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Abstract:  

OBJECTIVE: To discover genetic determinants of Parkinson disease (PD) motor subtypes, including 

Tremor Dominant (TD) and Postural Instability/Gait Difficulty (PIGD) forms.  

 

METHODS: In 3,212 PD cases of European ancestry, we performed a genome-wide association study 

(GWAS) examining two complementary outcome traits derived from the Unified Parkinson’s Disease 

Rating Scale (UPDRS), including dichotomous motor subtype (TD vs. PIGD) or a continuous tremor / 

PIGD score ratio. Logistic or linear regression models were adjusted for sex, age of onset, disease 

duration, and 5 ancestry principal components, followed by meta-analysis.    

 

RESULTS: Among 71 established PD risk variants, we detected multiple suggestive associations with PD 

motor subtype, including GPNMB (rs199347, psubtype = 0.01, pratio = 0.03), SH3GL2 (rs10756907, psubtype = 

0.02, pratio = 0.01), HIP1R (rs10847864, psubtype = 0.02), RIT2 (rs12456492, psubtype = 0.02), and FBRSL1 

(rs11610045, psubtype = 0.02). A PD genetic risk score integrating all 71 PD risk variants was also 

associated with subtype ratio (p = 0.026, ß = -0.04, 95% CI = -0.07, 0). Based on top results of our 

GWAS, we identify a novel suggestive association at the STK32B locus (rs2301857, pratio = 6.6x10
-7

), 

which harbors an independent risk allele for essential tremor.  

 

CONCLUSIONS: Multiple PD risk alleles may also modify clinical manifestations to influence PD motor 

subtype. The discovery of a novel variant at STK32B suggests a possible overlap between genetic risk for 

essential tremor and tremor-dominant PD.   
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Introduction  

Parkinson’s disease (PD) is a clinically heterogeneous disorder.
1-6

 PD subtypes have been described based 

on common patterns of phenotypic features.
1,7

 One of the earliest and widely used subtyping 

classifications recognizes tremor dominant (TD) and postural instability/gait difficulty (PIGD) motor 

subtypes.
8,9

 These subtype categories have implications for disease progression, with prospective studies 

showing that PIGD is characterized by increased cognitive impairment and decreased response to 

levodopa.
10,11

 While some studies have sought to identify pathologic correlates for PD motor subtypes
12,13

, 

the mechanisms underlying these clinical and prognostic differences remain incompletely understood.
7
 

A strong genetic contribution to PD etiology is well established, including several rare, 

monogenic forms of the disease and a large number of common variant PD risk alleles identified in 

genome-wide association studies (GWAS).
14

 There is mounting evidence for genetic variants as modifiers 

of PD phenotype as well. Variants in LRRK2 or GBA modify disease motor progression (slower or faster, 

respectively) and also impact risk of cognitive impairment.
15,16

  Genetic association studies have also 

nominated genetic modifiers of PD progression, cognitive impairment, age at onset, and risk of insomnia, 

including established PD risk alleles.
16-25

 Interestingly, LRRK2(G2019S) carriers appear to have a higher 

incidence of the PIGD subtype, despite early reports of asymmetrical tremor as a prominent clinical 

feature.
15,26

 A recent analysis of 10 PD risk variants from GWAS in a sample of 251 subjects (plus 559 

subjects for replication) demonstrated an association of an SNCA locus polymorphism with the TD 

subtype.
20

  

We performed a GWAS meta-analysis for PD motor subtype in 3,212 subjects, examining 

potential associations for 71 established PD risk alleles and further testing for novel modifiers of TD vs. 

PIGD motor phenotypes.  

