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RESEARCH

Exchange of germplasm is an integral part of successful plant 

breeding programs and has signi�cant value in maintaining 

genetic diversity. Elite lines exchanged between programs are 

crossed to generate diverse progenies and breeding materials. 

Attributes for a particular region such as vernalization require-

ment, height, phenology, and maturity characteristics are dictated 

Genome-wide Association Study of Agronomic 

Traits in a Spring-Planted North American Elite 

Hard Red Spring Wheat Panel

Jayfred Godoy, Shiferaw Gizaw, Shiaoman Chao, Nancy Blake, Arron Carter, Richard Cuthbert,  

Jorge Dubcovsky, Pierre Hucl, Ken Kephart, Curtis Pozniak, P.V. Vara Prasad, Michael Pumphrey,*  

and Luther Talbert

ABSTRACT

Inbred cultivars and advanced breeding lines 

have been subjected to numerous recombi-

nation cycles, have strong allelic selection for 

desired traits, and share important attributes 

for adaptation and agronomic performance. 

Genetic variation in elite gene pools captured 

using molecular markers is immediately useful 

for cultivar development. The primary goal of 

this study was to implement a genome-wide 

association study for 17 agronomic traits using 

elite inbred lines. A panel consisting of 237 elite 

hard red spring wheat (Triticum aestivum L.) 

lines from different wheat breeding institutions 

in North America were evaluated in 11 loca-

tions over 2 yr. A total of 19,192 polymorphic 

single-nucleotide polymorphism (SNP) markers 

from the Illumina 90K SNP array and markers 

linked to major genes controlling plant height, 

photoperiod sensitivity, and vernalization were 

used to assay the population. Linkage disequi-

librium was observed to decay within a map 

distance of ?3 cM in the A and B genomes and 

7 cM in the D genome. A total of 226 marker-

trait associations were identi�ed. Potentially 

novel associations were detected for grain yield 

on chromosome 2B and kernels per spike on 

1B and 7D, whereas others colocalized with 

well-known adaptation loci for photoperiod 

response, vernalization, and plant height. The 

frequency of positive alleles for speci�c marker-

trait associations differed among the programs, 

suggesting targets for introgression by the 

respective breeding programs.
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by climate, whereas end-use-quality attributes are deter-

mined by market forces. For this reason, initial crosses 

between adapted lines and lines from other areas do not 

tend to produce acceptable cultivars, as many of the genes 

from the introduced line are probably unfavorable in a 

particular environment. However, even genotypes that do 

not perform well have favorable genes. These are di�cult 

to identify if the line itself has a poor phenotype due to 

lack of adaptation to a particular region. Recent advances 

in molecular biology have pointed to the possibility that 

breeders may be able to identify and share superior genes, 

instead of entire genotypes (Suslow et al., 2002).

Quantitative trait loci (QTLs) that control yield and 

yield components typically have small e�ects and low 

heritability and are signi�cantly in�uenced by environ-

ment (Cuthbert et al., 2008). Thus, QTLs associated with 

these yield traits are challenging to detect in cultivar 

development because there is limited information on their 

number and location in the genome, and the contribution 

of each gene to the �nal expression of the trait (Mohan et 

al., 1997). Association mapping (AM) for QTL detection 

uses a collection of germplasm such as landraces, breeding 

lines, gene bank accessions, and cultivars that represent 

a larger population (Risch 2000). Sampling diverse indi-

viduals can signi�cantly increase polymorphism among 

markers and exploit historical recombination, which leads 

to improved marker coverage and mapping resolution. 

There is likely more phenotypic diversity in an AM panel 

than in a biparental population, and variation for many 

traits can be studied using the same genotype data, making 

resource use very e�cient ( Jannink et al., 2001). Earlier 

AM studies were restricted to a few targeted candidate 

genes (Thornsberry et al., 2001) or chromosome regions 

due to limitations in marker availability, format, and cost. 

However, with the development of high-throughput 

genotyping platforms over the past decade, large-scale 

association analyses across the entire genome, known 

as genome-wide association studies (GWAS), became 

possible and were widely implemented in many species.

Wheat (Triticum aestivum L.) is the main source of food 

for roughly one-third of the world’s population (Arzani and 

Ashraf 2017). With global population growth and culti-

vated production areas decreasing (Godfray et al., 2010), 

substantial genetic yield gains are necessary to keep up with 

the demand for wheat. This can be achieved by targeting 

genetic improvement e�orts towards wheat cultivars with 

high yield potential, resistance to pest and diseases, and 

resilience to environmental instability. Genome-wide asso-

ciation studies in wheat have been successful in detecting 

QTLs for resistance to major wheat pests ( Joukhadar et 

al., 2013), diseases (Kollers et al., 2013; Yu et al., 2011; 

Gurung et al., 2014; Maccaferri et al., 2015) and end-use-

quality traits (Breseghello and Sorrells 2006; Reif et al., 

2011), but relatively few report on QTLs for yield and yield 

components that are signi�cant across environments and 

breeding programs. Recently, cost-e�cient single-nucleo-

tide polymorphism (SNP) platforms have been developed 

for wheat (Cavanagh et al., 2013; Wang et al., 2014). These 

platforms allow extensive analysis of linkage disequilib-

rium (LD) in di�erent wheat germplasm, which is critical 

in designing informative and valuable association mapping 

panels for complex traits. In this study, we used an associa-

tion mapping panel consisting of 237 elite hard red spring 

(HRS) wheat breeding lines and cultivars from di�erent 

US and Canadian wheat breeding programs and CIMMYT 

to identify marker-trait associations (MTAs). We also 

examined the population structure, LD, and distribution of 

the MTAs across the breeding programs. Information from 

this research can be bene�cial in molecular breeding and 

marker-assisted selection to allow breeders to e�ciently use 

introduced germplasm.

MATERIALS AND METHODS

Genetic Materials, Genotyping,  

and SNP Calling
An AM panel of 250 elite HRS wheat cultivars and breeding 

lines was reduced to 237 genotypes after �ltering for >5% 

missing data and duplicate genotypes indicated by an identity 

by state (IBS) value of one. The 237 lines represented 10 wheat 

breeding programs in North America (Supplemental Fig. S1). 

The panel represents elite diversity in each breeding program.

Fresh leaf tissues from three seedlings of each line were 

pooled for genomic DNA extraction following the cetyltri-

methylammonium bromide (CTAB) procedure (Saghai-Maroof 

et al., 1984). Single-nucleotide polymorphism genotyping 

was implemented using the Illumina iSelect 90K SNP array 

at the USDA-ARS genotyping laboratory in Fargo, ND, as 

described in Wang et al. (2014). Monomorphic and low-quality 

SNPs were �rst discarded using GenomeStudio software 

2011.1 (Illumina, 2011). The default clustering algorithm in 

GenomeStudio was used to select biallelic SNPs that showed 

distinct clusters corresponding to AA, AB, and BB genotypes. 

