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Genome-wide association study of classical
Hodgkin lymphoma identifies key regulators of
disease susceptibility
Amit Sud 1, Hauke Thomsen 2, Philip J. Law 1, Asta Försti2,3, Miguel Inacio da Silva Filho2, Amy Holroyd1,

Peter Broderick 1, Giulia Orlando1, Oleg Lenive1, Lauren Wright1, Rosie Cooke1, Douglas Easton4,5,

Paul Pharoah 4,5, Alison Dunning4, Julian Peto6, Federico Canzian7, Rosalind Eeles 1,8, ZSofia Kote-Jarai1,

Kenneth Muir 9,10, Nora Pashayan 5,11, The PRACTICAL consortium, Per Hoffmann12,13,

Markus M. Nöthen13,14, Karl-Heinz Jöckel15, Elke Pogge von Strandmann16, Tracy Lightfoot17, Eleanor Kane17,

Eve Roman17, Annette Lake18, Dorothy Montgomery18, Ruth F. Jarrett18, Anthony J. Swerdlow1,19,

Andreas Engert16, Nick Orr20, Kari Hemminki2,3 & Richard S. Houlston1,20

Several susceptibility loci for classical Hodgkin lymphoma have been reported. However,

much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing

genome-wide association studies, a new genome-wide association study, and replication

totalling 5,314 cases and 16,749 controls. We identify risk loci for all classical Hodgkin

lymphoma at 6q22.33 (rs9482849, P= 1.52 × 10−8) and for nodular sclerosis Hodgkin lym-

phoma at 3q28 (rs4459895, P= 9.43 × 10−17), 6q23.3 (rs6928977, P= 4.62 × 10−11), 10p14

(rs3781093, P= 9.49 × 10−13), 13q34 (rs112998813, P= 4.58 × 10−8) and 16p13.13

(rs34972832, P= 2.12 × 10−8). Additionally, independent loci within the HLA region are

observed for nodular sclerosis Hodgkin lymphoma (rs9269081, HLA-DPB1*03:01, Val86 in

HLA-DRB1) and mixed cellularity Hodgkin lymphoma (rs1633096, rs13196329, Val86 in HLA-

DRB1). The new and established risk loci localise to areas of active chromatin and show an

over-representation of transcription factor binding for determinants of B-cell development and

immune response.
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C
lassical Hodgkin lymphoma (cHL) is a lymphoid malig-
nancy of germinal centre (GC) B-cell origin1, which is
characterised by Hodgkin and Reed–Sternberg (HRS) cells

with a dominant background population of reactive inflammatory
cells1. Of the four major subtypes of cHL, nodular sclerosis
Hodgkin lymphoma (NSHL) and mixed cellularity Hodgkin lym-
phoma (MCHL) account for 65% and 20% of cHL, respectively2.
While Epstein–Barr virus (EBV) infection is causally associated with
a subset of cHL cases, proportionally higher in MCHL, no other
environmental factor has thus far been robustly linked to cHL risk3.

Evidence for inherited genetic influence on susceptibility to
cHL is provided by the familial risk and the high concordance
between monozygotic twins4, 5. A strong HLA association
for cHL risk is well established; however, our understanding of
cHL heritability has been transformed by recent genome-wide
association studies (GWAS), which have identified single-
nucleotide polymorphisms (SNPs) at seven non-HLA loci
influencing risk6–9. Although projections indicate that additional
risk variants for cHL can be discovered by GWAS10, the statistical
power of published studies is limited.

To gain a more comprehensive insight into cHL predisposition,
we performed a meta-analysis of two previous GWAS7, 8 and a
new GWAS, thereby more than doubling study power to discover
risk SNPs. With replication, our study has allowed us to identify
six new non-HLA risk loci. Additionally, by conducting region-
specific imputation we have defined the specific HLA associations
underlying NSHL and MCHL risk.

Results
Association analysis. We analysed GWAS data from three
studies of European ancestry: a new GWAS from the UK

National Study of Hodgkin Lymphoma Genetics (NSHLG) and
two previously reported GWAS (Supplementary Table 1)7, 8.
After quality control the three studies provided SNP genotypes on
3,077 cases and 13,680 controls (Supplementary Tables 2, 3, 4;
Supplementary Fig. 1). To increase genomic resolution, we
imputed >10 million SNPs using the 1000 Genomes Project and
the UK10K data as reference11, 12. Quantile–quantile (Q–Q) plots
for SNPs with minor allele frequency (MAF)> 0.05% post
imputation did not show evidence of substantive over-dispersion
(λ= 1.03–1.09; Supplementary Fig. 2). An overview of the ana-
lysis strategy is outlined in Supplementary Fig. 3. Meta-analysing
the association test results from the three GWAS into a joint
discovery set, we calculated joint odds ratios and 95% confidence
intervals for each SNP and associated per-allele P-value for all
cHL, NSHL and MCHL cases vs. controls (Supplementary Fig. 4).
In this analysis, associations for the established non-HLA risk loci
at 2p16.1, 3p24.1, 5q31.1, 6q23.3, 8q24.21, 10p14 and 19p13.3
were consistent in direction and magnitude of effect with pre-
viously reported studies (Supplementary Fig. 4; Supplementary
Table 5)6–8.

We sought validation of association SNPs with a P-value from
the meta-analysis under a fixed-effects model at P< 1.0 × 10−7

and P< 1.0 × 10−6 for loci not previously associated with cHL and
NSHL risk, respectively, by genotyping two additional indepen-
dent series (Supplementary Table 1), totalling 2,237 cases and
3,069 controls (Table 1; Supplementary Table 6). Where the
strongest signal was provided by an imputed SNP, we confirmed
the fidelity of imputation by genotyping (Supplementary Table 7).
In the combined meta-analysis, we identified genome-wide
significant associations for cHL (Table 1; Supplementary Tables 8
and 9), at 3q28 (rs4459895, P= 4.45 × 10−18), 6q22.33 (rs9482849,
P= 1.52 × 10−8), 6q23.3 (rs6928977, P= 1.24 × 10−10) and 10p14

Table 1 Summary results for newly identified risk loci

Nearest
genea

Risk allele
(frequency)

Discovery GWAS
meta-analysis

UK Replication 1 UK Replication 2 Meta-analysis

Position
(hg19, bp)

P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) I
2

(%)
Phet

3q28,
rs4459895

LPP A (0.20) 187954414

cHL 4.16 × 10−10 1.27 (1.18–1.36) 6.85 × 10−9 1.44 (1.27–1.63) 0.02 1.26 (1.04–1.52) 4.45 × 10−18 1.30 (1.23–1.38) 13 0.33
NSHL 9.16 × 10−9 1.37 (1.23–1.53) 1.37 × 10−8 1.43 (1.26–1.62) 0.04 1.30 (1.02–1.66) 9.43 × 10−17 1.39 (1.28–1.50) 0 0.93
MCHL 0.92 1.04 (0.91–1.19) 0.98 1.00 (0.68–1.47) 0.55 1.04 (0.92–1.19) 0 0.82

6q22.33,
rs9482849

PTPRK C (0.17) 128288536

cHL 5.02 × 10−8 1.24 (1.15–1.35) 0.13 1.11 (0.97–1.27) 0.13 1.17 (0.95–1.43) 1.52 × 10−8 1.20 (1.13–1.28) 3 0.39
NSHL 2.91 × 10−6 1.32 (1.17–1.48) 0.17 1.10 (0.96–1.25) 0.20 1.19 (0.91–1.54) 4.13 × 10−6 1.21 (1.12–1.33) 10 0.35
MCHL 0.17 1.11 (0.96–1.28) 0.78 1.06 (0.70–1.61) 0.16 1.10 (0.96–1.26) 0 0.97

6q23.3,
rs6928977

AHI1 G (0.57) 135626348

cHL 1.66 × 10−8 1.18 (1.12–1.26) 0.01 1.14 (1.03–1.26) 0.05 1.16 (1.00–1.34) 1.24 × 10−10 1.17 (1.12–1.23) 0 0.85
NSHL 9.34 × 10−10 1.31 (1.20–1.42) 0.03 1.12 (1.01–1.24) 0.01 1.30 (1.06–1.58) 4.62 × 10−11 1.23 (1.16–1.31) 26 0.25
MCHL 0.24 1.06 (0.96–1.18) 0.69 1.06 (0.79–1.42) 0.22 1.06 (0.96–1.17) 0 0.22