 

Methods 

Participants 
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All subjects were diagnosed with PD and derived from several North-American and European cohorts 

(Suppl. Table 1): Baylor College of Medicine (BCM, USA), University of Maryland, Baltimore (UMB, 

USA) PD Genetics Study, Parkinson’s Progression Markers Initiative (PPMI), Parkinson’s Disease 

Biomarkers Program (PDBD), Profiling Parkinson's disease study (PROPARK, Netherlands), Tracking 

Parkinson’s study (PRoBaND, United Kingdom), and the Oslo Parkinson’s Disease study (Norway). All 

participants provided written informed consent for genomic studies, including permission for sharing of 

de-identified data between institutions, prior to enrollment in the respective studies. We obtained all 

clinical and genetic information with approval of the respective local institutional review boards.  

The following data was required for inclusion in this study: sex, age at symptom onset, age at 

diagnosis, age at first evaluation, and earliest available (baseline) itemized rating using the Unified 

Parkinson's Disease Rating Scale (UPDRS) parts 2 and 3 or the equivalent parts of the Movement 

Disorder Society revised UPDRS version (MDS-UPDRS).
27,28

 Disease duration in years was defined as 

age at first evaluation minus age at symptom onset. If age of symptom onset was not available, age at 

diagnosis was used. The BCM cohort included subjects evaluated with either version of the UPDRS, and 

these subjects were therefore evaluated as separate cohorts (BCM1 and BCM2, see Suppl. Table 1). All 

other cohorts exclusively used either the UPDRS or the MDS-UPDRS. 

 

Motor subtypes 

PD motor subtypes, TD and PIGD, were determined using previously published algorithms.
1,2

 Subjects 

are classified as either TD, PIGD or indeterminate using scale-specific cutoffs based on the ratio of 

tremor score to PIGD score from the UPDRS or MDS-UPDRS parts II and III. Applying these algorithms 

to our pooled cohort, 383 subjects with a tremor/PIGD score ratio in the indeterminate range could not be 

assigned to either the TD or PIGD dichotomous trait. As a complementary approach, we therefore used 

the tremor/PIGD score ratio as a continuous outcome, permitting inclusion of all subjects (including those 

classified as indeterminate). In order to accommodate subjects with PIGD score = 0 in these analyses, we 

transformed the tremor/PIGD score ratio as follows:  
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log �����	� ��	��  0.01���� ��	��  0.01  

 

Genotyping 

Genotyping data (all Illumina platform based) were obtained from International Parkinson’s Disease 

Genomics Consortium (IPDGC) members, collaborators, and public resources. As previously described, 

all data sets underwent quality control separately, both on individual-level data and variant-level data, as 

implemented using PLINK v1.90b5.3.
24,29

 Briefly, we excluded individual samples with low or excess 

heterozygosity or discordant sex. We also excluded ancestry outliers following principal component 

analysis. We required that SNPs have a minimum call rate of 95%, minor allele frequency (MAF) > 5%, 

and Hardy-Weinberg equilibrium (HWE) p-values > 1E-04. Imputation was performed using the 

Michigan imputation server and the Haplotype Reference Consortium (HRC r1.1 2016), with Eagle v2.3 

phasing available at: https://imputationserver.sph.umich.edu.  

 

Statistical analysis 

For each study, the imputed genotyped dosages were analyzed using regression, implemented in 

RVTESTS.
30

 Logistic regression was employed for the dichotomous motor subtype trait (TD vs. PIGD), 

and linear regression was employed for the continuous tremor/PIGD score ratio trait. Both models were 

controlled for age of onset, sex, disease duration, and the first 5 ancestry principal components. Fixed 

effects meta-analysis combining the summary statistics from the 8 studies was performed using METAL 

with default parameters.
31

 For the GWAS analyses, we computed Lambda1000=0.88 for the dichotomous 

subtype outcome and Lambda=0.99 for the continuous ratio trait. For the candidate analysis of PD-risk 

alleles, 71 variants had an imputation quality > 0.8 in our dataset and were therefore included in our 

analyses.
32

 The significance threshold was set at p < 0.0007 based on 71 independent tests using the 