Compressed SNP allele clusters that could be discriminated by 

the clustering algorithm were manually curated (Cavanagh et 

al., 2013). Markers with a minor allele frequency (MAF) <0.05 

were excluded due to lack of statistical power required to deter-

mine association with very rare alleles (Tabangin et al., 2009). A 

total of 19,192 SNP markers that were positioned on the wheat 

consensus map, developed by Wang et al. (2014), were used in 

the association analyses. Additional genotypic data were gener-

ated for major functional genes in wheat as described in Grogan 

et al. (2016). The Kompetitive Allele Speci�c Polymerase Chain 

Reaction (KASP) markers KASP-wMAS000001 and KASP-

wMAS000002 were used to discriminate alleles at plant height 

(PHT) loci Rht-B1 and Rht-D1, respectively. Alleles for photo-

period response genes were detected using KASP-Ppd-A1prodel 

for Ppd-A1, KASP-wMAS000027 and KASP-TaPpdBJ003 

for Ppd-B1, and KASP-wMAS000024 for Ppd-D1. Vernal-

ization genes were assayed using KASP-wMAS000033 

and KASP-wMAS000035 for Vrn-A1, KASP-VrnB1_I_D, 

KASP-wMAS2000037 and KASP-VrnB1_C for Vrn-B1, and 

https://www.crops.org
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u is the vector of random e�ects, Z is the design matrix for the 

random e�ects, and e is the vector of residuals. Relationships 

between phenotypic traits were obtained using Pearson’s (r) 

correlation statistics and principal component analyses in JMP 

Genomics 6.0 (SAS Institute, 2000). A repeatability estimate 

(r2) was calculated across environments following the formula 

described in Sukumaran et al. (2015):

2
2 G

2 2
2 G E E
G     

r

l rl
´

s
=

s s
s + +

where r2 is the repeatability estimate, s2
G
 is the genetic 

variance, s2
G´E

 is the genotype ´ environment variance, s2
E
 is 

the residual variance, r is the number of replications, and l is the 

number of environments.

Marker Polymorphism and Linkage 

Disequilibrium
Allelic information for SNP markers among accessions including 

allele frequency, gene diversity, and polymorphic information 

content (PIC) were estimated using PowerMarker version 3.25 

software (Liu and Muse 2005). Linkage disequilibrium among 

mapped markers was analyzed using JMP Genomics 6.0 (SAS 

Institute, 2000) by computing the squared allele-frequency 

correlations (r2) according to Weir (1996). Pairwise marker 

combinations with signi�cant  r2 (p < 0.01) were included in 

the LD analysis. The unlinked  r2 and syntenic  r2 were esti-

mated separately for unlinked loci (distance > 50 cM) on the 

same chromosome. A critical r2 value beyond which LD is due 

to physical linkage was determined by taking the 95th percen-

tile of the square-root-transformed r2 data of unlinked markers 

(Breseghello and Sorrells 2006). Locally weighted polynomial 

regression (LOESS)-based curves were then �tted on scatter 

plots of r2 values plotted against the genetic distance (cM) using 

the lowess function (smoother setting = 0.075) implemented in 

RStudio 1.1.383 (RStudio Team, 2016). The intersection of the 

LOESS curve �t and critical value of r2 was considered as the 

estimate of the extent of LD in the chromosome.

KASP-wMAS000039 for Vrn-D1. Sequence-tagged sites (STS) 

markers UMN19, UMN25, and UMN26 were used to assay 

for high molecular weight glutenin genes Glu-A1 and Glu-D1 

(Liu et al., 2008).

Phenotyping and Statistical Analyses
The mapping population was evaluated in 2012 and 2013 across 

a total of 11 environments in the United States and Canada 

(Table 1, Supplemental Table S1). A description of each environ-

ment is presented in Table 1. Optimal fertilizer, weed, and pest 

management were implemented to avoid external factors that 

limit yield potential. Phenotypic measurements taken at each 

plot included days to heading (HDD, d), days to anthesis (FWD, 

d), grain-�lling duration (GFD, d), days to maturity (MAT, d), 

PHT (cm), peduncle length (PDL, cm), tiller number (TLN, 

number of tillers), stem solidness (SSD, rating scale 1–5, where 

1 indicates a completely hollow lumen and 5 indicates a lumen 

completely �lled with pith; DePauw and Read, 1982), harvest 

index (HIN), spike length (SPL, cm), kernels per spike (KPS, 

number of kernels), spikelets per head (SKD, number of spike-

lets), thousand-kernel weight (TKW, g), test weight (TWT, g 

L−1), sodium dodecyl sulfate sedimentation (SDS), whole-grain 

protein concentration (WGP, %), and grain yield (GNY, kg ha−1). 

Full description of each trait and how they were measured can 

be accessed in the T3/Wheat website (https://triticeaetoolbox.

org/wheat/traits.php). Plots were arranged in an augmented 

design with single replications for each line and six check 

cultivars (AC Barrie, Berkut, Thatcher, Hollis, Choteau, and 

Clear White) replicated across �ve blocks. For each location, 

the mixed linear model procedure using the PROC MIXED 

procedure in SAS 9.3 (SAS Institute, 2000) was used to obtain 

best linear unbiased predictors (BLUPs) considering check 

cultivars as �xed and genotypes and blocks as random e�ects. 

The signi�cance of statistical di�erences between genotypes 

was tested for each trait using the mixed linear model  proce-

dure. Then, combined data analysis across environments was 

implemented also using PROC MIXED to obtain the BLUPs 

and variance components for all traits considering factors (i.e., 

environments and genotypes) in the model as random. The 

mixed linear model was y = X + Zu + e, where y is the vector 

of observations for an individual quality trait, X is the intercept, 

Table 1. Weather data including average temperature, total precipitation, and amount of water supplied by irrigation during the 

growing season of the Triticeae Cooperative Agricultural Project elite hard red spring wheat panel in 2012 and 2013.

Year Location Coordinates

Avg. temperature during 

the growing season

Irrigated Rainfed

Amount of irrigation 

applied

Total precipitation during 

the growing season

°C —————————— mm ——————————

2012 Bozeman, MT 45.676° N, 111.157° W 15.3 0 148.0

Huntley, MT 45.928° N, 108.246° W 17.6 0 94.0

Manhattan, KS 39.137° N, 96.640° W 21.9 300 245.2

Saskatoon, SK 52.117° N, 106.65° W 16.1 0 376.8

Davis, CA 38.526° N, 121.773° W 11.9 300 255.3

Othello, WA 45.928° N, 108.246° W 17.1 600 65.3

2013 Bozeman, MT 45.676° N, 111.157° W 14.2 0 191.0

Huntley, MT 45.928° N, 108.246° W 15.9 0 248.4

Saskatoon, SK 52.117° N, 106.65° W 15.9 0 196.4

Swift Current, SK 20.291° N, 107.707° W 16.1 0 319.8

Othello, WA 45.928° N, 108.246° W 17.5 600 70.6

https://www.crops.org
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Population Structure Analysis
Seven hundred and forty-nine SNP markers spaced ?3 to 4 cM 

apart were sampled from all chromosomes to analyze popula-

tion structure. The Bayesian model-based clustering program 

STRUCTURE version 2.3 (Pritchard et al., 2000) was used 

to estimate the number of subpopulations (K) given an admix-

ture model and correlated frequencies. Simulations were run 

for 10,000 burn-in iterations, followed by 100,000 Markov 

chain Monte Carlo replicates. The number of K was set from 

2 to 9, with 10 independent runs made for each K. The results 

from structure were visualized using Structure Harvester (Earl 

and vonHoldt 2012), and the K number of subpopulations was 

determined using the ad-hoc criterion described in Evanno et 

al. (2005). Principal component analysis was also conducted 

to further analyze the dispersion of the subpopulations in a 

three-dimensional space using JMP Genomics 6.0 (SAS Insti-

tute, 2000). Pairwise genetic distance (Nei 1972) was calculated 

among genotypes and breeding institutions. Genetic distance, 

denoted by �xation index, within and among the inferred 

groups and the entire population was measured by analysis of 

molecular variance implemented in PowerMarker version 3.25 

(Liu and Muse 2005). A neighbor-joining tree based on the 

unweighted pair-group method with arithmetic average was 

also created using PowerMarker 3.25 (Liu and Muse 2005) and 

visualized in MEGA 5.2 (Tamura et al., 2011).