10p14,
rs3781093

GATA3 T (0.88) 8101927

cHL 4.89 × 10−12 1.35 (1.23–1.47) 4.00 × 10−4 1.32 (1.25–1.44) 0.11 1.21 (0.96–1.52) 4.91 × 10−12 1.28 (1.19–1.37) 64 0.01
NSHL 9.16 × 10−12 1.53 (1.36–1.75) 2.00 × 10−4 1.44 (1.31–1.61) 0.64 0.92 (0.68–1.26) 9.49 × 10−13 1.39 (1.28–1.53) 61 0.06
MCHL 0.03 1.18 (1.02–1.36) 0.05 1.56 (1.02–2.40) 0.16 0.91 (0.79–1.04) 73 0.03

13q34,
rs112998813

UPF3A C (0.08) 115059729

cHL 3.63 × 10−3 1.19 (1.06–1.33) 0.03 1.23 (1.03–1.47) 0.43 1.12 (0.84–1.50) 2.70 × 10−4 1.19 (1.08–1.30) 13 0.32
NSHL 8.43 × 10−8 1.58 (1.34–1.88) 0.03 1.22 (1.02–1.47) 0.28 1.23 (0.85–1.78) 4.58 × 10−8 1.39 (1.23–1.56) 27 0.24
MCHL 0.92 0.99 (0.80–1.22) 0.27 1.35 (0.80–2.23) 0.75 1.03 (0.85–1.25) 0 0.56

16p13.13,
rs34972832

CLEC16A A (0.18) 11198938

cHL 1.45 × 10−4 1.15 (1.07–1.23) 6.34 × 10−3 1.18 (1.05–1.34) 0.10 1.17 (0.97–1.42) 8.03 × 10−7 1.16 (1.09–1.23) 6 0.37
NSHL 7.47 × 10−7 1.24 (1.15–1.34) 6.53 × 10−3 1.30 (1.17–1.45) 0.28 1.15 (0.89–1.50) 2.12 × 10−8 1.24 (1.15–1.34) 37 0.18
MCHL 0.65 0.97 (0.85–1.11) 0.91 1.02 (0.69–1.52) 0.70 0.98 (0.86–1.10) 0 0.94

The risk allele is the allele corresponding to the estimated odds ratio. Frequency of the risk allele is from the CEU population from 1000 Genomes Project

cHL classical Hodgkin lymphoma, NSHL nodular sclerosis Hodgkin lymphoma, MCHL mixed cellularity Hodgkin lymphoma, bp base pair, OR odds ratio, CI confidence interval, I2 proportion of the total

variation due to heterogeneity

I2 value≥ 75% is considered to be characteristic of large heterogeneity
aNearest gene may not be the functional gene
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(rs3781093, P= 4.91 × 10−12), which were predominantly driven
by an association with NSHL. The rs6928977 association is
independent of the previously identified association at 6q23.3
marked by rs9402684 (Supplementary Table 5); respective
conditional P-values, P= 1.28 × 10−8 and P= 9.80 × 10−6 (pair-
wise LD metrics r2= 0.002, D’= 0.007)8. Furthermore, the
rs3781093 association is independent of the previously identified
10p14 association marked by rs2388486 (Supplementary Table 5);
respective conditional P-values are P= 3.38 × 10−8 and P=
1.32 × 10−12 (pairwise LD metrics r2= 0.002, D’= 0.27)7. For
NSHL we identified two new associations at 13q34 (rs112998813,
P= 4.58 × 10−8) and 16p13.13 (rs34972832, P= 2.12 × 10−8,
Table 1).

Relationship between the new risk SNPs and phenotype. A
hallmark of cHL epidemiology is the bimodal age-specific inci-
dence and it has been argued that the disease in young adults and
older adults is aetiologically different; in particular there is a low
prevalence of EBV-positive disease in NSHL patients aged
16–353. Case-only analysis did not provide evidence of sex dif-
ferences at newly identified risk SNPs (Supplementary Table 10)
or a relationship between age in the NSHL subgroup. Albeit not
significant after correction for multiple testing, we observed an
association between EBV-positive disease and cHL at 6q23.3
in 796 cases analysed (rs6928977, P= 0.03, Supplementary
Table 10).

Biological inference. Five of the six new risk SNPs localise in or
near genes which have either been previously implicated in the
development of cHL or have established roles in B-cell develop-
ment and are therefore strong candidates for cHL susceptibility.
Specifically, the 6q22.33 association marked by rs9482849 maps
intergenically to THEMIS (thymocyte-expressed molecule
involved in selection) and PTPRK (receptor-type tyrosine protein
phosphatase kappa) (Fig. 1). Downregulation of PTPRK by the
EBV-encoded EBNA1 contributes to the growth and survival of
HRS cells13. The 6q23.3 association defined by rs6928977 loca-
lises to intron 3 of AHI1 (abelson helper integration site-1)
(Fig. 1) which has been implicated in the development of both B-
and T-cell lymphoma14, 15. The 13q34 association marked by
rs112998813 is located in intron 5 of UPF3A (Fig. 1), a regulator
of nonsense transcripts16. The LD region of association also
harbours CDC16 (cell division cycle protein 16). CDC16, a sub-
unit of the anaphase-promoting complex17, targets cell cycle
regulatory proteins for proteasome degradation, thereby allowing
cell cycle progression, and is downregulated in HRS cells18. At
16p13.13, the rs34972832 association for NSHL maps to intron 18
of CLEC16A (C-type lectin domain family 1, Fig. 1) whose loss of
function affects both B-cell number and function19. The 10p14
association marked by rs3781093 maps intronic of GATA3
(Fig. 1). Transcriptional repression of GATA3 is essential for early
B-cell commitment, and aberrant GATA3 expression has been
observed in HRS cells20, 21. Intriguingly, the rs3781093 risk allele
for NSHL has previously been demonstrated to be protective for
paediatric B-cell acute lymphoblastic leukaemia (ALL)22.

To the extent that they have been deciphered, many GWAS
risk loci map to non-coding regions of the genome and influence
gene regulation. Hence, to gain insight into the biological
mechanisms for the associations of the newly identified risk
SNPs, we interrogated publicly accessible expression data on
lymphoblastoid cell lines (LCLs)23, 24. We used the summary
data-based Mendelian randomisation (SMR) analysis to test for
pleiotropy between GWAS signal and cis-expression quantitative
trait (eQTL) for genes within 1Mb of the sentinel SNP at each
locus to identify a causal relationship25. At 6q23.3 and 10p14,

significant eQTLs were observed with AHI1 (PSMR= 8.63 × 10−6;
Supplementary Table 11 and Supplementary Fig. 5) and GATA3
(PSMR= 4.70 × 10−8; Supplementary Table 11 and Supplementary
Fig. 5).

Since spatial proximity between specific genomic regions and
chromatin looping interactions are central for the regulation of
gene expression, we identified patterns of chromatin interactions
at candidate causal SNPs by analysing promoter capture Hi-C
data on GM12878 as a source of B-cell information26. Looping
chromatin interactions were shown at 3q28 (rs4459895), 6q23.3
(rs6928977), 10p14 (rs3781093) and 16p13.13 (rs34972832).
While no significant eQTL was shown for these chromatin
looping interactions they involved a number of genes with
biological relevance to cHL development (Fig. 1). At 3q28, the
looping interaction implicates BCL6 and mir-28, which have well
documented roles in B-cell tumour biology and GC B-cell
development27, 28. At 6q23.3, we observed interactions with
promoter sequences upstream in MYB and ALDH8A1. At 10p14,
both risk SNPs encompass a region that interacts with TAF3,
which encodes transcription initiation factor TFIID subunit 3.
TAF3 forms part of the transcription initiation factor TFIID and
is necessary for haematopoiesis29. Finally, we observed interac-
tions at the 16p13.13 risk locus with RMI2 (encoding RecQ
mediated genome instability 2) (Fig. 1). RMI2 is an essential
component of the Bloom helicase-double Holliday junction
dissolvasome and is responsible for genomic stability30.