Bonferroni method (p = 0.05 / 71); we secondarily considered p < 0.05 as evidence of a suggestive 

association. The 71 PD risk variants were also evaluated in combination using a weighted genetic risk 
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score (GRS), implemented in PLINK.
29,32

 For ease of interpretation, GRS scores were converted to Z 

scores as previously described.
33

 Association with the 2 subtype outcome traits was tested using the 

formula:  

Trait ~ GRS_Zscore + AgeAtOnset + Sex + PC1-PC5   

Forest plots and association meta p-values were calculated using the R package metafor.
34

 For the 

genome-wide analysis, significance was set at p < 5x10
-8

, whereas p < 1x10
-5

 was considered suggestive 

evidence of association. Locus plots were generated using LocusZoom.
35

 Linkage disequilibrium pruning 

was performed using the module SNPclip which is part of LDlink application using the default 

parameters (r
2
 = 0.1 and MAF = 0.01) and a genomic window of 500kb.

36
 For the lookups of variant 

associations with essential tremor susceptibility, significance was set at p < 0.0013 based on 39 tests. 

Statistical power was estimated using the Genetic Association Study Power Calculator 

(http://csg.sph.umich.edu/abecasis/gas_power_calculator/). We performed 2 sets of calculations 

considering power to detect association of (i) an established PD risk allele (rs199351, freq=0.6, risk 

ratio=1.11) or (ii) a novel variant (rs10937625, freq=0.12, risk ratio=1.25). Disease prevalence was set to 

0.0041. 

 

Data Availability Statement 

Summary statistics for the analyses presented in this study will be made available on the IPDGC 

website (http://pdgenetics.org/resources). 

 

Results 

Overall, our study included 3,212 subjects with complete clinical data and genotypes passing all quality 

control filters (see Methods). Clinical and demographic information along with the frequency of motor 

subtypes is shown in table 1. The TD subtype was more common than PIGD, but subtype proportions 

varied between cohorts (table e-1). Consistent with prior reports,
37-39

 the proportion of subjects with TD 
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was inversely related to average disease duration (correlation coefficient -0.57). Due to individuals with 

indeterminate subtype classification (see Methods), 2,829 subjects were available for the GWAS using 

the dichotomous subtype trait (TD vs. PIGD), whereas all 3,212 subjects were included in the GWAS for 

the tremor/PIGD subtype ratio. 

 We first examined associations for 71 established PD risk variants with PD motor subtypes. 

Overall, we identified suggestive associations (p < 0.05) between risk variants at the GPNMB, SH3GL2, 

HIP1R, FBRSL1, and RIT2 loci and the subtype trait, but none of these associations remained significant 

following multiple test correction (table 2 and e-2). In 2 out of 5 loci (GPNMB and FBRSL1), the PD risk-

increasing allele was associated with PIGD subtype. Variants at GPNMB and SH3GL2 also showed 

consistent associations with subtype ratio, but no additional PD risk alleles were associated with this 

outcome (table e-2). We next integrated genotypes across the 71 PD risk alleles to compute a genetic risk 

score (GRS) for each subject and examined for association with PD motor subtypes. Indeed, we detected 

a significant association between the PD GRS and the subtype ratio (p = 0.03, CI= -0.07 - 0.00), although 

this result appeared to be driven by only 2 out of 8 cohorts included in our meta-analysis (PDBP and 

BCM2, figure 1). The GRS was not associated with the dichotomous subtype trait (figure e-1).  

 We next examined the results of our GWAS in order to identify novel candidate modifiers of PD 

motor subtype. Although no variants reached the genome-wide significance threshold, a number of 

variants showed suggestive associations (p < 1x10
-5

) with either PD motor subtype or subtype ratio 

(tables e-3 and e-4). The top variant associated with the subtype ratio outcome is rs2301857 

(pratio = 6.6x10
-7

), located within an intron of the STK32B gene (figure 2). The minor allele,  rs2301857
C
 

(freq. = 0.12) was associated with reduced tremor / PIGD score ratio (effect = -0.19). Thus, the minor and 

major allele for the rs2301857 SNP are associated with a polarization toward the PIGD vs. TD 

phenotypes, respectively. In our complementary analysis, the association between rs2301857 and PD 

motor subtype was attenuated (psubtype = 0.044). 