Marker-Trait Association Analysis
A total of 19,192 SNP markers were used to detect MTAs. 

Genome-wide association analysis on the 17 agronomic traits 

was performed using the FarmCPU method (Liu et al., 2016), 

which was implemented in GAPIT2 (Tang et al., 2016). To 

control for population structure, principal components were 

�tted as covariates and the corresponding quantile-quantile 

plots were compared to select the best model. Marker-trait 

association analysis was conducted separately for each envi-

ronment and on the combined data using the BLUPs for each 

trait. Signi�cant associations in the combined analysis were 

tested using the Bonferroni multiple test correction method 

at a Type I error of 5%, which is equivalent to P = 2.61 ´ 

10−6 (0.05/19,192 SNPs). The proportion of phenotypic varia-

tion explained (R2) by the SNP was calculated using a multiple 

linear regression model with all signi�cant SNPs �tted as inde-

pendent variable with �xed e�ect. Marker-trait associations 

with P <0.01 in two or more environments after Bonferroni 

correction in at least one environment were also reported as 

“multienvironment” MTAs.

RESULTS

Agronomic Trait Means and Correlations
Analysis of variance showed signi�cant di�erences (p < 0.05) 

among genotypes for most traits in all environments and 

for the combined data analysis across environments. This is 

consistent with the wide range of values of each trait (Table 2). 

For traits like PHT and SPL, the maximum values are almost 

twice the minimum. For SSD and SDS, the maximum 

values were almost triple the minimum values. Traits such 

as TLN, HIN, SKD, KPS, TKW, WGP, and GNY had a 

narrower range of values than other traits. Values for HDD, 

FWD, MAT, and GFD values ranged from 12, 10, 9, and 4 d, 

respectively. On average, the panel reached heading stage in 

66 d and matured 31 d later. Mean GNY across all trials was 

3754 kg ha−1, and the highest yield was 4198 kg ha−1.

Although most of the trait variation was attributed 

to di�erences in genotype and environment, signi�cant 

genotype ´ environment interaction was also observed. 

Repeatability estimates ranged from 0.28 for HIN to 0.96 

for PHT. More complex traits such as GNY, HIN, and 

TLN had lower repeatability estimates than PHT, DTH, 

and WGP. Biplots showing the phenotypic correlations 

between traits were plotted (Fig. 1). Traits with strong 

positive correlations include HDD and FWD, GFD and 

TWT, PHT and WGP, and GNY and KPS. On the other 

hand, GNY was negatively correlated with WGP, PHT, 

SDS, and PDL. Signi�cant Pearson coe�cients showed the 

magnitude of the correlations seen in the biplots (Supple-

mental Table S2). Traits FWD and HDD had the highest 

correlation at 0.92, and KPS (0.52) and HIN (0.49) had 

the highest positive correlation with GNY, followed by 

GFD (0.27), MAT (0.24), and TKW (0.22). Other traits 

such as WGP (−0.65), PHT (−0.52), PDL (−0.27), and 

SDS (−0.20) were negatively correlated with GNY.

Polymorphism, Gene Diversity,  

and Marker Density
The B genome had the highest number of polymorphic 

markers (9803) and the most dense SNP coverage (1 SNP 

per 0.12 cM), followed by the A genome with 7593 SNPs 

at a density of 1 SNP per 0.16 cM (Supplemental Table S3). 

The D genome was the least covered with 1796 polymor-

phic markers and an average spacing of 1.0 cM. Among 

all chromosomes, 1B and 6B had the most dense marker 

coverage at 0.09 cM. The number of polymorphic SNP 

markers on each chromosome ranged from 81 (4D) to 

1837 (1B). Average PIC values between A and B genomes 

were similar, whereas the D genome had the smallest PIC 

value. Among di�erent chromosomes, average PIC values 

ranged from 0.25 to 0.31.

Population Structure and Linkage 

Disequilibrium
The maximum peak of DK when plotted against the 

number of subpopulations (2–9) occurred at K = 2 

(Evanno et al., 2005; Supplemental Fig. S2A). Popula-

tion di�erentiation (�xation index = 0.13) values between 

the two groups were signi�cant (p < 0.001), suggesting 

moderate population structure (Hartl and Clark, 1997). 

The 237 accessions were then assigned into two subgroups 

according to the membership coe�cients in the STRUC-

TURE analysis (Supplemental Fig. S2B). The subdivisions 

corresponded to the regional origin of the breeding 

programs contributing the accessions. The �rst subgroup, 

https://www.crops.org
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provided evidence of population structure. The �rst two 

principal components accounted for 12.5% of the total 

variation of the panel. The �rst principal component sepa-

rated the panel into two major subgroups, similar to the 

results from STRUCTURE (Fig. 2A). The two major 

clusters were also identi�ed using genetic-distance-based 

QI, was composed mostly of accessions from the Northern 

Plains of the United States, including Canada. The second 

subgroup, QII, consisted mostly of accessions from the 

western United States and CIMMYT. A majority (127) 

of the accessions belonged to QII, whereas 110 acces-

sions comprised QI. Principal component analysis also 

Table 2. Descriptive statistics, variance parameters, and repeatability estimated for yield and yield components from 237 lines 

of the elite hard red spring wheat panel grown in 2012 and 2013 based on means over 11 environments.

Trait

Trait 

abbreviation

Descriptive statistics Variance parameters†

Mean Min. Max. s2
G s2

G´E s2
E r2

Days to heading (d) HDD 66.30 61.93 73.48 4.32 1.46 1.00 0.92

Days to anthesis (d) FWD 61.20 57.79 67.93 2.93 0.00 0.99 0.92

Days to maturity (d) MAT 97.20 93.64 102.80 2.39 0.99 1.15 0.85

Grain-filling duration (d) GFD 36.57 34.58 38.37 0.71 0.89 1.00 0.60

Plant height (cm) PHT 84.47 59.76 107.16 72.32 30.90 1.00 0.96

Peduncle length (cm) PDL 22.41 18.16 27.63 4.80 14.25 0.94 0.49

Tiller number (no. of tillers) TLN 422.02 395.15 455.37 366.24 2,559.83 1.00 0.42

Stem solidness (rating 1–5‡) SSD 8.51 6.72 17.67 3.99 0.59 2.02 0.82

Harvest index HIN 0.38 0.35 0.40 0.00 0.00 0.00 0.28

Spike length (cm) SPL 9.30 7.38 11.46 0.77 0.00 0.90 0.72

Spikelets per head (no. of spikelets) SKD 16.65 15.00 18.32 0.65 1.19 0.99 0.47

Kernels per spike (no. of kernels) KPS 33.29 28.31 43.74 7.52 19.44 0.98 0.72

1000-kernel weight (g) TGW 33.84 28.65 40.03 5.19 6.79 1.01 0.86

Test weight (g L−1) TWT 779.06 739.38 809.93 169.03 181.70 1.05 0.87
Sodium dodecyl sulfate 

sedimentation
SDS 60.52 28.82 78.59 108.09 40.75 1.00 0.89

Whole-grain protein (%) WGP 14.19 11.85 16.23 0.64 0.00 0.53 0.92

Grain yield (kg ha−1) GNY 3,753.92 3,163.52 4,198.00 56,394.00 464,065.00 0.96 0.57

† s2
G
, genetic variance; s2

G´E
, genotype ´ environment variance; s2

E
, residual variance.

‡ Stem solidness rating 1 to 5, where 1 indicates a completely hollow lumen and 5 indicates a lumen completely filled with pith. Ratings were conducted on five stems and 

were summed up to get the final rating score.