Across the new and established risk loci for cHL we confirmed
a significant enrichment of DNase hypersensitivity in GM12878
cells (false discovery rate (FDR) adjusted P-value= 0.0035),
as well as enhancer elements in primary B-cells (FDR adjusted
P-value= 0.00064) and GM12878 cells (FDR adjusted
P-value= 0.015)31. Analysis of ChIP-seq data on 82 transcription
factors (TFs) showed an over-representation of the binding of TFs
that play a central role in B-cell signalling-networks such as RELA
(nuclear factor NF-kappa-B p65), EBF1 (early B-cell factor 1),
RUNX3 (runt-related transcription factor 3) and BATF (basic
leucine zipper transcription factor, ATF-like) (Fig. 2). Collec-
tively, these observations support the assertion that risk loci for
cHL mediate their effects through B-cell developmental networks,
and are strongly involved in transcriptional initiation and
enhancement.

The HLA region. To obtain additional insight into plausible
functional variants within the major histocompatibility region at
6p21, we imputed the classical HLA alleles, amino-acid residues
and SNPs using SNP2HLA32. To isolate independent associations
for NSHL and MCHL, we performed conditional step-wise
logistic regression on the strongest associated SNP, amino acid or
allele, until no further variants attained genome-wide significance
(Fig. 3; Supplementary Table 12). For NSHL, we identified the
strongest association at rs9269081 (P= 1.74 × 10−39), which maps
within the class II HLA region, 3’of HLA-DRA. Additional class II
associations were shown by HLA-DPB1*03:01 (P= 3.35 × 10−17)
and Val86 in HLA-DRB1 (P= 3.52 × 10−13) (Fig. 3). In contrast,
the strongest association for MCHL was provided by rs1633096,
a class I HLA association 3’ of HLA-F (P= 2.72 × 10−23).
Additional class II associations for MCHL were observed at
rs13196329, located intronic of C6orf10 (P= 2.58 × 10−14) and
Val86 in HLA-DRB1 (P= 7.10 × 10−9) (Fig. 3).

Heritability of cHL. By fitting all SNPs from GWAS simulta-
neously using Genome-wide Complex Trait Analysis33, the esti-
mated heritability of cHL, NSHL and MCHL attributable to all
common variation is 24.0% (±2.3%), 25.2% (±3.4%) and 21.9%
(±2.4%), respectively. This estimate represents the additive
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variance, and therefore does not include the potential impact of
dominance effects or gene–environment interactions having an
impact on cHL risk. The currently identified non-HLA risk SNPs
thus only account for around 12% of the additive heritable risk.

Co-heritability with autoimmune disease. Although not uni-
versal, some epidemiological studies have reported associations
between cHL and various autoimmune diseases, raising the pos-
sibility of common genetic susceptibility and hence common

biological pathways34. Variation at a number of the cHL risk loci,
including 3p24.1, 5q31.1 and 6q23.3 has previously been impli-
cated as determinants of autoimmune disease risk supporting
such an assertion (Supplementary Data 1).

To investigate co-heritability globally between cHL and
autoimmune disease, we implemented cross-trait LD score
regression35. Using summary-level GWAS data we estimated
genetic correlations between cHL and six autoimmune diseases
curated by ImmunoBase; specifically rheumatoid arthritis36,
systemic lupus erythematosus37, multiple sclerosis (MS)38,
primary biliary cirrhosis39, ulcerative colitis (UC)40 and coeliac
disease41 GWAS data (Supplementary Table 13). We observed a
positive genetic correlation between cHL and MS (rg= 0.35,
P= 0.04) and a negative correlation between cHL and UC
(rg= −0.23, P= 0.01).

Discussion
To our knowledge, we have performed the largest GWAS of cHL
to date, identifying six new non-HLA risk loci. The availability of
comprehensive reference panels for the HLA region has allowed
us to delineate class I and class II associations for NSHL and
MCHL, substantiating recent documented differences between
these cHL histologies9.

Although functional analyses are required to determine the
biological basis of cHL association signals, we have demonstrated
that these risk loci are enriched for regulatory elements in B-cells.
Moreover, they feature an over-representation of key B-cell TF
binding, notably RELA, RUNX3, EBF1 and BATF. RELA is a TF
involved in NF-κB heterodimer formation. HRS cells show high
constitutive activity of NF-κB (both canonical and non-canonical
pathways)42, which promotes cell survival and growth through
inducing anti-apoptotic and pro-proliferative gene programs43, 44.
Inhibition of NF-κB in HRS cells leads to caspase-independent
apoptosis43. EBF1 cooperates with E2A and PAX5 to regulate
B-cell maturation45. Its expression in HRS cells is low46, which is
thought to contribute to the loss of normal B-cell phenotype47.
RUNX3 has important roles in B-cell maturation48 and down-
regulation of RUNX1 by RUNX3 is required for EBV-driven LCL
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growth49. BATF also appears to co-ordinate B-cell maturation50,
and is highly expressed in HRS cells51.

The strong HLA associations we identified for NSHL and
MCHL support recent observations for distinct class I and class II
relationships for these cHL subtypes9. Specifically, the class II
NSHL association marked by rs9269081 is in strong LD with the
previously identified risk SNP rs6903608 (r2= 0.92, D’= 1.0) for
EBV-negative NSHL9. For MCHL the class I association
rs1633096 shows correlation with the previously identified
marker SNP rs2734986 (pairwise r2 = 0.41, D’= 0.97) for
EBV-positive cHL9. A class I association for MCHL is consistent
with a high EBV positivity and supports the notion of defective
cytotoxic T-cell lymphocyte responses in EBV-infected HRS
cells52. Variation within the class II HLA region alters the risk of
autoimmune diseases53, but the underlying biological mechanism
of these associations has yet to be fully defined. The class II HLA
association for NSHL and MCHL risk, comprising both coding
variants and non-coding SNPs, may explain the importance of
CD4+ T follicular helper (TFH) cells in cHL pathogenesis. In the
GC, there is a requirement for CD4+ TFH cells to interact with
GC B-cells through the T-cell antigen receptor (TCR) and HLA
class II proteins for normal plasma and memory cells forma-
tion54. It is therefore plausible that variation in peptide binding
and expression of the HLA class II proteins contributes to cHL
pathogenesis through interaction with CD4+ TFH cells. Such a
model is supported by the observation of variation at position
86 of HLA-DRB1 influencing TCR Vα gene expression55, the
predominance of CD4+ T-cells in cHL tumours56, the reliance of
HRS cells on the micro-environment for survival1, and the loss of
MHC class II expression on HRS cells57, the last of which is
associated with adverse prognosis. An alternative explanation for
the class II HLA association in cHL is the involvement of an
unidentified pathogen playing a causative role in cHL. Amino-
acid variants and SNPs within HLA-DRB1 modulate humoral
immune responses to common viruses, such as influenza A and
JC polyomavirus58. Consistent with such a model is dimorphic
variation at position 86 of HLA-DRB159, which we identify as
influencing risk of NSHL and MCHL, modulating the anchoring
pocket of the antigen binding site, and influencing the con-
formation of peptide–DR protein complexes while maintaining a
T-cell response60.

In our analysis we noted a reciprocal relationship between
NSHL risk and ALL risk at 10p14 (GATA3)22. Since GATA3
plays a key role in B-cell development and both ALL and NSHL
are malignancies derived from B-cells at different stages of
maturation, our observation leads to speculation of a significant
temporal effect of genetic variation at this locus in response to an
environmental or mutational insult.

Although supported by a contemporaneous study and requir-
ing further validation61, we found evidence for common genetic
susceptibility between cHL and MS, thus raising the possibility of
shared environmental risk factors. A potential biological basis for
such a relationship may encompass aberrant immune activation
and cell proliferation.

In conclusion, our study provides further evidence for inher-
ited susceptibility to cHL and supports a model whereby risk loci
influence disease through effects on B-cell regulatory networks,
providing a mechanistic link between susceptibility and biology.
Our findings also emphasise the differences between the major
subtypes, which are reflective of differences in tumour aetiology.