Notably, an association signal at STK32B has been previously reported in a GWAS for essential 

tremor (ET).
40

 Although the lead variant from that study, rs10937625, is only 290 kb proximal from the 
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top variant in our analysis, these SNPs do not demonstrate appreciable linkage disequilibrium (R2=0.002, 

D’=0.184). Based on the common association at the STK32B locus, we performed additional analyses to 

explore for a possible genetic overlap between ET and PD motor subtype. However, neither the STK32B 

variant nor any of the other 5 published ET risk variants
40

 were associated with either of our PD motor 

subtype traits (table e-5). Lastly, in order to explore for further potential evidence of shared genetic 

architecture, we reciprocally examined whether any of our top candidate variants (p < 1x10
-5

; n=39 

variants) associated with PD motor subtype confers susceptibility for ET, based on lookup of the top 

results in the largest GWAS completed to date (2807 ET cases / 6441 controls)
40,41

. However, neither 

STK32B
rs2301857

 (p=0.18) nor any other top suggestive results from our PD motor subtype GWAS were 

significantly associated with ET susceptibility. 

 

Discussion 

Identification and characterization of PD subtypes has received increased attention in recent years, with 

the goal of predicting progression, stratifying patients based on risk of non-motor complications (e.g., 

dementia), and elucidating mechanisms of disease heterogeneity.
7-9,42

 Recent studies strongly suggest that 

genetic factors can influence the presence and severity of many varied PD manifestations, and therefore 

likely influence disease subtypes.
7
 To our knowledge, this is the first GWAS for PD motor subtype. Our 

results highlight some evidence for 5 established PD risk alleles as potential modifiers of motor subtype, 

and we further found that a PD GRS including 71 risk variants was associated with subtype ratio. One 

strength of our analysis was consideration of 2 complementary PD motor subtype outcomes. The 

TD/PIGD score ratio trait offers a continuous outcome and has the advantage of a larger sample size, 

since subjects with indeterminate subtype can be considered. On the other hand, by including subjects 

with a mixed phenotype, it is also possible that the subtype ratio may dilute power to detect the effects of 

certain variants. In such cases, the dichotomous subtype outcome permits greater contrast between groups 

of subjects manifesting the TD or PIGD phenotype. In a prior, candidate-based analysis of 10 PD risk 

alleles in 810 PD cases, a variant at the SNCA locus (rs356182) was discovered to be associated (p = 
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0.004, β = 0.7) with a similar TD/PIGD score ratio outcome.
20

 Although we did not replicate that 

association in our larger sample (n = 3,212, p = 0.18, β=0.03), this may relate to modest differences in the 

derivation of the subtype score ratio, and additional replication analyses should be undertaken in the 

future.  

 While no variants reached genome-wide significance in our GWAS, we identify many loci 

harboring suggestive associations that may be excellent candidates for follow-up and potential replication. 

The top result of the subtype ratio GWAS, rs2301857, implicates the STK32B gene as a possible modifier 

of PD motor phenotypes. This gene has previously been genetically linked to ET.
40

 The potential 

relationship between ET and PD has long been a topic of discussion in the field of movement disorders.
43

 

While most patients with ET do not develop parkinsonism, at least one study has shown that a prior 

diagnosis of ET may increase the risk of PD up to 4-fold.
44,45

 A possible genetic link is further suggested 

by reports of familial co-aggregation of ET and PD.
46

 In another study, PD patients having family 

members with ET were more likely to exhibit the TD subtype of PD.
47

 Importantly, the variant that we 

discovered in association with PD motor subtype does not show appreciable linkage-disequilibrium with 

the previously reported ET susceptibility signal; therefore, these appear to be independent alleles at the 

STK32B gene locus. Thus, while intriguing, our results fall short of providing conclusive evidence of a 

shared genetic architecture of these two common movement disorders. 