Fig. 1. Biplot of the phenotypic correlation 

matrix for the 17 morphoagronomic traits 

studied in the elite spring wheat panel grown 

in 2012 to 2013. PC1 and PC2 refer to Principal 

Components 1 and 2. FWD, days to anthesis; 

GFD, grain-filling duration; GNY, grain yield; 

HDD, days to heading; HIN, harvest index; 

KPS, kernels per spike; MAT, days to maturity; 

PDL, peduncle length; PHT, plant height; SDS, 

sodium dodecyl sulfate sedimentation; SKD, 

spikelets per head; SPL, spike length; SSD, 

stem solidness; TKW, thousand-kernel weight; 

TLN, tiller number; TWT, test weight; WGP, 

whole-grain protein concentration.
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cluster analysis (Fig. 2B), although it did not show perfect 

concordance in membership. Some genotypes in certain 

breeding programs were genetically much closer to one or 

more lines from a di�erent program. For example, eight, 

seven, and three genotypes from Montana, Saskatchewan, 

and Alberta, respectively, grouped with genotypes in QII 

instead of QI. Conversely, two Washington genotypes 

were genetically closer to members of QI instead of QII, 

where most Washington genotypes clustered. Cluster 

analysis also showed the two major subpopulations corre-

sponding to that identi�ed by STRUCTURE (Fig. 2C).

Multiple regression analysis with population struc-

ture in the model showed that most traits were a�ected 

by population structure (Table 3). Traits a�ected by popu-

lation structure included WGP (38%), followed by KPS 

(37.19%), PHT (29.84%), MAT (27.46%), FWD (24.85%), 

and TLN (23.60%). Traits GFD and SSD were the only 

ones whose variation was not signi�cantly explained by 

population structure.

Linkage disequilibrium was measured using the r2 

of signi�cant (p < 0.01) intrachromosomal marker pairs 

(Supplemental Table S4). A total of 11,906,433 intrachro-

mosomal pairs were tested, of which close to 33% were 

signi�cant at p < 0.01. The mean r2 across the genome was 

0.20. The D genome (43.52%) had the highest percentage of 

markers in LD, followed by the A genome (34.28%) and the 

B genome (31.51%). The largest proportion of markers in 

complete LD (r2 = 1) was located on the D genome (9.7%). 

Chromosome 5D (47.50%) had the highest percentage of 

marker pairs in LD, followed by chromosome 2D (46.67%), 

whereas chromosome 3D (25.49%) had the fewest markers 

in LD. The highest proportion (15%) of markers in complete 

LD was on chromosome 1D. The genome-wide critical 

value of r2 > 0.36 (95th percentile of r2 between unlinked 

SNPs) was determined to be the appropriate threshold 

for LD due to physical linkage. The intersection of the 

smoothing curve with this threshold indicated that the 

length of LD decay was at ?3 cM genome-wide (Supple-

mental Fig.  S3A). Linkage disequilibrium decayed at ?2 

and 3 cM in the A and B genomes, respectively. The longest 

LD decay was seen in the D genome, which extended up to 

8 cM (Supplemental Fig. S3B).

Marker-Trait Associations
A total of 226 MTAs was identi�ed for the 17 traits 

evaluated in the study, including 168 multienvironment 

MTAs and 58 that were detected using the combined 

data (BLUPs). A complete list of the MTAs for each trait 

is presented in Supplemental Table S5. Manhattan and 

quantile-quantile plots of the MTAs identi�ed in the 

combined analysis are shown in Supplemental Fig. S4 and 

S5, respectively. Generally, the MTAs accounted for a 

modest amount of the phenotypic variation for each trait. 

Across genomes, most of the MTAs were identi�ed on 

the A genome (99), followed by the B (95) and D (32) 

genomes. Multiple MTAs were observed in each chromo-

some, with the most associations located on chromosomes 

4A and 5A with 25 MTAs each (Supplemental Fig. S6). 

Only two MTAs were found for chromosome 3D. The 

most MTAs per trait detected across environments and 

combined analysis was 35 MTAs for PHT.

Association with Known Major Genes  

for Morphology and Phenology
The frequency of the photoperiod-insensitive Ppd-A1a 

allele was below the cuto� value (MAF < 0.05) and 

therefore was not included in the association analysis. 

Signi�cant MTAs were identi�ed between the functional 

genes and their corresponding traits. Marker-trait associa-

tion for Ppd-D1 with HDD was localized on chromosome 

2DS at 22.46 cM. Ppd-D1 was also associated with 

SPL across environments and in the combined analysis 

(Table 4, Supplemental Table S5). Ppd-B1 was positioned 

on chromosome 2BS (20.21 cM) and had signi�cant asso-

ciation with SPL and TKW. Vernalization locus Vrn-A1 

was associated with multiple traits such as HDD, FWD, 

MAT, GFD, PHT, WGP, and GNY at the 82.7-cM region 

of chromosome 5A. Plant height loci Rht-B1 and Rht-D1 

were both associated with PHT, on chromosomes 4B 

(76.20 cM) and 4D (80.68 cM), respectively.

Grain Yield and Yield Components
A total of 29 markers distributed across 14 chromo-

somes were associated with GNY (Table 4, Supplemental 

Table S5). Five MTAs were identi�ed from the combined 

Table 3. Percentage of phenotypic variation explained (R2) by 

population structure according to the combined data across 

environments in 2012 and 2013.

Trait Environments† R2 P value‡

%

Days to heading 7 10.38 <0.0001

Days to flowering 4 24.85 <0.0001

Days to maturity 5 27.46 <0.0001

Grain-filling duration 4 0.02 0.8165

Plant height 11 29.84 <0.0001

Peduncle length 3 13.55 <0.0001

Tiller number 5 23.60 <0.0001

Stem solidness 3 0.65 0.2177

Harvest index 3 4.57 0.0009

Spike length 3 11.33 <0.0001

Spikelets per head 3 10.72 <0.0001

Kernels per spike 7 37.19 <0.0001

1000-kernel weight 9 14.43 <0.0001

Test weight 7 11.5 <0.0001

Sodium dodecyl sulfate sedimentation 3 6.82 <0.0001

Whole-grain protein 10 38.00 <0.0001

Grain yield 11 18.56 <0.0001

† The number of environments used in combined analysis.

‡ Significance threshold P value is 0.001.
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Table 4. Significant (p < 2.61  10−6) marker-trait associations for the different phenotypic traits using the combined data 

across environments in 2012 and 2013.

Trait† SNP‡ SNP ID Chr. Pos§ Allele¶ P MAF# Effect†† R2

Coincident 

QTL or 

gene‡‡

HDD IWB22274 Excalibur_c13489_867 1A 71.1 T/C 1.32 ´ 10−6 0.31 0.50 0.028

IWB52406 Ra_c6672_1679 4A 145.2 A/G 7.58 ´ 10−12 0.24 0.91 0.052 Zanke et al. 