Methods
Ethics. Collection of patient samples and associated clinico-pathological infor-
mation was undertaken with written informed consent. Relevant ethical review
boards approved the individual studies in accordance with the tenets of the
Declaration of Helsinki (UK-GWAS MREC 03/1/096, German-GWAS University

of Heidelberg 104/2004 and UK-GWAS-NSHLG MREC 09/MRE00/72). The
diagnosis of cHL (i.e., excluding cases with nodular lymphocyte predominant HL),
NSHL and MCHL (ICD-10-CM C81.1-3) in all cases was established in accordance
with World Health Organisation guidelines.

Genome-wide association studies. Primary study: We analysed constitutional
DNA from 1,717 cases ascertained through the NSHLG (http://www.public.ukcrn.
org.uk) from 2010 to 2013. These are detailed in Supplementary Table 1. Cases
were genotyped using the Illumina Oncoarray (Illumina Inc.). Controls which were
also genotyped using the oncoarray comprised: (1) 2,976 cancer-free men recruited
by the PRACTICAL Consortium—the UK Genetic Prostate Cancer Study
(UKGPCS) (age < 65 years), a study conducted through the Royal Marsden NHS
Foundation Trust and SEARCH (Study of Epidemiology & Risk Factors in Cancer),
recruited via GP practices in East Anglia (2003–2009), (2) 4,446 cancer-free women
from across the UK via the Breast Cancer Association Consortium (BCAC).

Published studies: We used GWAS data generated on two non-overlapping
case–control series of Northern European ancestry, which have been the subject of
previous analyses that are summarised in Supplementary Table 1. Briefly: (1) The
UK-GWAS was based on 622 cases ascertained through the Royal Marsden
Hospital National Health Service Trust Family History study during 2004–20087,
and 5,677 controls from the UK Wellcome Trust Case Control Consortium 2
(WTCCC2)62. (2) The German-GWAS comprised 1,001 cases ascertained by the
German Hodgkin Study Group during 1998–20078, and 1,226 controls from the
Heinz Nixdorf Recall (HNR) study.

GWAS and meta-analysis. Standard quality control measures were applied to
each of the three GWAS (Supplementary Tables 2, 3 and 4)7, 8, 63. Specifically,
individuals with a low call rate (< 95%) as well as all individuals evaluated to be of
non-European ancestry (using the HapMap version III CEU, JPT/CHB and YRI
populations as a reference, Supplementary Fig. 1) were excluded. For apparent
first-degree relative pairs, we excluded the control from a case–control pair or the
individual with the lower call rate. SNPs with a call rate < 95% were excluded as
were those with a MAF< 0.01 or displaying deviation from Hardy–Weinberg
equilibrium (HWE) (i.e., P< 10−6, Supplementary Table 4). GWAS data were
imputed to >10 million SNP with IMPUTE2 v2.364 software, using a merged
reference panel consisting of data from 1000 Genomes Project (phase 1 integrated
release 3, March 2012)11 and UK10K (ALSPAC, EGAS00001000090/
EGAD00001000195 and TwinsUK EGAS00001000108/EGAS00001000194 studies)
12. HLA imputation was conducted using SNP2HLA and the Type I Diabetes
Genetics Consortium reference panel of 5,225 individuals of European descent32.
The number of variants in the HLA imputation recovered with an information
measure of > 0.80 were 8,436 (94% of total variants), 8506 (95% of total variants)
and 8599 (96% of total variants) in the UK-GWAS, German-GWAS and UK-
NSHLG-GWAS data sets, respectively. Imputation was conducted separately for
each study, and in each, the data were pruned to a common set of SNPs between
cases and controls prior to imputation. Poorly imputed SNPs defined by an
information measure <0.80 were excluded. Tests of association between SNPs and
cHL were performed using logistic regression under an additive genetic model in
SNPTESTv2.565. The adequacy of the case–control matching was evaluated using
Q–Q plots of test statistics (Supplementary Fig. 2). The inflation factor λ was based
on the 90% least-significant SNP66. Where appropriate, principal components,
generated using common SNPs, were included in the analysis to limit the effects of
cryptic population stratification that otherwise might cause inflation of test sta-
tistics. Eigenvectors for the GWAS data sets were inferred using smartpca (part of
EIGENSOFT) by merging cases and controls with Phase III HapMap samples. LD
metrics were calculated in vcftools v0.1.12b67, using UK10K merged 1000 Genomes
Project data and plotted using visPIG68.

Replication studies and technical validation. The eight SNPs in the most pro-
mising loci (Table 1; Supplementary Table 6), were taken forward for de novo
replication in an additional 1,284 cases from the NSHLG and 2,504 controls from
the UK replication 1 series (Supplementary Table 1). After this six SNPs were
genotyped in an additional replication series, (UK replication 2 series) comprising
953 cases and 565 controls from the Scotland and Newcastle Epidemiological Study
of Hodgkin Disease (SNEHD), the Young Adult Hodgkin Case–Control Study
(YHCCS) and the Epidemiology and Cancer Statistics Group Lymphoma
Case–Control Study (ELCCS; http://www.elccs.info) (Supplementary Table 1).
Full details of the SNEHD, YHCCS and ELCCS studies have been previously
reported69–71. Briefly, SNEHD involved ascertainment of incident cases from
Scotland and Northern England during 1993–1997. YHCCS was based on newly
diagnosed cases aged 16–24 years from Northern England during 1991–1995.
ELCCS comprised cases residing in the north or parts of southwest of England aged
16–69 years with newly diagnosed, non-human immunodeficiency virus-related
cHL during 1998–2003. UK population controls matched to cases on age, sex and
area of residence were obtained from SNEHD, YHCCS and ELCCS. The
EBV status of cHL tumours in the UK replication 2 series was determined by
immunohistochemical staining for EBV latent membrane antigen-1 and/or EBV
EBV-encoded RNA in situ hybridisation using sections of paraffin-embedded
material72, 73.
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The fidelity of GWAS imputation was assessed by the concordance between
imputed and directly genotyped SNP in a subset of samples (Supplementary
Table 7). Replication genotyping of UK samples was performed using competitive
allele-specific PCR KASP chemistry (LGC, Hertfordshire, UK). Primers, probes
and conditions are detailed in Supplementary Table 14. Call rates for SNP
genotypes were > 95% in each of the replication series. To ensure the quality of
genotyping in assays, at least two negative controls and a set of duplicates were
genotyped (concordance> 99%).

Meta-analysis. Meta-analyses were performed under a fixed-effects model using
META v1.674. Cochran’s Q-statistic to test for heterogeneity and the I2 statistic to
quantify the proportion of the total variation due to heterogeneity were calculated;
an I2 value≥ 75% is considered to be characteristic of large heterogeneity75. We
used the test-based method of Higgins et al.76 to derive 95% CIs for I2 values
(Supplementary Table 9). To estimate study power of the discovery GWAS phase,
we made use of the CaTS online calculator77, assuming a risk allele frequency of 0.2
and genotype relative risk of 1.20.

Expression quantitative trait locus analysis. To examine the relationship
between SNP genotype and gene expression, we carried out SMR analysis as per
Zhu et al., 201625. Briefly, if bxy is the effect size of x (gene expression) on y (slope
of y regressed on the genetic value of x), bzx is the effect of z on x, and bzy is the
effect of z on y. Therefore bxy (bzy/bzx) is the effect of x on y. To distinguish
pleiotropy from linkage where the top associated cis-eQTL is in LD with two causal
variants, one affecting gene expression the other affecting trait, we tested for het-
erogeneity in dependent instruments, using multiple SNPs in each cis-eQTL region.
Under the hypothesis of pleiotropy bxy values for SNPs in LD with the causal
variant will be identical. Thus testing against the null hypothesis that there is a
single causal variant is equivalent to testing heterogeneity in the bxy values esti-
mated for the SNPs in the cis-eQTL region. For each probe that passed significance
threshold for the SMR test, we tested the heterogeneity in the bxy values estimated
for multiple SNPs in the cis-eQTL region using HEIDI.

