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ABSTRACT The goal of this study was to identify the contribution of common genetic variants to Down

syndrome2associated atrioventricular septal defect, a severe heart abnormality. Compared with the eu-

ploid population, infants with Down syndrome, or trisomy 21, have a 2000-fold increased risk of presenting

with atrioventricular septal defects. The cause of this increased risk remains elusive. Here we present data

from the largest heart study conducted to date on a trisomic background by using a carefully characterized

collection of individuals from extreme ends of the phenotypic spectrum. We performed a genome-wide

association study using logistic regression analysis on 452 individuals with Down syndrome, consisting of

210 cases with complete atrioventricular septal defects and 242 controls with structurally normal hearts. No

individual variant achieved genome-wide significance. We identified four disomic regions (1p36.3, 5p15.31,

8q22.3, and 17q22) and two trisomic regions on chromosome 21 (around PDXK and KCNJ6 genes) that

merit further investigation in large replication studies. Our data show that a few common genetic variants of

large effect size (odds ratio .2.0) do not account for the elevated risk of Down syndrome2associated

atrioventricular septal defects. Instead, multiple variants of low-to-moderate effect sizes may contribute

to this elevated risk, highlighting the complex genetic architecture of atrioventricular septal defects even in

the highly susceptible Down syndrome population.
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Congenital heart defects (CHDs) comprise the most common birth

defect and the largest contributor to infant mortality and morbidity

(Moller et al. 1993; Boneva et al. 2001; Hoffman and Kaplan 2002; Cleves

et al. 2003; Reller et al. 2008; Hoffman 2013; Shuler et al. 2013). CHDs

represent a diverse group of structural and functional abnormalities of

the heart that occur during early embryogenesis. With an incidence of

nearly 1%, CHDs pose a serious global health concern and cause signif-

icant financial and social burden (Waitzman et al. 1994; Van Rijen et al.

2005; Russo and Elixhauser 2007) which remains despite major advances

made to improve diagnoses and treatment (Fahed et al. 2013).

Many studies have shown that CHDs are heritable (Dennis and

Warren 1981; Emanuel et al. 1983; Cripe et al. 2004; Lewin et al.

2004). Genetic studies using family-based linkage (Schott et al. 1998;

Garg et al. 2003; French et al. 2012; Flaquer et al. 2013), genome-

wide single-nucleotide polymorphism (SNP) or copy number variant

(CNV) association (Greenway et al. 2009; Soemedi et al. 2012; Cordell

et al. 2013a; Cordell et al. 2013b; Sailani et al. 2013; Ramachandran et al.

2014), and candidate gene/whole-exome sequencing (Robinson et al.

2003; Pierpont et al. 2007; Ackerman et al. 2012; Zaidi et al. 2013;

Al Turki et al. 2014) have revealed genetic variants associated with

CHD. As expected for a complex trait, the etiology of CHD also is

found to be influenced by epigenetic and environmental exposures

(Bean et al. 2011; Lage et al. 2012; Vallaster et al. 2012; Fung et al.

2013; Martinez et al. 2015).
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Trisomy21, the cause ofDown syndrome (DS), has a birth prevalence of

one in 700 and is the most common chromosomal aneuploidy that

survives to term. Nearly 50% of newborns with DS have some form of

CHD (Freeman et al. 1998, 2008). One of the common types of CHD

associated with DS is atrioventricular septal defect (AVSD) or atrio-

ventricular canal defect, a severe structural anomaly that requires sur-

gery at a very young age. With a birth prevalence of 0.83 in 10,000 live

births, AVSD is rare in the general population (Hartman et al. 2011);

however, in the trisomy 21 population, the associated risk is increased

by 2,000-fold, occurring in about 20% of individuals with DS having

AVSD (Freeman et al. 2008). Among all AVSD cases, more than 65%

occur in children with DS (Ferencz et al. 1989). Yet despite the dra-

matically increased risk of AVSD among children with DS, 80% of

infants with DS do not have AVSD, and nearly half of them do not

have any CHD.

Together, these epidemiologic observations suggest that although

trisomy21predisposes theheart to formabnormally, genetic variantson

chromosome 21 (ch21) or other chromosomes may act to modify the

riskofdevelopinganAVSD.Thus, individualswithDSor trisomy21can

be considered a “sensitized” populationwith respect toCHD. The study

of this cohort may help reveal CHD susceptibility factors, much as has

been done in model organisms (Zwick et al. 1999; St Johnston 2002; Li

et al. 2012).