 Despite including more than 3,000 subjects, statistical power appeared limiting. In fact, we 

estimate (see Methods) that nearly 14,000 subjects would be required to achieve 80% power to detect a 

significant association for either a candidate PD risk variant (e.g. GPNMB
rs199351

) or a novel variant 

modifier of motor subtype (e.g. STK32B
rs2301857

). Based on ongoing efforts, we anticipate that sufficiently 

large cohorts with detailed clinical phenotyping will likely emerge in the next few years. Although the TD 

and PIGD categories are the earliest and mostly widely used subtype classifications,
8,9

 there are also 

several notable limitations. The cutoffs employed for differentiating the TD or PIGD subtypes are 

somewhat arbitrary and without underlying biological or clinical rationale.
1
 In addition, treatment with 
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dopaminergic medication is known to alter the motor UPDRS examination which can thus influence 

subtype scoring.
39,48

 However, information on medication status and other factors (e.g. dementia) were 

not universally available for consideration as potential confounders in this analysis. Several studies have 

also suggested a shift from TD to PIGD subtype along with PD progression, raising questions about the 

stability of motor subtypes over time.
38,39

 Although our analyses were adjusted for disease duration to 

account for this in part, future genetic analyses of PD subtypes may benefit from alternative outcome 

traits that are independent of medication status and disease duration. 
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Figure Legends 

Figure 1. PD genetic risk score associates with tremor/PIGD score ratio. Error bars represent 95% 

confidence intervals. The size of the black squares represents the effect size from each cohort. The 

combined estimate for all cohorts is represented by the red diamond with the width of the diamond 

representing the 95% confidence interval bounds. The summary effect = -0.0389 (p=0.0156). 

 

Figure 2. STK32B locus association with PD subtype ratio. Locus zoom plot highlighting the 

association signal at the STK32B locus. The top variant associated with PD subtype ratio, rs2301857, is 

highlighted along with other variants in linkage-disequilibrium. Another variant in the same gene, 

rs10937625 (dashed line), has been reported as significantly associated with essential tremor (ET), but is 

not associated with PD subtype ratio. The 2 variants appear independent, and do not show substantial 

linkage disequilibrium (R2=0.002, D’=0.184). 
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Tables 

Table 1. Cohort characteristics.  

 
N (%) or mean (SD) 

N  3,212 

Male 2,078 (64.7) 

Age at evaluation (years) 66.0 (9.5) 

Age at onset (years) 61.0 (10.6) 

Disease duration (years) 4.1 (4.5) 

TD subtype 1,570 (48.9) 

PIGD subtype 1,259 (39.2) 

Indeterminant subtype 383 (11.9) 

Demographic information and frequency of motor 

subtypes of the study population combined from all 

8 cohorts.  

 

 

Table 2. Association of established PD risk variants with PD motor subtype  

     Subtype (TD vs. PIGD)  Subtype Ratio 

chr: position SNP Gene Allele Freq Effect SE P  Effect SE P 

7: 23300049 rs199351 GPNMB A/C 0.61 0.16 0.06 0.011  -0.05 0.02 0.033 

9: 17727065 rs10756907 SH3GL2 A/G 0.76 0.16 0.07 0.019  -0.06 0.03 0.017 

12: 123326598 rs10847864 HIP1R T/G 0.38 -0.15 0.06 0.018  0.017 0.02 0.47 

12:133063768 rs11610045 FBRSL1 A/G 0.51 0.14 0.06 0.023  -0.03 0.02 0.17 

18: 40673380 rs12456492 RIT2 A/G 0.67 0.15 0.06 0.019  -0.008 0.02 0.73 

Effect/alternate alleles shown, PD risk allele denoted in boldface. SE, standard error. 
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