We used publicly available LCL expression data from the MuTHER (n= 825)23

and GTEx consortium (n= 114)24. Briefly, GWAS summary statistics files were
generated from the meta-analysis. Reference files were generated from merging
1000 Genomes Project phase 3 and UK10K (ALSPAC and TwinsUK) vcfs11, 12. As
previously advocated, only probes with at least one eQTL P-value of < 5.0 × 10−8

were considered for SMR analysis25. We set a threshold for the SMR test of
PSMR< 5.49 × 10−4 corresponding to a Bonferroni correction for 91 tests (91 probes
with a top eQTL P< 5.0 × 10−8 across the 12 loci and two LCL eQTL data sets).
For all genes passing this threshold, we generated plots of the eQTL and GWAS
associations at the locus, as well as plots of GWAS and eQTL effect sizes
(i.e., corresponding to input for the HEIDI heterogeneity test). HEIDI test P-values
< 0.05 were considered as being reflective of heterogeneity. This threshold is
conservative for gene discovery because it retains fewer genes than when correcting
for multiple testing. SMR plots for significant eQTLs are shown in Supplementary
Fig. 5.

Chromatin state dynamics. Enrichment of cHL risk SNPs with DNAse and
enhancers is conducted using Haploreg v431. The overlap of cHL risk SNPs with
enhancers in GM12878 cell is compared to a background model of all 1000
Genomes Project variants with a frequency above 5% in any population. The
enrichment relative to these background frequencies was performed using a
binomial test and a FDR P-value was subsequently calculated; we considered an
FDR< 0.05 as being significant.

To examine enrichment in specific TF binding across risk loci, we adapted the
variant set enrichment method of Cowper-Sal lari et al.78. For each risk locus,
a region of strong LD (defined as r2> 0.8 and D′ > 0.8) was determined, and these
SNPs were termed the associated variant set (AVS). TF ChIP-seq uniform peak
data were obtained from ENCODE for the GM12878 cell line, and included data
for 82 TFs. For each of these marks, the overlap of the SNP in the AVS and the
binding sites was determined to produce a mapping tally. A null distribution was
produced by randomly selecting SNP with the same LD structure (generated from
1000 Genomes Project and UK10K data) as the risk associated SNP, and the null
mapping tally calculated. This process was repeated 10,000 times, and approximate
P-values were calculated as the proportion of permutations where the null mapping
tally was greater or equal to the AVS mapping tally. An enrichment score was
calculated by the tallies to the median of the null distribution. Thus the enrichment
score is the number of standard deviations of the AVS mapping tally from the
mean of the null distribution tallies.

Promoter capture Hi-C data. To map risk SNPs to interactions involving pro-
moter contacts and identify genes involved in cHL susceptibility, we analysed
promoter capture Hi-C data on the LCL cell line GM12878 as a model B-cell26.
Reads from technical replicates (E-MTAB-2323) were combined before processing
with HiCUP79. Significant interactions (i.e., score≥ 5) on two biological replicates
were determined using CHiCAGO80.

Co-heritability of Hodgkin lymphoma with autoimmune disease. We utilised
LD regression to estimate genetic correlation between individual autoimmune
diseases and cHL, NSHL and MCHL35. Summary statistics for published studies of
coeliac disease41, systemic lupus erythematosus37, primary biliary cirrhosis39,
rheumatoid arthritis36, MS38 and UC40 were downloaded from the ImmunoBase
website (http://www.immunobase.org/).

Heritability analysis. We used genome-wide complex trait analysis to estimate the
polygenic variance (i.e., heritability) ascribable to all genotyped and imputed
GWAS SNPs33. SNPs were excluded based on low MAF < 0.01, poor imputation
(info score< 0.9) and evidence of departure from HWE (P< 0.05). Individuals
were excluded for poor imputation and where two individuals were closely related.
A genetic relationship matrix of pairs of samples was used as input for the
restricted maximum likelihood analysis to estimate the heritability explained by the
selected set of SNPs. To transform the estimated heritability to the liability scale, we
used the lifetime risk, for cHL, which is estimated to be 0.002 by SEER (https://seer.
cancer.gov/statfacts/html/hodg.html).

Data availability. Genotype data that support the findings of this study have been
deposited in the European Genome-phenome Archive (EGA) under accession
codes EGAD00000000022 and EGAD00000000024.

Sequencing data, which forms the reference panel for imputation, have been
deposited in the European Genome-phenome Archive (EGA) under accession
codes EGAS00001000090, EGAD00001000195, EGAS00001000108.

Transcriptional profiling data from the MuTHER consortium that support the
findings of this work have been deposited in the European Bioinformatics Institute
(Part of the European Molecular Biology Laboratory, EMBL-EBI) under accession
code E-TABM-1140.

Transcriptional profiling data from the Genotype-Tissue Expression (GTEx)
project, that support the findings of this work are available here: https://www.
gtexportal.org/

Transcription factor binding data that support the findings of this work are
available here: http://genome.ucsc.edu/ENCODE/downloads.html.

Promoter capture Hi-C data in GM12878 cells that support the findings of this
work have been deposited in the European Bioinformatics Institute (Part of the
European Molecular Biology Laboratory, EMBL-EBI) under accession code
E-MTAB-2323.

The remaining data contained within the paper and supplementary files are
available from the author upon request.

Received: 10 January 2017 Accepted: 20 June 2017

References
1. Kuppers, R. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9, 15–27

(2009).
2. Smith, A. et al. Lymphoma incidence, survival and prevalence 2004-2014: sub-

type analyses from the UK’s Haematological Malignancy Research Network. Br.
J. Cancer 112, 1575–1584 (2015).

3. Hjalgrim, H. On the Aetiology of Hodgkin Lymphoma (Statens Serum Institut,
2011).

4. Mack, T. M. et al. Concordance for Hodgkin’s disease in identical twins
suggesting genetic susceptibility to the young-adult form of the disease. N. Engl.
J. Med. 332, 413–419 (1995).

5. Kharazmi, E. et al. Risk of familial classical Hodgkin lymphoma by relationship,
histology, age, and sex: a joint study from five Nordic countries. Blood 126,
1990–1995 (2015).

6. Cozen, W. et al. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3
as a novel susceptibility locus. Nat. Commun. 5, 3856 (2014).

7. Enciso-Mora, V. et al. A genome-wide association study of Hodgkin’s
lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14
(GATA3). Nat. Genet. 42, 1126–1130 (2010).

8. Frampton, M. et al. Variation at 3p24.1 and 6q23.3 influences the risk of
Hodgkin’s lymphoma. Nat. Commun. 4, 2549 (2013).

9. Urayama, K. Y. et al. Genome-wide association study of classical Hodgkin
lymphoma and Epstein–Barr virus status–defined subgroups. J. Natl. Cancer
Inst. 104, 240–253 (2012).

10. Thomsen, H. et al. Heritability estimates on Hodgkin/‘s lymphoma: a genomic-
versus population-based approach. Eur. J. Hum. Genet. 23, 824–830 (2015).

11. The 1000 Genomes Project Consortium. A map of human genome variation
from population-scale sequencing. Nature 467, 1061–1073 (2010).

12. Huang, J. et al. Improved imputation of low-frequency and rare variants using
the UK10K haplotype reference panel. Nat. Commun. 6, 8111 (2015).

13. Flavell, J. R. et al. Down-regulation of the TGF-beta target gene, PTPRK, by the
Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of
Hodgkin lymphoma cells. Blood 111, 292–301 (2008).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00320-1 ARTICLE

NATURE COMMUNICATIONS |8:  1892 |DOI: 10.1038/s41467-017-00320-1 |www.nature.com/naturecommunications 7

http://www.immunobase.org/
https://seer.cancer.gov/statfacts/html/hodg.html
https://seer.cancer.gov/statfacts/html/hodg.html
https://www.gtexportal.org/
https://www.gtexportal.org/
http://genome.ucsc.edu/ENCODE/downloads.html
www.nature.com/naturecommunications
www.nature.com/naturecommunications


14. Jiang, X. et al. Deregulated expression in Ph + human leukemias of AHI-1, a
gene activated by insertional mutagenesis in mouse models of leukemia. Blood
103, 3897–3904 (2004).

15. Kennah, E. et al. Identification of tyrosine kinase, HCK, and tumor suppressor,
BIN1, as potential mediators of AHI-1 oncogene in primary and transformed
CTCL cells. Blood 113, 4646–4655 (2009).