(2014)

IWA1 wsnp_AJ612027A_Ta_2_1 5A 90.5 A/G 1.64 ´ 10−6 0.26 0.63 0.212 Vrn-A1

IWB2746 BobWhite_c35035_317 6A 135.8 A/G 1.48 ´ 10−6 0.33 −0.48 0.037

FWD IWA1 wsnp_AJ612027A_Ta_2_1 5A 90.5 A/G 1.37 ´ 10−8 0.26 0.69 0.400 Vrn-A1

IWB53851 RAC875_c14064_177 7B 167.0 T/C 4.59 ´ 10−7 0.43 0.44 0.044

GFD IWB64353 RFL_Contig3424_931 4A 137.0 T/C 2.08 ´ 10−6 0.30 −0.20 0.016

IWB28183 Excalibur_c63243_434 6B 60.8 T/C 6.30 ´ 10−8 0.38 0.21 0.084

IWB55857 RAC875_c25839_225 6D 82.8 A/G 8.85 ´ 10−8 0.24 0.28 0.129

MAT IWA5287 wsnp_Ex_rep_c66689_65010988 5A 91.3 A/G 5.31 ´ 10−13 0.28 0.74 0.272 Vrn-A1

PHT IWB8131 BS00038418_51 1D 82.8 A/G 2.75 ´ 10−7 0.22 1.81 0.038

IWB27094 Excalibur_c49875_479 2B 145.1 T/C 3.21 ´ 10−7 0.24 −1.43 0.030

IWA6906 wsnp_Ku_c3237_6024936 4A 70.0 T/C 2.75 ´ 10−10 0.32 −1.69 0.023

IWA752 wsnp_CAP11_c356_280910 4D 69.2 A/G 5.78 ´ 10−7 0.31 1.63 0.061 Rht-D1

IWB4446 BobWhite_c8266_227 5A 140.6 A/C 1.82 ´ 10−12 0.14 3.33 0.369 Cuthbert et al. 

(2008)

IWA7774 wsnp_Ra_c2421_4647159 5B 41.9 T/C 6.22 ´ 10−21 0.08 −5.07 0.166

IWA1721 wsnp_Ex_c13034_20630123 6B 57.0 A/G 4.16 ´ 10−13 0.10 −3.22 0.027

PDL IWB31875 GENE-0427_442 1B 56.9 A/G 2.01 ´ 10−8 0.31 −0.69 0.040

IWB13323 CAP12_c2677_138 4A 37.1 T/C 1.39 ´ 10−9 0.38 0.81 0.051

IWB36033 IACX5818 5B 53.5 A/T 3.34 ´ 10−10 0.37 −0.89 0.134

IWB4117 BobWhite_c62620_150 6A 58.5 A/G 1.05 ´ 10−6 0.19 −0.86 0.002

SSD IWB10731 BS00074345_51 3B 144.7 A/G 5.73 ´ 10−35 0.14 1.64 0.514 Varella et al. 

(2015)

IWB22082 Excalibur_c12383_251 6A 56.2 T/C 3.78 ´ 10−8 0.08 0.71 0.073

SPL IWA989 wsnp_CAP12_c812_428290 2D 19.0 A/G 4.11 ´ 10−13 0.39 0.33 0.083 Ppd-D1

IWB49380 Kukri_rep_c109051_116 3A 86.2 A/G 1.97 ´ 10−6 0.38 −0.22 0.058

IWB34424 IAAV1677 3B 120.0 T/C 9.50 ´ 10−7 0.35 −0.21 0.089

IWB52488 Ra_c700_1024 5A 62.7 A/G 6.11 ´ 10−9 0.21 0.31 0.114

SKD IWB525 BobWhite_c1361_1187 1A 13.7 T/C 1.92 ´ 10−7 0.26 −0.29 0.018

IWB22971 Excalibur_c1747_429 2B 26.5 A/C 1.95 ´ 10−7 0.16 0.38 0.013 Kumar et al. 

(2007)

IWB2081 BobWhite_c27251_77 7A 156.2 A/G 9.40 ´ 10−7 0.09 −0.42 0.035 Börner et al. 

(2002)

KPS IWB73713.1 Tdurum_contig8669_131 1B 154.8 A/G 6.69 ´ 10−7 0.46 0.69 0.206

IWB6033 BS00009263_51 2B 46.8 T/C 4.19 ´ 10−8 0.20 0.86 0.058

TKW IWB74701 tplb0041a22_935 1A 71.1 A/G 4.05 ´ 10−7 0.25 0.59 0.067

IWA7656 wsnp_Ra_c1660_3275687 2B 20.6 T/C 8.11 ´ 10−8 0.42 0.65 0.056 PpD-B1

IWB8083 BS00037023_51 5B 138.7 T/C 2.27 ´ 10−7 0.20 0.62 0.012

IWB27650 Excalibur_c56264_188 6A 80.1 A/G 8.98 ´ 10−11 0.35 0.75 0.197 Sukumaran et 

al. (2015)

IWB2584 BobWhite_c32883_84 7A 228.4 T/C 4.08 ´ 10−7 0.40 0.53 0.047

IWB56648 RAC875_c31791_400 7B 140.0 A/G 6.69 ´ 10−8 0.38 −0.63 0.011 Neumann et al. 

(2011)

TWT IWB25538 Excalibur_c34964_326 2A 113.3 T/C 2.75 ´ 10−8 0.10 −5.02 0.034

IWB45102 Kukri_c41117_824 7B 10.1 T/G 9.94 ´ 10−7 0.38 2.84 0.134

WGP IWB64569 RFL_Contig4030_493 2A 18.6 A/C 3.57 ´ 10−8 0.42 0.14 0.145

IWB31342 Excalibur_rep_c83640_791 2B 145.1 A/G 1.31 ´ 10−7 0.22 −0.15 0.003

IWA4276 wsnp_Ex_c55777_58153636 5A 93.2 T/C 8.53 ´ 10−7 0.29 −0.17 0.312

IWB8052 BS00036434_51 5B 100.8 T/C 5.48 ´ 10−9 0.16 0.18 0.020

SDS IWB39039 Ku_c28007_1398 1A 21.6 A/G 3.58 ´ 10−9 0.24 2.51 0.074 Glu-A3

IWB48117 Kukri_c8740_75 1B 64.1 A/G 1.46 ´ 10−26 0.08 −6.01 0.259

IWB72142 Tdurum_contig50988_500 1B 117.8 T/C 1.49 ´ 10−8 0.41 −2.04 0.036 Glu-B1
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data and 24 multienvironment MTAs. Among the MTAs 

in the combined analysis, IWA4057 (5B) had the largest 

e�ect on GNY, explaining 9% of the phenotypic varia-

tion. The positive allele, associated with higher GNY, was 

carried by 25% of the genotypes in the panel (Table 4). 

Marker IWB54789 (2B) was detected in both combined 

and across environment analyses. The allele for greater 

yield is present at a high frequency (80%) in the panel. 

Several MTAs were identi�ed for the major yield compo-

nent traits such as KPS, SKD, TKW, and TWT. For KPS, 

the strongest association in the combined data was with 

marker IWB73713.1 on 1B, which explained ?20% of 

the phenotypic variation, and the positive allele is present 

in 46% of the genotypes. Eight multienvironment MTAs 

for KPS were detected on chromosomes 1B, 4A, 5A, 5B, 

6D, and 7D. Among these MTAs marker, IWA2522 on 

7D was responsible for 21% of the phenotypic variation 

in KPS. Six markers on chromosomes 1A, 2B, 5B, 6A, 

7A, and 7B were associated with TKW in the combined 

analysis. Among them, IWB27650 on 6A had the stron-

gest association and largest e�ect on TKW (R2 = 20%) 

and was also signi�cant across environments. Nineteen 

multienvironment MTAs for TKW were detected on 16 

chromosomes. Seven markers were associated with SPL. 

One marker, IWA989, was in LD with the gene for photo-

period response (Ppd-D1) on chromosome 2D. IWA989 

was signi�cant in both combined and across environment 

analyses explaining between 7 and 8% of the variation in 

SPL. The largest e�ect MTA for SPL was IWB52488 on 

5A which explained as much as 11% of the phenotypic 

variation. Two and three MTAs were associated with 

TWT and SKD, respectively, in the combined analysis 

with R2 between 1 and 13%. Multienvironment MTAs for 

TWT were also observed on chromosomes 1A, 2A, 2B, 

3B, 5A, 6A, and 7B. For SKD, MTAs that were signi�cant 

in more than one environment were detected on chromo-

somes 3A, 4A, 7A, and 7B.