Our original hypothesis was that the genetic architecture of this

increased risk may be relatively simple. A few common modifying

variants could have a large effect size on CHD in a trisomic background

while having little or no effect in a euploid individual. This hypothesis

was demonstrated in a recent studyusingamousemodel ofDS, inwhich

the authors showed thatmutations inAVSDrisk factor genesCreld1 and

Hey2 were individually benign on a euploid background but substan-

tially increased risk for septal defects when expressed on a trisomic

background or when inherited together in euploid mice (Li et al.

2012). If our hypothesis is correct, these common variants would be

expected to produce a stronger statistical signal in a genome-wide

association study among individuals chosen from the extreme ends

of the phenotypic distribution. Here we report the results of a genome-

wide association study comparing individuals with DS and complete

AVSD (DS + AVSD, cases = 210) with individuals with DS and a struc-

turally normal heart (DS + NH, controls = 242).

MATERIALS AND METHODS

Study subjects

The study sample described is the same as that used in Ramachandran

et al. (2014) to investigate the role of CNVs in DS-associated AVSD.

Details regarding the recruitment and enrollment methods have been

documented previously (Freeman et al. 2008; Locke et al. 2010). Briefly,

participants with a diagnosis of full trisomy 21 were enrolled through

multiple centers across the United States. Protocols were approved by

institutional review boards at each participating center. Written and

oral consent were obtained from custodial parents for each participant

because most of the subjects themselves were unable to give consent as

the result of cognitive deficits. Cases were defined as individuals with

DS who had a complete, balanced AVSD documented most often by

echocardiogram or surgical reports (DS + AVSD). Control subjects

were defined as those with a structurally normal heart (DS + NH),

documented by echocardiogram in the vast majority. Individuals with

patent foramen ovale or patent ductus arteriosus were included in the

control population, because these defects affect structures with different

ontology. Only participants whose mother reported being non-His-

panic European Americans were included in the current study.

Genotyping

Genomic DNAwas isolated from low passage lymphoblastoid cell lines

(between one and four passages) and genotyping was carried out using

the Affymetrix Genome-Wide Human SNP 6.0 array at Emory Uni-

versity according to manufacturer’s instructions. Genotype calling was

performed using the Birdseed algorithm (version 2), as implemented in

the Affymetrix Power Tools software (APT 1.12.0). To assess initial

quality of arrays, we followed Affymetrix’s recommended quality con-

trol thresholds: Individual arrays with ,86% call rate, ,0.04 contrast

quality control (QC), and mismatched gender concordance were ex-

cluded from downstream analyses. These thresholds were selected be-

cause genotype calling of SNPs on the trisomic ch21 using standard

methods (APT 1.12.0) is unreliable and lowers the overall call rate.

Genotype calling for ch21 in trisomic individuals was performed at

the University of Pittsburgh using methods similar to those described

in Lin et al. (2008).

Quality control steps and statistical analyses

Before conducting association tests, we performed rigorous sample

and SNP cleaning. The details of this process are documented in

Ramachandran et al. (2014). In brief, QC was done on 471 samples.

Nine samples were excluded because of poor data completeness or

inconsistent family structure. An additional seven were excluded as

outliers defined by principal component analysis performed using

Eigenstrat software v4 (Price et al. 2006). The plot of principal com-

ponent analysis for the trisomic sample set in the final analyses is

provided in Supporting Information, Figure S1 (Ramachandran et al.

2014). The final sample set consisted of a total of 210 DS + AVSD cases

and 242 DS + NH controls. Data cleaning was performed in PLINK

v1.07 for the non-ch21 autosomal SNPs (855,628 SNPs) (Purcell et al.

2007). SNPs with .5% missing data, minor allele frequency ,5%, as

well as those that deviated from Hardy-Weinberg equilibrium (P ,

1�1025) were excluded from analysis. A total of 606,195 autosomal

SNPs were retained for downstream genome-wide association analysis,

whereas 249,433 SNPs were excluded.

We performed the case-control association test using logistic re-

gression analysis in an additive model adjusting for the top five

eigenvectors as covariates, implemented in PLINK v1.07 with a 95%

confidence interval for odds ratio (OR). For SNPs on ch21, the asso-

ciation test was conducted in a similar manner (additive model, adjust-

ing for top five covariates) using an in-house R script to account for the

four genotype calls per SNPas expectedwith trisomy.Datagraph3.2was

used to generate Manhattan plots (http://www.visualdatatools.com/

DataGraph/). Locus plot showing the recombination rate and -log10
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P value of SNPs at the candidate regions was made using LocusZoom

(Pruim et al. 2010). The regulatory activity of the candidate regions was

visualized through multiple annotation tracks using the University of

California, Santa Cruz genome browser (Rosenbloom et al. 2013).