16. Chan, W.-K. et al. A UPF3-mediated regulatory switch that maintains RNA
surveillance. Nat. Struct. Mol. Biol. 16, 747–753 (2009).

17. Schreiber, A. et al. Structural basis for the subunit assembly of the anaphase-
promoting complex. Nature 470, 227–232 (2011).

18. Steidl, C. et al. Gene expression profiling of microdissected Hodgkin Reed-
Sternberg cells correlates with treatment outcome in classical Hodgkin
lymphoma. Blood 120, 3530–3540 (2012).

19. Li, J. et al. Association of CLEC16A with human common variable
immunodeficiency disorder and role in murine B cells. Nat. Commun. 6, 6804
(2015).

20. Banerjee, A., Northrup, D., Boukarabila, H., Jacobsen, S. E. & Allman, D.
Transcriptional repression of Gata3 is essential for early B cell commitment.
Immunity 38, 930–942 (2013).

21. Stanelle, J., Döring, C., Hansmann, M.-L. & Küppers, R. Mechanisms of
aberrant GATA3 expression in classical Hodgkin lymphoma and its
consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells.
Blood 116, 4202–4211 (2010).

22. Vijayakrishnan, J. et al. A genome-wide association study identifies risk loci for
childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia 31,
573–579 (2017).

23. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple
tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

24. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet.
45, 580–585 (2013).

25. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

26. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with
high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

27. Ramachandrareddy, H. et al. BCL6 promoter interacts with far upstream
sequences with greatly enhanced activating histone modifications in germinal
center B cells. Proc. Natl Acad. Sci. USA 107, 11930–11935 (2010).

28. Schneider, C. et al. microRNA 28 controls cell proliferation and is down-
regulated in B-cell lymphomas. Proc. Natl Acad. Sci. USA 111, 8185–8190
(2014).

29. Hart, D. O., Santra, M. K., Raha, T. & Green, M. R. Selective interaction
between Trf3 and Taf3 required for early development and hematopoiesis. Dev.
Dyn. 238, 2540–2549 (2009).

30. Singh, T. R. et al. BLAP18/RMI2, a novel OB-fold-containing protein, is an
essential component of the Bloom helicase–double Holliday junction
dissolvasome. Genes Dev. 22, 2856–2868 (2008).

31. Ward, L. D. & Kellis, M. HaploReg v4: systematic mining of putative causal
variants, cell types, regulators and target genes for human complex traits and
disease. Nucleic Acids Res. 44, D877–D881 (2016).

32. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens.
PLoS ONE 8, e64683 (2013).

33. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-
wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

34. Kristinsson, S. Y. et al. Autoimmunity and risk for Hodgkin’s lymphoma by
subtype. Haematologica 94, 1468–1469 (2009).

35. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

36. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and
drug discovery. Nature 506, 376–381 (2014).

37. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of
innate and adaptive immunity genes in the pathogenesis of systemic lupus
erythematosus. Nat. Genet. 47, 1457–1464 (2015).

38. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune
mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

39. Cordell, H. J. et al. International genome-wide meta-analysis identifies new
primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat.
Commun. 6, 8019 (2015).

40. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis
risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43,
246–252 (2011).

41. Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing
immune gene expression. Nat. Genet. 42, 295–302 (2010).

42. Chen, F. E., Huang, D. B., Chen, Y. Q. & Ghosh, G. Crystal structure of p50/p65
heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391,
410–413 (1998).

43. Izban, K. F. et al. Characterization of NF-kappaB expression in Hodgkin’s
disease: inhibition of constitutively expressed NF-kappaB results in

spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg
cells. Mod. Pathol. 14, 297–310 (2001).

44. Bargou, R. C. et al. Constitutive nuclear factor-kappaB-RelA activation is
required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin.
Invest. 100, 2961–2969 (1997).

45. Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1
and Foxo1, that orchestrates B cell fate. Nat. Immunol. 11, 635–643 (2010).

46. Tiacci, E. et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture
the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood
120, 4609–4620 (2012).

47. Hertel, C. B., Zhou, X. G., Hamilton-Dutoit, S. J. & Junker, S. Loss of B cell
identity correlates with loss of B cell-specific transcription factors in Hodgkin/
Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene 21, 4908–4920
(2002).

48. Whiteman, H. J. & Farrell, P. J. RUNX expression and function in human B
cells. Crit. Rev. Eukaryot. Gene Expr. 16, 31–44 (2006).

49. Brady, G., Whiteman, H. J., Spender, L. C. & Farrell, P. J. Downregulation of
RUNX1 by RUNX3 Requires the RUNX3 VWRPY sequence and is essential for
Epstein-Barr virus-driven B-cell proliferation. J. Virol. 83, 6909–6916 (2009).

50. Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function
required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010).

51. Lorenzo, Y. et al. Differential genetic and functional markers of second neoplasias
in Hodgkin’s disease patients. Clin. Cancer Res. 15, 4823–4828 (2009).

52. Murray, P. G., Constandinou, C. M., Crocker, J., Young, L. S. & Ambinder, R. F.
Analysis of major histocompatibility complex class I, TAP expression, and
LMP2 epitope sequence in Epstein-Barr virus–positive Hodgkin’s disease. Blood
92, 2477–2483 (1998).

53. Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA
loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090
(2015).

54. Pratama, A. & Vinuesa, C. G. Control of TFH cell numbers: why and how?
Immunol. Cell. Biol. 92, 40–48 (2014).

55. Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell
receptor expression biases. Nat. Genet. 48, 995–1002 (2016).

56. Greaves, P. et al. Defining characteristics of classical Hodgkin lymphoma
microenvironment T-helper cells. Blood 122, 2856–2863 (2013).

57. Diepstra, A. et al. HLA class II expression by Hodgkin Reed-Sternberg Cells is
an independent prognostic factor in classical Hodgkin’s lymphoma. J. Clin.
Oncol. 25, 3101–3108 (2007).

58. Hammer, C. et al. Amino acid variation in HLA class II proteins is a major
determinant of humoral response to common viruses. Am. J. Hum. Genet. 97,
738–743 (2015).

59. Apple, R. J. & Erlich, H. A. Two new HLA DRB1 alleles found in African
Americans: implications for balancing selection at positions 57 and 86. Tissue
Antigens 40, 69–74 (1992).

60. Busch, R., Hill, C. M., Hayball, J. D., Lamb, J. R. & Rothbard, J. B. Effect of
natural polymorphism at residue 86 of the HLA-DR beta chain on peptide
binding. J. Immunol. 147, 1292–1298 (1991).

61. Khankhanian, P. et al. Meta-analysis of genome-wide association studies reveals
genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int. J.
Epidemiol. 45, 728–740 (2016).

62. The Wellcome Trust Case Control Consortium. Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature 447, 661–678 (2007).

63. Anderson, C. A. et al. Data quality control in genetic case-control association
studies. Nat. Protoc. 5, 1564–1573 (2010).

64. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype
imputation method for the next generation of genome-wide association studies.
PLoS Genet. 5, e1000529 (2009).

65. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat.
Genet. 39, 906–913 (2007).

66. Clayton, D. G. et al. Population structure, differential bias and genomic control
in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246
(2005).

67. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27,
2156–2158 (2011).

68. Scales, M., Jäger, R., Migliorini, G., Houlston, R. S. & Henrion, M. Y. R. visPIG -
a web tool for producing multi-region, multi-track, multi-scale plots of genetic
data. PLoS ONE 9, e107497 (2014).

69. Alexander, F. E. et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus
(EBV) status: prior infection by EBV and other agents. Br. J. Cancer 82,
1117–1121 (2000).

70. Jarrett, R. F. et al. The Scotland and Newcastle epidemiological study of
Hodgkin’s disease: impact of histopathological review and EBV status on
incidence estimates. J. Clin. Pathol. 56, 811–816 (2003).