Grain Protein and SDS Sedimentation
Four markers on A and B genomes of chromosomes 2 

and 5 were associated with WGP in the combined analysis 

(Table 4). The largest e�ect MTA was IWA4276 on chro-

mosome 5A, which was responsible for up to 31% of the 

phenotypic variation and is near the vernalization gene 

(Vrn-A1). The allele for higher grain protein is present in 

83% of the genotypes in the panel. Another marker for 

WGP (IWB64569) on 2A accounted for 15% of the varia-

tion in WGP, but only 42% of the genotypes carried the 

allele for higher grain protein. Marker-trait associations 

for SDS on the short arm of chromosomes 1A (IWB39039) 

and 1B (IWB48117) were signi�cant in both combined and 

across-environment analyses. IWB48117 on 1B accounted 

for up to 31% of the variation in SDS. The allele for higher 

SDS in IWB48117 was highly represented (92%) in the 

Table 4. Continued.

Trait† SNP‡ SNP ID Chr. Pos§ Allele¶ P MAF# Effect†† R2

Coincident 

QTL or 

gene‡‡

IWB53449 RAC875_c11911_431 2D 34.2 A/G 1.95 ´ 10−8 0.10 −3.59 0.075

IWB3924 BobWhite_c5640_282 4A 49.0 A/G 4.75 ´ 10−11 0.09 −5.09 0.205

IWB48897 Kukri_rep_c103613_253 6B 39.1 T/C 3.68 ´ 10−7 0.13 2.03 0.020

HIN IWB32494 GENE-1469_196 3A 90.3 A/G 4.72 ´ 10−7 0.41 −0.01 0.009

IWB64600 RFL_Contig4167_1164 5B 135.6 T/C 3.43 ´ 10−8 0.19 −0.01 0.049 Sukumaran et 

al. (2015)

IWB10166 BS00067836_51 6B 66.4 T/G 4.75 ´ 10−9 0.30 −0.01 0.067

GNY IWB56801 RAC875_c33037_578 2A 141.4 A/G 1.14 ´ 10−6 0.09 −98.58 0.044 Chen et al. 

(2016)

IWB54789 RAC875_c19210_348 2B 97.0 A/C 1.48 ´ 10−7 0.19 −75.72 0.065

IWB6756 BS00021752_51 4A 35.3 A/C 6.13 ´ 10−7 0.07 −110.17 0.011 Kumar et al. 

(2007)

IWA4057 wsnp_Ex_c49423_54028488 5B 104.6 T/C 6.05 ´ 10−8 0.25 60.72 0.086 Addison et al. 

(2016)

IWB7048 BS00022372_51 6A 126.2 T/C 1.35 ´ 10−6 0.07 104.84 0.029

†  HDD, days to heading; FWD, days to flowering; GFD, grain-filling duration; MAT, days to maturity; PHT, plant height; PDL, peduncle length; SSD, stem solidness; SPL, 

spike length; SKD, spikelets per head; KPS, kernels per spike; TKW, thousand-kernel weight; TWT, test weight; WGP, whole-grain protein; SDS, sodium dodecyl sulfate 

sedimentation; HIN, harvest index; GNY, grain yield.

‡ SNP, single-nucleotide polymorphism.

§ Chromosome and position based on the consensus map in Wang et al. 2014.

¶ The minor allele for each SNP marker is underlined.

# Minor allele frequency.

†† Effect of allele substitution. The sign of the allelic effect estimate is with respect to the minor allele.

‡‡ Quantitative trait loci (QTL) for similar trait or gene reported in the same region.
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panel; however, that of IWB39039 was present at a lower 

frequency (24%). Another large-e�ect (R2 = 21%) MTA 

for SDS with identi�ed on chromosome 4A (IWB3924). 

There were 23 and 6 multienvironment MTAs for WGP 

and SDS, respectively (Supplemental Table S5).

Stem Solidness and Tiller Number
IWB10731 on chromosome 3BL had the largest e�ect 

on SSD (R2 = 51%). This marker was identi�ed in the 

combined analysis and was signi�cant in all test environ-

ments (Table 4, Supplemental Table S5). The positive 

allele for this SNP is carried by 14% of the genotypes. 

No MTA for TLN passed the signi�cance threshold in 

the combined analysis; however, �ve multienvironment 

MTAs were identi�ed.

Plant Height, Peduncle Length,  

and Harvest Index
Thirty-�ve MTAs for PHT were detected in all but �ve 

chromosomes in the D genome (2D, 3A, 5D, 6D, and 7D) 

(Supplemental Table S5). IWB4446 on 5A had the largest 

e�ect on PHT (R2 = 37%), followed by markers near 

known PHT genes on 4B (IWB23338, R2 = 16%) and 4D 

(IWA752, R2 = 19%). IWB4446 and IWA752 were signi�-

cant in both combined and across-environment analyses. 

Marker IWB36033 on chromosome 5B explained the 

highest percentage (13%) of the phenotypic variation in 

PDL (Table 4). Five multienvironment MTAs for PDL were 

detected on chromosomes 1A, 2B, 3B, 4A, and 4B. Marker-

trait associations with HIN were identi�ed on chromosomes 

3A, 5B, and 6B with the alleles for higher HIN present in at 

least 50% of the lines. IWB10166 (6B) had the largest e�ect 

on HIN explaining 7% of phenotypic variation.

Phenological Traits
Many MTAs detected were related to plant phenology 

such as HDD, FWD, GFD, and MAT. For HDD, FWD, 

and MAT, the strongest association was identi�ed at 90.54 

cM of chromosome 5A with markers IWA1 and IWB12023 

(Supplemental Table S5). Marker IWA1 is in LD with the 

vernalization gene Vrn-A1. Other markers in this region, 

between 91 and 93 cM, were also associated with HDD, 

FWD, GFD, and MAT. These MTAs were signi�cant in 

both the combined and across-location analyses. IWA1 

explained 21 and 40% of the variation in HDD and FWD 

in the combined analysis (Table 4). Other MTAs for HDD 

were identi�ed on chromosomes 1A, 1B, 1D, 2B, 2D, 4A, 

5A, 6A, 7A, and 7D. Most of these regions were also associ-

ated with FWD, GFD, and MAT (Supplemental Table S5).

Markers and Chromosome Regions 

Associated with Multiple Traits
Close linkage, pleiotropic e�ects, strong correlation 

between traits, or a combination of these factors may lead 

to MTAs that a�ect several traits. These were observed 

on many chromosomes. Their chromosome positions are 

shown with another trait-speci�c MTA in Supplemental 

Table S5. A cluster of MTAs was located between the 

83 and 93 cM of chromosome 5A, colocalizing with the 

Vrn-A1 gene. Marker-trait associations for HDD, FWD, 

GFD, MAT, and GNY were detected in this region. Simi-

larly, MTAs for HDD and SPL were also observed in the 

region of Ppd-D1 on chromosome 2D. A clustered region 

for yield and yield-related traits (TKW, KPS, and GNY) 

was detected in the 74- to 102-cM region of chromo-

some 1B. The QTLs for KPS, SKD, SPL, and TKW were 

grouped between the 20 and 46 cM of chromosome 2B. 

Marker-trait associations related to SDS and WGP clus-

tered on the short arm of chromosome 1B. Grain yield 

shared a locus with TLN on chromosome 2AS, PHT on 

chromosome 5AL, and HDD, PDL, and TKW on 1AS.