We assessed the power of our study using an additive disease model

with a disease prevalence of 20% in the DS population.We assumed an

underlyingquantitative liability trait,withdisease (AVSD)beingpresent

when exceeding a threshold on the liability scale. Minor allele frequen-

cies were allow to vary from ~0.1 to 0.5, assuming 210 cases and 242

controls. Alpha was set at 0.05 / total number of markers (606,195, i.e.,

Bonferroni correction was for the total number of autosomal markers

excluding those on ch21).

Data availability

Raw genotype data are available in Gene Expression Omnibus (GEO)

data respository with accession number: GSE60607.

RESULTS

Association of autosomal (non-ch21) SNPs with AVSD

Wefirst sought to identify commonautosomal (non-ch21) SNPvariants

associatedwithan increased riskofDS-associatedAVSD.Wegenotyped

452 trisomic individuals, consisting of 210 cases and 242 controls of

EuropeanAmericans ancestry. A complete list of SNPs with P-values,

1�1024 are provided in Table S1. The quantile-quantile plot showed

good agreement between the observed and expected P-values (Figure

S2). We did not find any SNPs that exceeded genome-wide significance

(P, 8�1028, Figure 1).We had 80% power to detect a commonmarker

that explained 10–15% of variance or an OR greater than 2.0 after

Bonferroni correction. We thus conclude there are no common alleles

with large effect size (OR. 2.0) that explain the increased risk of DS-

associated AVSD.

We identified four regions with suggestive evidence of associa-

tion at 1p36.3, 5p15.31, 8q22.3, and 17q22 (Table 1). A closer

examination of the regions tagged by these SNPs revealed they were

in close proximity to genes with roles important for heart develop-

ment and/or function. Furthermore, multiple annotation tracks

from ENCODE indicated strong regulatory activity, providing fur-

ther evidence of putative function. Within the 1p36.3 candidate

region, the strongest signal (rs1698973) was located adjacent to

NPHP4, a ciliome gene (Figure 2) (Habbig et al. 2011). Interestingly,

recent studies on heart phenotypes in a trisomic background im-

plicate a significant role for ciliome genes in the etiology of DS-

associated AVSD (Ripoll et al. 2012; Ramachandran et al. 2014; Li

et al. 2015). The second region of interest was at 5p15.31. The

strongest signal at this region (rs1428986, P , 1.09�1025) falls

within FLJ33360, a long noncoding RNA gene (lncRNA). lncRNAs

are associated with gene regulation, and recent studies point to an

emerging role in the pathophysiology of complex human diseases

(Wapinski and Chang 2011; Ma et al. 2012). Adjacent to FLJ33360 is

the MED10 gene (Figure 3). Mutations in MED10 have been asso-

ciated with cardiac defects (Lin et al. 2007). In addition, multiple

ENCODE annotation tracks suggest a weak enhancer activity at

both 1p36.3 and 5p15.31 regions (Figure 2 and Figure 3). The third

candidate region, 8q22.3 (rs3107646 and rs1522707, both SNPs

with P, 2.4�1025), is located next to FZD6, encodingWnt receptor

protein. Wnt signaling plays a key role in cardiovascular physiology

(reviewed by Cohen et al. 2008). Moreover, annotations from

ENCODE indicate a strong enhancer activity at this region (Figure S3).

The fourth region of interest, at 17q22 (rs7225274, P , 1.2�1025), is

located at an intergenic region. Evidence from multiple annotation

tracks suggests a strong regulatory activity. This region includes sev-

eral binding sites for transcription factors, including GATA proteins

and NR2F2 (Figure S4). Mutations in both of these genes have been

associated with CHD, including AVSD (Garg et al. 2003; Al Turki

et al. 2014). Nevertheless, the association and ENCODE findings at

our top four regions are not genome-wide statistically significant and

require replication in an independent cohort.

Figure 1 Manhattan plot of the genome-wide association analysis based on the case-control dataset for the non-chromosome 21 autosomal
single-nucleotide polymorphisms. The horizontal red line denotes the P-value threshold for genome-wide significance.
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Association of ch21 SNPs with AVSD

A case-control association test was carried out separately for 12,584

SNPs on the trisomic ch21. None of the ch21 SNPs achieved genome-

wide significance. However, two regions, KCNJ6 at 21q22.13 and the

PDXK gene at 21q22.3, were noteworthy. SNPs at these locations had

the lowest P-values. The strongest signal at KCNJ6 was rs860795 (P ,

3.3�1024) (Figure 4) and at PDXK, rs2838355, had a P , 1�1024

(Figure 5). Overexpression of genes at these regions has been shown

to be associated with DS pathology, including heart defects. Further-

more, evidence from multiple ENCODE annotation tracks indicate

strong regulatory activity, possibly an enhancer/promoter function

(Figure 4 and Figure 5). The list of SNPs on ch21 (P , 1�1023) and

the corresponding genomic location from the case-control association

data are provided in the supplemental section (Table S2). Nevertheless,

the association and ENCODE findings at the two ch21 are not genome-

wide statistically significant and require replication in an independent

cohort.