71. Willett, E. V. & Roman, E. Obesity and the risk of Hodgkin lymphoma
(United Kingdom). Cancer Causes Control 17, 1103–1106 (2006).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00320-1

8 NATURE COMMUNICATIONS |8:  1892 |DOI: 10.1038/s41467-017-00320-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


72. Lake, A. et al. Mutations of NFKBIA, encoding IkappaB alpha, are a
recurrent finding in classical Hodgkin lymphoma but are not a unifying feature
of non-EBV-associated cases. Int. J. Cancer 125, 1334–1342 (2009).

73. Hjalgrim, H. & Engels, E. A. Infectious aetiology of Hodgkin and non-Hodgkin
lymphomas: a review of the epidemiological evidence. J. Intern. Med. 264,
537–548 (2008).

74. Liu, J. Z. et al. Meta-analysis and imputation refines the association of 15q25
with smoking quantity. Nat. Genet. 42, 436–440 (2010).

75. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis.
Stat. Med. 21, 1539–1558 (2002).

76. Thorlund, K. et al. Evolution of heterogeneity (I2) estimates and their 95%
confidence intervals in large meta-analyses. PLoS ONE 7, e39471 (2012).

77. Skol, A. D., Scott, L. J., Abecasis, G. R. & Boehnke, M. Joint analysis is more
efficient than replication-based analysis for two-stage genome-wide association
studies. Nat. Genet. 38, 209–213 (2006).

78. Cowper-Sallari, R. et al. Breast cancer risk-associated SNPs modulate the
affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet. 44,
1191–1198 (2012).

79. Wingett, S. et al. HiCUP: pipeline for mapping and processing Hi-C data.
F1000Res 4, 1310 (2015).

80. Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in
capture Hi-C data. Genome Biol. 17, 127 (2016).

Acknowledgements
In the United Kingdom, Bloodwise (LLR; 10021) provided principal funding for the

study. Support from Cancer Research UK (C1298/A8362 supported by the Bobby Moore

Fund) and the Lymphoma Research Trust is also acknowledged. A.S. is supported by a

clinical fellowship from Cancer Research UK. For the UK-GWAS, sample and data

acquisition were supported by Breast Cancer Now, the European Union and the Lym-

phoma Research Trust. The UK-GWAS made use of control genotyping data generated

by the WTCCC. We acknowledge use of genotype data from the British 1958 Birth

Cohort DNA collection, which was funded by the Medical Research Council Grant

G0000934 and the Wellcome Trust Grant 068545/Z/02. A full list of the investigators

who contributed to the generation of the data is available from http://www.wtccc.org.uk.

Funding for this project was provided by the Wellcome Trust under awards 076113 and

085475. Patients for the new GWAS were ascertained through the National Study of

Hodgkin Lymphoma Genetics (http://www.public.ukcrn.org.uk) and we thank the High-

Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics

(funded by Wellcome Trust grant reference 090532/Z/09/Z) for the generation of Gen-

otyping data. The BCAC study would not have been possible without the contributions

of the following: Manjeet K. Bolla, Qin Wang, Kyriaki Michailidou and Joe Dennis.

BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A16563). For the BBCS

study, we thank Eileen Williams, Elaine Ryder-Mills, Kara Sargus. The BBCS is funded by

Cancer Research UK and Breast Cancer Now and acknowledges NHS funding to the

National Institute of Health Research (NIHR) Biomedical Research Centre (BRC) and

the National Cancer Research Network (NCRN). We thank the participants and the

investigators of EPIC (European Prospective Investigation into Cancer and Nutrition).

The coordination of EPIC is financially supported by the European Commission (DG-

SANCO) and the International Agency for Research on Cancer. The national cohorts are

supported by: Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de

l’Education Nationale, Institut National de la Santé et de la Recherche Médicale

(INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ),

Federal Ministry of Education and Research (BMBF) (Germany); the Hellenic Health

Foundation, the Stavros Niarchos Foundation (Greece); Associazione Italiana per la

Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of

Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK

Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland),

World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health

Research Fund (FIS), PI13/00061 to Granada, PI13/01162 to EPIC-Murcia, Regional

Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, ISCIII

RETIC (RD06/0020) (Spain); Cancer Research UK (14136 to EPIC-Norfolk; C570/

A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to

EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). We thank the

SEARCH and EPIC teams, which were funded by a programme grant from Cancer

Research UK (C490/A10124) and supported by the UK NIHR BRC at the University of

Cambridge. We thank Breast Cancer Now and the Institute of Cancer Research (ICR) for

support and funding of the UKBGS, and the study participants, study staff, and the

doctors, nurses and other health-care providers and health information sources who have

contributed to the study. We acknowledge NHS funding to the Royal Marsden/ICR

NIHR BRC. UKGPCS would like to thank The Institute of Cancer Research and The

Everyman Campaign for funding support. The UKGPCS acknowledges The Prostate

Cancer Research Foundation, Prostate Action, The Orchid Cancer Appeal, The National

Cancer Research Network UK, The National Cancer Research Institute (NCRI), the

NIHR funding to the NIHR Biomedical Research data managers and consultants for their

work in the UKGPCS study and urologists and other persons involved in the planning,

and data collection of the CAPS study. Genotyping of the OncoArray was funded by the

US National Institutes of Health (NIH) (U19 CA 148537 for ELucidating Loci Involved

in Prostate cancer SuscEptibility (ELLIPSE) project and X01HG007492 to the Center for

Inherited Disease Research (CIDR) under contract number HHSN268201200008I).

Additional analytic support was provided by NIH NCI U01 CA188392 (PI: Schumacher).

The PRACTICAL consortium was supported by Cancer Research UK Grants C5047/

A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692, C16913/A6135,

European Commission's Seventh Framework Programme grant agreement no. 223175

(HEALTH-F2-2009-223175), and The National Institute of Health (NIH) Cancer Post-

Cancer GWAS initiative grant: No. 1 U19 CA 148537-01 (the GAME-ON initiative). We

would also like to thank the following for funding support: The Institute of Cancer

Research and The Everyman Campaign, The Prostate Cancer Research Foundation,

Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The

National Cancer Research Network UK, The National Cancer Research Institute (NCRI)

UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research

Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation

Trust. The APBC BioResource, which form part of the PRACTICAL consortium, consists

of the following members: Wayne Tilley, Gail Risbridger, Renea Taylor, Judith A

Clements, Lisa Horvath, Vanessa Hayes, Lisa Butler, Trina Yeadon, Allison Eckert,

Pamela Saunders, Anne-Maree Haynes, Melissa Papargiris. At the MRC University of

Glasgow Centre for Virus Research, funding was provided by Leukaemia Lymphoma

Research (12022). The Scotland and Newcastle Epidemiological Study of Hodgkin Dis-

ease (SNEHD) was funded by the Kay Kendall Leukaemia Fund and the Young Adult

Hodgkin Case–Control Study (YHCCS) and the Epidemiology and Cancer Statistics

Group Lymphoma Case–Control Study (ELCCS) were funded by Bloodwise. German

funding was provided by the German Cancer Aid, the Harald Huppert Foundations, The

German Federal Ministry of Education and Research (eMed, Cliommics 01ZX1309B),

the Multiple Myeloma Research Foundation, the Heinz Nixdorf Foundation (Germany),

the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-

Westfalen and the Faculty of Medicine University Duisburg–Essen. For their help with

UK sample collection we thank Hayley Evans, James Griffin, Joanne Micic, Susan

Blackmore, Beverley Smith, Deborah Hogben, Alison Butlin, Jill Wood, Margot Pelerin,

Alison Hart, Katarzyna Tomczyk and Sarah Chilcott-Burns. Finally, we are grateful to all

the patients and individuals for their participation and the clinicians, investigators, other

staff who contributed to sample and data collection.