Distribution of QTL Alleles among  

Breeding Programs
The distribution of positive alleles for the MTAs varied 

among the breeding programs. Positive alleles were 

de�ned as those that provided higher values for yield 

and its components. For traits such as PHT and HDD, 

alternative alleles may be preferred, depending on the 

environment. Figure 3 shows that the positive allele for 

the marker associated with SKD, IWB2018, was present 

in a high frequency in most breeding programs except 

Agriculture and Agri-Food Canada (Manitoba) (Panel 

A). All genotypes from South Dakota State University, 

University of Minnesota, University of California–Davis, 

and University of Idaho–Aberdeen carried the allele for 

higher number of spikelets. The frequency of the positive 

alleles for IWB73713.1 (KPS) and IWB27650 (TKW) were 

higher among the lines representing the western United 

States and CIMMYT than among those lines from the 

US Northern Plains and Canada (Panels B and C). At least 

80% of the lines representing the western United States 

had higher frequencies of the positive allele for GNY 

(IWB64789). A higher frequency (at least 90%) was observed 

in the lines from University of Saskatchewan–Agriculture 

and Agri-Food Canada (Saskatchewan), South Dakota State 

University, and University of Minnesota (Panel D). The 

allelic state of all MTAs in the combined analysis for yield 

and component traits of the 237 genotypes in the panel is 

presented in Supplemental Table S6.

DISCUSSION
SNP Polymorphism and Diversity
The average PIC in this population was 0.29, which is like 

the PIC of 1440 improved wheat lines (breeding lines and 

cultivars) from the USDA National Small Grains Collec-

tion (Bonman et al., 2015). Polymorphic information 

content is widely used to measure informativeness (high 
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PIC values preferred) of molecular markers (Botstein et 

al., 1980). Overall, the D genome had the lowest PIC 

values compared with genomes A and B, and this pattern 

was generally seen across di�erent chromosomes. Lopes 

et al. (2015) reported a similar pattern in the level of 

PIC values on the wheat association mapping initiative 

(WAMI) population developed by CIMMYT. Lower PIC 

values were also observed in D genome from a panel of 

elite US spring (0.14–0.18) and winter (0.14–0.16) wheat 

lines (Chao et al., 2010).

Gene diversity was high and similar in genomes A 

and B but low in the D genome. Although higher relative 

to the WAMI population (0.37 vs. 0.34), gene diversity 

in this panel was less than the gene diversity (0.57) in 

a pool of elite winter wheat breeding lines from major 

US regional performance nurseries (Zhang et al., 2010). 

The amount of gene diversity present in the panel was 

comparable with previously established AM popula-

tions, although we expect the WAMI population to have 

more diversity in the D genome, which should have been 

enriched by including more synthetic-derived lines in 

their panel (Zhang et al., 2010). The high gene diversity 

and dense marker coverage (average density = 1 SNP per 

0.43 cM) used in this panel further justi�ed its potential to 

identify novel associations, especially in previously unex-

plored regions of the wheat genome.

Population Structure and Linkage 

Disequilibrium
Both model-based (STRUCTURE) and distance-based 

(Cluster) approaches revealed two similar subpopulations 

(QI and QII) that coincided with the major geographical 

locations of the breeding programs that developed the elite 

lines. Despite a distinct genetic grouping in the panel, there 

was also interrelatedness across subpopulations. Ascertain-

ment bias, especially in this type of genotyping platform, 

could have a possible e�ect on the di�erent measures of 

population structure. Hence, we carefully examined the 

pedigree of the genotypes in the panel and discussed with the 

wheat breeders to further validate our results. One possible 

reason for this mixture can be attributed to the dynamics 

of germplasm exchange, especially among publicly funded 

wheat breeding programs in North America. Wheat 

breeders have historically shared germplasm with other 

Fig. 3. Frequency of positive alleles for (A) IWB2081, (B) IWB73713.1, (C) IWA27650, and (D) IWB54789 across breeding programs. 

Horizontal bars with a diagonal pattern correspond to genotypes in Northern Plains of the United States and Canada, whereas solid 

colored bars are genotypes from western United States and CIMMYT. Positive alleles are defined as those that provided higher trait 

values. ALB, University of Alberta; CMT, CIMMYT; MSU, Montana State University; MTB, Agriculture and Agri-Food Canada (Manitoba); 

SDK,South Dakota State University; SSK, University of Saskatchewan–Agriculture Agri-Food Canada (Saskatchewan); UCD, University 

of California–Davis; UIA, University of Idaho–Aberdeen; UMN, University of Minnesota; WAS, Washington State University.
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breeding programs on a regular basis to bring new alleles 

that can be bene�cial for trait improvement.

The variation in LD and LD decay rates across di�erent 

studies re�ects the complexity of the evolutionary and 

breeding history of wheat. The longer extent of LD in the 

D genome may be explained by a strong genetic bottleneck 

that happened after the last polyploidization event, which 

resulted in the origin of hexaploid wheat (Akhunov et al., 

2010). After this polyploidization event, gene �ow between 

the tetraploid and hexaploid wheat forms through fertile 

pentaploids increased the diversity of the A and B genomes, 

but not of the D genome (Dubcovsky and Dvorak 2007). 

We observed a high proportion of marker pairs in LD (p < 

0.01) on chromosomes with known major wheat adaptive 

genes 1D (Eps1), 2D (Ppd-D1), 4B (Rht-B1), and 5A 

(Vrn-A1) (Supplemental Table S4). Given the current LD 

decay rate in our panel and the number of markers available, 

MTAs (except in the D genome) can be resolved to within 

3 cM. Similar values of LD decay rates were reported in the 

WAMI population using two di�erent marker platforms: 

Diversity Arrays Technology (DArT) (Edae et al., 2014) and 

SNP (Sukumaran et al., 2015).

Marker-Trait Associations
Germplasm exchange is one basis for maintaining diversity 

in plant breeding programs. Evaluating lines from other 

programs is a challenge, in that phenotypes of introduced 

lines may be inferior due to lack of speci�c adaptation to the 

geographical area. However, superior genes may be present 

in lines that do not show superior phenotypes. Genome-

wide association mapping provides an opportunity to 

identify the superior genes in introduced germplasm and to 

screen a larger number of accessions than biparental popula-

tions. However, given the extensive LD in wheat, biparental 

populations provide a complementary tool to validate the 

GWAS associations and to increase resolution by developing 

large and more isogenic segregating populations. The elite 

HRS panel, developed as part of the Triticeae Cooperative 

Agricultural Project (TCAP) is a sample of spring wheat 

breeding lines from 10 wheat breeding programs in North 

America assembled to represent the current genetic and 

phenotypic diversity of each state’s breeding program. The 

wide phenotypic variation due to di�erences in the priority 

and target traits of each breeding program makes this panel 

suitable for genome-wide association analysis. In fact, all 17 

agronomic traits evaluated across several locations showed a 

mid- to high range of di�erences in their phenotypic perfor-

mance. The degrees of relationship and correlations seen 

among the traits may be taken into consideration in future 

improvement strategies.

A total of 226 MTAs were identi�ed that passed rela-

tively stringent criteria for signi�cance, as well as expression 

across environments. The amount of phenotypic variation 

explained by each marker (R2) ranged from 1 to 51% in 

the combined analysis. These values were consistent with 

the genetic architecture of complex traits expected to be 

in�uenced by many loci, each with a relatively small e�ect. 

Recent GWAS studies related to agronomic traits reported 

a similar range of R2 values independent of the genotyping 

platform used and the composition of the mapping panel 

(Crossa et al., 2007; Yao et al., 2009; Neumann et al., 2011; 

Dodig et al., 2012; Edae et al., 2014; Lopes et al., 2015; 

Sukumaran et al., 2015; Tadesse et al., 2015; Chen et al., 

2016). Marker-trait associations in a panel of elite lines may 

allow the identi�ed QTLs to be e�ectively moved into the 

breeding program without the negative e�ects of linkage 

drag and adaptability of QTLs introduced from more exotic 

germplasm. We further compared the identi�ed MTAs 

with previous studies using the latest comparative map of 

wheat (Maccaferri et al., 2015).

