were around LCT, OCA2 and HLA.

Association analysis. The primary analysis was a Cochran-Armitage (CA)

trend test, stratified by region (see Study design, above). In addition, we carried

out an unstratified CA trend test. Two further analyses were conducted to assist

in interpretation of results: logistic regression analysis adjusted for region and

the first three PCs (to adjust for any residual within-region population

stratification) and a CA trend test stratified by study group defined

by geographical center and genotyping laboratory. Equivalent 1-degree-of-

freedom stratified and unstratified trend tests were carried out for the X

chromosome, in which males are treated as equivalent to homozygous females

and a variance estimate that allows for the different variance of male and female

contributions is used41.

Subgroup analyses of the different subtypes of case against all controls were

also conducted for the most interesting SNPs.

Imputation. Imputation of ungenotyped SNPs was conducted using

IMPUTE42, which predicts the genotypes of unobserved SNPs by means of a

hidden Markov model using the genotype data at our observed markers and a

set of known haplotypes (in this case the HapMap European samples). As the

method is computationally intensive, we applied it only to those regions in

which at least one SNP reached a P value of o10�5 in either the CA trend test,

the test stratified by group or the test stratified by region and further SNPs

within 50 kb supported this result. We imputed 1 Mb on either side of any

SNPs that reached the required P value as well as a 250-kb buffer on either side

to avoid end effects. We assumed an effective population size of 11,400 and

used a calling threshold of 0.9. We then applied both the CA trend test and a

logistic regression adjusting for region.

Multiple regression analysis. Stepwise logistic regression was performed to

identify those SNPs independently associated with melanoma within each of

the validated regions (chromosomes 9, 11 and 16). We identified all SNPs that

passed the quality control for imputation within the genome-wide analysis and

that were within 1 Mb of the SNP giving the strongest evidence within each

region. (The region covered on chromosome 16 is 1.4 Mb long because it is

close to the telomere). Any SNP not associated with melanoma (P4 0.01) was

eliminated, and SNPs were thinned such that no pair had r2 4 0.8. This left 50

SNPs from a total set of 480. The model assumed an additive effect on the

logistic scale at the locus of interest, and analyses were adjusted for geographical

region (as previously defined). Chromosomal regions were analyzed separately

and in combination, and the analysis either included every individual or was

restricted to individuals with complete genotyping at the markers being

analyzed. At each step of the forward-selection procedure, the global signifi-

cance of the model was evaluated, as was the significance of the new marker.

The criteria for accepting a new marker were P o 0.001 for each marker

included in the model from the likelihood ratio test and a decrement in the

global P value of the model. Of the 5,456 individuals in the dataset, 4,959

(90.9%) had complete genotyping. The stepwise regression was conducted

using Stata. Including individuals without complete data or considering regions

separately made no qualitative difference to the results. Therefore, results are

presented for analyses restricted to those with complete genotyping and a

combined analysis of all three genetic regions.

Case category analysis. Cases were classified as having a family history if at

least one first-degree relative had melanoma; individuals with multiple primary

melanoma but no family history were classified in the ‘multiple melanoma’

category, and cases with onset before age 40 without either a family history or

multiple primary melanoma were classified as ‘early onset’ (Supplementary

Table 1). Using these categories, we performed classical logistic regression

adjusted for geographical region to estimate ORs for a given case category (for

example, cases with family history versus controls) and to test for homogeneity

of the SNP effect across regions using a likelihood ratio test. The homogeneity

of ORs by case category was tested using trichotomous regression (for example,

controls, cases with family history, cases without family history) and a

likelihood-ratio test with 1 d.f. (that is, comparing a model where the ORs

with and without family history are equal to a model where the two ORs

are estimated).

Power to detect associations. We calculated the power to detect disease-

associated regions in our initial genome-wide analysis at a P value of 5 � 10�7

and a sample size of 1,539 cases and 3,917 controls. We used effect sizes

estimated in the replication stage in order to avoid bias, although this may be

conservative since the cases from Leeds were population based and not selected

as other case series. We assumed the marker being tested was in complete LD

with the causative locus and that the baseline risk of disease was 0.05.

Our calculations show that we have 97% and 84% power to detect the most

significant SNPs on chromosomes 16 and 11, respectively. However, we have

very low power (B1%) to detect the region on chromosome 9. Although

power is good (495%) to detect the previously identified region found on

chromosome 20 (ref. 21), the low frequency led to it not being tagged by our

array. Considering the range of values we have the power to detect, we have at

least 80% power to detect any SNP with an OR of 1.6 if MAF 4 0.05

(assuming sufficient coverage), an OR of 1.5 if MAF 4 0.08, an OR of 1.4 if

MAF 4 0.12 or an OR of 1.3 if MAF 4 0.25. The lowest OR we have 80% to

detect is 1.27 (when MAF ¼ 0.5). Thus, it is unlikely that we have missed any

common variants with effect sizes 41.5 (unless coverage is poor in these areas).

The study is not well powered to detect effects below 1.27, and thus there may

well be other regions with SNPs of similar effect to those we found on

chromosome 9 still to be discovered.

Replication analysis and Israeli samples. The genome-wide analysis involved

European populations, and PCA was used to identify participants apparently

not of European ancestry. Within the replication set, all samples were again

derived from European populations with the exception of one population from

Israel. Without genome-wide analyses to confirm comparability with the

European genetic profile, we analyzed the replication data both with and

without the Israeli samples. The analyses presented here include the Israeli

samples but analyses excluding these samples are not qualitatively different

from these.
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