Author contributions
A.S., R.S.H. and K.H. designed and provided overall project management. A.S. and R.S.H.

drafted the manuscript. In the UK, R.S.H. and A.S. performed database development and

oversaw laboratory analyses; R.H.A.J.S. and N.O. provided samples for UK-GWAS and

UK-NSHLG-GWAS, L.W. and R.C. provided data on samples for UK-GWAS and UK-

NSHLG-GWAS. D.E., P.P., A.D., J.P., F.C., R.E., Z.K.-J, K.M. and N.P. provided control

samples for the UK-NSHLG-GWAS. A.S. performed bioinformatic and statistical ana-

lysis. In the UK P.L., G.O. and O.L. performed additional bioinformatic analyses. P.B.

and A.S. performed sample and laboratory coordination. A.H. performed validation

genotyping. For UK Replication 2, A.L. and D.M. prepared samples, T.L., E.K., E.R., D.M.

and R.F.J. provided samples and data. In Germany, A.F., H.T. and M.I.d.S.F. performed

bioinformatic and statistical analyses; P.H. and M.M.N. were responsible for German-

GWAS analysis; K.-H.J. provided the German control samples; E.P.v.S. and A.E. were

responsible for German cHL patients. All authors contributed to the final paper.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00320-1.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00320-1 ARTICLE

NATURE COMMUNICATIONS |8:  1892 |DOI: 10.1038/s41467-017-00320-1 |www.nature.com/naturecommunications 9

http://www.wtccc.org.uk
http://www.public.ukcrn.org.uk
http://dx.doi.org/10.1038/s41467-017-00320-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The PRACTICAL consortium

Brian E. Henderson21, Christopher A. Haiman21, Sara Benlloch1,5, Fredrick R. Schumacher22,23,

Ali Amin Al Olama5,24, Sonja I. Berndt25, David V. Conti21, Fredrik Wiklund26, Stephen Chanock25,

Victoria L. Stevens27, Catherine M. Tangen28, Jyotsna Batra29,30, Judith Clements29,30,

Henrik Gronberg26, Johanna Schleutker31,32,33, Demetrius Albanes25, Stephanie Weinstein25, Alicja Wolk34,

Catharine West35, Lorelei Mucci36, Géraldine Cancel-Tassin37,38, Stella Koutros25,

Karina Dalsgaard Sorensen39,40, Lovise Maehle41, David E. Neal42,43, Ruth C. Travis44, Robert J. Hamilton45,

Sue Ann Ingles21, Barry Rosenstein46,47, Yong-Jie Lu48, Graham G. Giles49,50, Adam S. Kibel51, Ana Vega52,

Manolis Kogevinas53,54,55,56, Kathryn L. Penney57, Jong Y. Park58, Janet L. Stanford59,60, Cezary Cybulski61,

Børge G. Nordestgaard62,63, Hermann Brenner64,65,66, Christiane Maier67, Jeri Kim68, Esther M. John69,70,

Manuel R. Teixeira71,72, Susan L. Neuhausen73, Kim De Ruyck74, Azad Razack75, Lisa F. Newcomb59,76,

Davor Lessel77, Radka Kaneva78, Nawaid Usmani79,80, Frank Claessens81, Paul A. Townsend82,

Manuela Gago Dominguez83,84, Monique J. Roobol85 & Florence Menegaux86

21Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA

90033, USA. 22Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA. 23 Seidman Cancer Center,

University Hospitals, Cleveland, OH 44106, USA. 24Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK. 25Division of

Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA. 26Department of Medical Epidemiology and Biostatistics,

Karolinska Institute, SE-171 77 Stockholm, Sweden. 27 Epidemiology Research Program, American Cancer Society, 250 Williams Street, Atlanta, Georgia

30303, USA. 28 SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. 29Australian Prostate Cancer Research

Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD 4059,

Australia. 30Translational Research Institute, Brisbane, QLD 4102, Australia. 31Department of Medical Biochemistry and Genetics, Institute of Biomedicine,

University of Turku, FI-20520 Turku, Finland. 32 Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, FI-20520

Turku, Finland. 33 BioMediTech, University of Tampere, Tampere 33100, Finland. 34Division of Nutritional Epidemiology, Institute of Environmental Medicine,

Karolinska Institutet, SE-171 77 Stockholm, Sweden. 35 Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre,

Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester M13 9NT, UK. 36Department of Epidemiology, Harvard School of

Public Health, Boston, MA 02115, USA. 37CeRePP, Pitie-Salpetriere Hospital, 75013 Paris, France. 38UPMC Univ Paris 06, GRC N°5 ONCOTYPE-URO,

CeRePP, Tenon Hospital, 75020 Paris, France. 39Department of Molecular Medicine, Aarhus University Hospital, 8000 Aarhus C, Denmark. 40Department

of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark. 41Department of Medical Genetics, Oslo University Hospital, N-0424 Oslo, Norway.
42Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK. 43Cancer Research UK, Cambridge Research

Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK. 44Cancer Epidemiology, Nuffield Department of Population Health, University of Oxford, Oxford OX3

7LF, UK. 45Dept. of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada. 46Department of Radiation Oncology, Icahn

School of Medicine at Mount Sinai, New York, NY 10029, USA. 47Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai,

New York,, NY 10029, USA. 48Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London

EC1M 6BQ, UK. 49Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC 3004, Australia. 50Centre for Epidemiology and Biostatistics,

Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia. 51Division of Urologic Surgery, Brigham

and Womens Hospital, Boston, MA 02115, USA. 52 Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS,

15782 Santiago de Compostela, Spain. 53Centre for Research in Environmental Epidemiology (CREAL), Barcelona Institute for Global Health (ISGlobal),

60803 Barcelona, Spain. 54CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain. 55 IMIM (Hospital del Mar Research Institute), 08003

Barcelona, Spain. 56Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain. 57Channing Division of Network Medicine, Department of Medicine, Brigham

and Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA. 58Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612,

USA. 59Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. 60Department of Epidemiology, School of

Public Health, University of Washington, Seattle, WA 98195, USA. 61 International Hereditary Cancer Center, Department of Genetics and Pathology,

Pomeranian Medical University, 70-001 Szczecin, Poland. 62 Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
63Department of Clinical Biochemistry, Herlev and Gentofte Hospital, University Hospital, 2900 Copenhagen, Denmark. 64Division of Clinical Epidemiology

and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. 65German Cancer Consortium (DKTK), German Cancer

Research Center (DKFZ), 69120 Heidelberg, Germany. 66Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for

Tumor Diseases (NCT), 69120 Heidelberg, Germany. 67 Institute for Human Genetics, University Hospital Ulm, 89081 Ulm, Germany. 68Department of

Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA. 69Cancer Prevention Institute of

California, Fremont, CA 94538, USA. 70Department of Health Research & Policy (Epidemiology) and Stanford Cancer Institute, Stanford University School of

Medicine, Stanford, CA 94305, USA. 71Department of Genetics, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal. 72 Biomedical Sciences

Institute (ICBAS), University of Porto, 4200-072 Porto, Portugal. 73Department of Population Sciences, Beckman Research Institute of the City of Hope,

Duarte, CA 91016, USA. 74 Faculty of Medicine and Health Sciences, Basic Medical Sciences, Ghent University, 9000 Ghent, Belgium. 75Department of

Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. 76Department of Urology, University of Washington, Seattle, WA 98105,

USA. 77 Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. 78Molecular Medicine Center,

Department of Medical Chemistry and Biochemistry, Medical University, 1431 Sofia, Bulgaria. 79Department of Oncology, Cross Cancer Institute, University

of Alberta, Edmonton, AB T6G 2R3, Canada. 80Division of Radiation Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada. 81Molecular

Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium. 82 Institute of Cancer Sciences, Manchester

Cancer Research Centre, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Manchester M13 9WL, UK.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00320-1

10 NATURE COMMUNICATIONS |8:  1892 |DOI: 10.1038/s41467-017-00320-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


83Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo

Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, 15706 Santiago De Compostela, Spain. 84University of California San Diego,

Moores Cancer Center, La Jolla, CA 92093, USA. 85Department of Urology, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands.
86Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay,

F-94805 Villejuif, France.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00320-1 ARTICLE

NATURE COMMUNICATIONS |8:  1892 |DOI: 10.1038/s41467-017-00320-1 |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility
	Results
	Association analysis
	Relationship between the new risk SNPs and phenotype
	Biological inference
	The HLA region
	Heritability of cHL
	Co-heritability with autoimmune disease

	Discussion
	Methods
	Ethics
	Genome-wide association studies
	GWAS and meta-analysis
	Replication studies and technical validation
	Meta-analysis
	Expression quantitative trait locus analysis
	Chromatin state dynamics
	Promoter capture Hi-C data
	Co-heritability of Hodgkin lymphoma with autoimmune disease
	Heritability analysis
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