DISCUSSION
Infants with trisomy 21, or DS, are at increased risk for developing

congenital heart defects, especially AVSD. Compared with the general

euploid population, individuals with trisomy 21 have a 2000-fold in-

creased risk of developing AVSD. We conducted a genome-wide

association study to identify the genetic variants contributing to this

phenotype using a carefully phenotyped collection of 210 DS + AVSD

cases and 242 DS + NH controls to complement our genome-wide

CNV study (Ramachandran et al. 2014). Our study had 80% power to

detect common variants with an odds ratio greater than 2.0; none of

the SNPs we tested exceeded this threshold. We therefore conclude

that the enormous increased risk of AVSD in infants with DS is not

caused by a few common variants of large effect, as we originally

hypothesized.

We did, however, identify four non-ch21 autosomal regions worthy

of replication in an independent sample set. In the first region at 1p36.3,

the most significant SNP, rs1698973 (P, 2.07�1025), is located about

21 kb downstream of NPHP4. NPHP4 is involved in renal tubular

development and function. NPHP4 is expressed in heart, kidney, skel-

etal muscle, and liver, and mutations in NPHP4 have been associated

with cardiac laterality defects (French et al. 2012). Interestingly, cardiac

laterality defects and renal dysfunction are hall marks of defects in the

cilia genes (Hou et al. 2002; Fliegauf et al. 2007). In addition to its role in

left-right patterning, compelling evidence from recent studies using

mouse models implicate a complex and critical role for the cilium in

CHD pathogenesis in a much broader context (Friedland-Little et al.

2011; Li et al. 2015). A gene expression study using a smaller trisomic

sample set by Ripoll et al. (Ripoll et al. 2012) showed enrichment for

ciliome genes in their DS+AVSD subjects. A recent genome-wide CNV

analysis performed by our group using the same cohort as presented in

this GWAS analyses showing a suggestive enrichment for rare deletions

in the ciliome genes further supports a significant role for cilia genes in

normal heart development in humans (Ramachandran et al. 2014).

The second candidate was rs1428986 (P , 1.09�1025) at 5p15.31.

This variant is located within an RNA gene, FLJ33360, and the adjacent

protein coding gene, MED10, is located 50 kb downstream. FLJ33360

belongs to the lncRNA class. Functionally, lncRNAs are implicated in

diverse aspects of gene expression and protein synthesis, including

epigenetic regulation and direct transcriptional regulation (Wilusz

et al. 2009; Ma et al. 2012). Recent studies have shown that the expres-

sion of lncRNA is tissue-specific and, furthermore, disruptions in

lncRNA have been linked to the pathology of many human diseases,

ranging from neurodegeneration to cancer (Wapinski and Chang 2011;

Gutschner et al. 2013). FLJ33360 is expressed in the heart, but more

evidence is required to establish its role in the etiology of CHD.MED10

plays a major role in the transcriptional regulation of RNA polymerase

II2dependent genes (Sato et al. 2003). Interestingly, using zebrafish

mutants, Lin et al. (2007) have shown that depletion of MED10 causes

specific defects in cardiac cushion formation, possibly through Wnt

and nodal signaling.

The third region that warrants attention was on 8q22.3. SNPs with

the strongest association are located at an intergenic region flanked by

BAALC, 45.3 kb upstream, and FZD6, 22.8 kb downstream. BAALC is

believed to play a synaptic role and is expressed by neural and hema-

topoietic cells (Tanner et al. 2001), whereas FZD6 (frizzled class

receptor6) protein is detected in multiple tissues, including adult heart,

brain, and placenta. Frizzled proteins act as a receptor forWnt proteins

and play a role in signal transduction via theWnt/beta-catenin pathway

(Umbhauer et al. 2000). Wnt signaling has a critical role in the devel-

opment of the heart (Hurlstone et al. 2003; Alfieri et al. 2010; Marinou

et al. 2012).

The fourth region of interest was at 17q22, with the strongest

association signal at rs7225247 (P, 1.2�1025). This variant is flanked

by the gene KIF2B, 1.03 Mb upstream, and TOM1L1, 44.7 kb down-

stream. KIF2B is moderately expressed in heart, and its activity is

critical for spindle assembly and chromosome movement, whereas

TOM1L1 is involved in signaling pathways (Puertollano 2005;

Manning et al. 2007). A region of high regulatory activity is located

around 5 kb downstream of this variant, including binding sites for

transcription factors, includingGATA1, GATA2, GATA3, andNR2F2.