Grain yield MTAs were identi�ed on 14 chromosomes, 

and half of these MTAs corresponded to chromosome 

positions reported in previous studies, further validating 

our results. The MTAs on chromosomes 1A, 1B, 3B, 4AS, 

and 5B were also reported in QTL mapping studies using 

biparental populations (Börner et al., 2002; Kumar et al., 

2007; Li et al., 2015; Addison et al., 2016). This shows 

that both genetic strategies to identify genomic regions 

associated with di�erent traits can be used to comple-

ment and/or cross-validate results. Fine mapping of a 

QTL region identi�ed in GWAS is done using biparental 

populations from crosses of individuals that are polymor-

phic at the target region. The distribution of the GNY 

in many genomic regions and their minor e�ects further 

showed the complexity of the genetic architecture of 

GNY. Although increasing GNY is the primary objec-

tive of wheat programs (Green et al., 2012), other traits 

that contribute to yield should always be included in the 

breeding process. Marker IWB54789 (2B) is a potentially 

new source of yield-increasing allele, especially in Canada 

and the Great Plains of the United States.

In this study, TKW showed signi�cant correlation 

to GNY. Marker-trait associations for TKW on chro-

mosomes 1A, 6A, and 7A are at most within 4 cM to 

MTAs for GNY. An MTA for TKW on chromosome 6A, 

IWB27650, which was detected across environments and 

in the combined analysis, was 2 cM from a TKW MTA 

reported in Sukumaran and Yu (2014). Given the relatively 

large e�ect (R2 = 20%) of marker IWB27650 on TKW and 

stability across environments, upon further validation, this 

marker can potentially be used in marker-assisted selection 

for heavier kernels. Other MTAs for TKW on 1B, 4AS, 

6D, 7A, and 7B have been reported in literature (Neumann 

et al., 2011; Edae et al., 2014; Zanke et al., 2014; Chen 

et al., 2016) (Supplemental Table S5). The trait KPS was 

also highly correlated with GNY. Among the 10 MTAs for 

KPS, markers IWB73713.1 (1B) and IWA2522 (7D) had the 

largest e�ects (R2 = 20%) on KPS. To our knowledge, these 
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two markers have not been reported elsewhere; hence they 

can be new sources of useful alleles for KPS. Other traits 

such as SKD, SPL, and TLN are known contributors to 

yield potential particularly in determining kernel number. 

Markers IWB35184 and IWB525 for SKD are within 2 

and 4 cM from markers IWB49380 (SPL) and IWB61124 

(GNY) on chromosomes 3A and 1A, respectively. Marker 

IWB8815 for TLN colocalized with IWB10151 for GNY 

on chromosome 2A. Using a combination of these various 

MTAs, breeding programs can design speci�c crosses 

towards the improvement of these traits.

The major QTLs for SSD, which were also related to 

stem saw�y (Cephus cinctus Norton) resistance, were also 

identi�ed on chromosomes 3B and 5B (Sherman et al., 

2010; Varella et al., 2015). However, the MTAs for SSD on 

1D and 6A can be novel sources for horizontal resistance to 

stem saw�y. Several MTAs for PHT were identi�ed aside 

from the region of major PHT genes (4B and 4D) in almost 

all chromosomes, consistent with the �ndings of Börner et 

al. (1996) and Snape et al. (1977). Rht-D1 (4D) was signi�-

cant in both combined and across environment analyses 

with the dwar�ng allele present in 69% of the genotypes 

(Table 4). The importance of this height-reducing gene 

in breeding programs is due in part to its contribution in 

improving HIN and resistance to lodging in high-rainfall 

zones. In this panel, PHT was negatively correlated with 

GNY, which is in agreement with the report of Belluci 

et al. (2015) using Scandinavian winter wheat lines. As a 

result, it was not surprising that there were several MTAs 

for PHT near (2 cM) MTAs for GNY in chromosomes 2B, 

6A, and 7A. In these MTAs, average GNY for genotypes 

with the dwar�ng alleles was higher than for genotypes that 

carried the alleles for taller PHT.

Loci that were associated with multiple traits were also 

identi�ed, aside from those regions governed by major 

developmental genes. The clustering of these MTAs is 

also supported by their phenotypic correlations. Chromo-

some 4A was a hotspot of MTAs for GNY, KPS, TKW, 

HDD, GFD, and PDL. Speci�cally, QTLs for GNY and 

PDL were detected in the same region at 35 to 37 cM, and 

another MTA for GNY and SDS was localized at 49 to 51 

cM. A cluster of MTAs for GFD, HDD, KPS, PDL, TKW, 

and GNY was also detected at 137 to 155 cM of 4AL. A 

GWAS study that focused on chromosome 4A identi�ed 

MTAs for six agronomic traits, including PHT, SPL, seeds 

per spike, spikelet density, grains per spike, and TKW (Liu 

et al., 2010). A region spanning ?6 cM on the distal end of 

the long arm of chromosome 7B harbored MTAs for TKW, 

SKD, and SDS. A 3-cM region on chromosome 6A also 

harbored MTAs for GFD, TKW, PHT, TWT, and GNY. 

Colocalization of loci is advantageous but can also be prob-

lematic if undesirable repulsion linkages are maintained. In 

this case, haplotype analysis or targeted selection of recom-

binants is needed to identify allelic combinations associated 

with the desired phenotypic performance. The relationship 

between these traits can be further dissected by increasing 

marker resolution or creating designed crosses from indi-

viduals that are polymorphic for markers in these regions. 

However, for alleles that are in coupling phase, these can 

be e�ciently deployed in breeding programs using marker-

assisted selection. Due to their elite background, germplasm 

improvement can quickly bene�t from these QTLs by 

reducing the number of backcrosses needed if sourced from 

landraces or wild relatives.

Identi�cation of MTAs from this association mapping 

panel will allow breeders to select parents for crossing with 

complementary alleles at loci a�ecting GNY. Germplasm 

exchange has the potential to target speci�c loci rather 

than just on elite lines per se. Thus, bene�cial alleles may 

be detected in lines that do not perform at a high level in 

the tested environment. As an example, the positive alleles 

for IWB73713.1 (KPS) and IWB27650 (TKW) are preva-

lent in the genotypes from breeding programs in the western 

United States and can be used for germplasm enrichment in 

other programs (Fig. 3). Likewise, the US Northern Plains 

and Canadian genotypes are good sources for the IWB54789 

allele associated with higher GNY, which is found at rela-

tively lower frequency in the western genotypes, University 

of Alberta, Agriculture and Agri-Food Canada (Manitoba), 

and Montana State University. To facilitate this approach, 

Supplemental Table S6 shows the allele status for all 237 lines 

for the MTAs with GNY and yield components.

CONCLUSION
In this study, we have shown that the TCAP elite HRS 

wheat mapping panel has su�cient diversity, poly-

morphism, and resolution to conduct meaningful 

whole-genome scans for complex traits. The major division 

in the panel coincided with the broader geographical 

location of the breeding programs that contributed the 

elite lines. We identi�ed associations between 17 di�erent 

agronomic traits and SNP markers. Some of these MTAs 

were validations from previously conducted QTL mapping 

studies, but newly discovered associations, especially for 

yield and yield components, can be valuable in MAS after 

proper validation. These results will help breeders select 

complementary parents for crossing to enhance the value 

of germplasm exchange programs.
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