The association between GATA proteins and congenital heart defects is

well documented (Garg et al. 2003; Raid et al. 2009; Wang et al. 2012;

Zheng et al. 2012; Li et al. 2014; Shan et al. 2014). A recent study

implicates an association between rare sequence variants in NR2F2

and AVSD in nonsyndromic individuals (Al Turki et al. 2014). All four

of the candidate regions showed the presence of histone markers,

DNase hypersensitivity clusters, transcription factor binding sites,

and nuclease accessible sites indicating regulatory activity. Chromatin

segmentation status from ENCODE associates these regions with weak

enhancer/promoter activity.

n Table 1 SNPs with strongest signals indicating suggestive association in candidate regions

Chra SNP Base Position hg19 Geneb GWAS P-Value GWAS OR (95% CI)

1p36.3 rs1698973 5901288 (NPHP4) 2.068�1025 0.46 (0.3220.66)
5p15.31 rs1428986 6326059 FLJ33360 1.093�1025 1.88 (1.4222.49)
8q22.3 rs3107646 104285531 (FZD6) 2.436�1025 0.40 (0.2620.61)
8q22.3 rs1522707 104287845 (FZD6) 2.436�1025 0.40 (0.2620.61)
17q22 rs7225247 52933176 (TOM1L1) 1.199�1025 1.86 (1.4122.46)

SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; OR, odds ratio; 95% CI, 95% confidence interval.
a

Chromosome.
b

For SNPs located within genes, gene names are listed; for intergenic SNPs, the nearest protein coding gene is listed in parenthesis.
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Although none of the variants on ch21 reached genome-wide

significance, we identified two regions worthy of further investigation

in replication studies. The first region on ch21 that showed a suggestive

associationwasat21q22.13,where themost significant SNP, rs860795, is

located in an intron of the KCNJ6 gene. KCNJ6 encodes a G-protein

activated inward rectifier potassium channel, expressed in fetal heart,

and its overexpression causes altered heart rate (Lignon et al. 2008).

Interestingly, functional analyses on trisomic (DS) mouse model

(Dp(16)4Yey/+) have implicated a 3.7-Mb “critical region” flanked

by the Ifnar1-Kcnj6 region on mouse chromosome 16 (Mmu16) in

DS-related heart defects (Liu et al. 2011; Liu et al. 2014). A recent

genome-wide association study on conotruncal and related heart defects

Figure 2 Genomic region at 1p36.3 with suggestive evidence of association with Down syndrome2associated atrioventricular septal defect. (A)
and (B) show the locus zoom plot and University of California, Santa Cruz (UCSC) image at the corresponding genomic region (human genome
build 19, hg19). (A) Locus zoom plot of the region of association at single-nucleotide polymorphism (SNP) with strongest signal (rs1698973).
Linkage disequilibrium (LD) between this SNP (purple diamond) and nearby markers is color-coded based on the strength of the LD. The left
Y-axis shows the -log10 of the association P-value and the right Y-axis indicates the recombination rate across each region. The position on the
chromosome (hg19) and the nearby genes are shown below the X-axis. (B) UCSC browser image shows evidence of regulatory activity. Included
are a custom track showing the location of most significant SNPs and the annotation tracks from ENCODE showing regulatory activity.
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in a disomic population uncovered suggestive evidence for an intronic

SNP rs2267386 (22q13.1) within KCNJ4, a paralog of the KCNJ6 gene

(Agopian et al. 2014). The second ch21 candidate region showing evi-

dence of association was at 21q22.3. The most significant SNP in this

region, rs2838355 (P, 1�1024), was located at the intronic region of the

PDXK gene. PDXK is involved with vitamin B6 phosphorylation and is

expressed ubiquitously. Evidence of significant overexpression of PDXK

and its neighboring gene, RRP1B (23 kb upstream), in trisomic subjects

Figure 3 Genomic region at 5p15.3 with suggestive evidence of association with Down syndrome2associated atrioventricular septal defect. (A)
Locus zoom plot of the region of association at single-nucleotide polymorphism (SNP) with strongest signal (rs1428986). Linkage disequilibrium
(LD) between this SNP (purple diamond) and nearby markers is color-coded based on the strength of LD. The left Y-axis shows the -log10 of the
association P-value and the right Y-axis indicates the recombination rate across each region. The position on the chromosome (hg19) and the
nearby genes are shown below the X-axis. (B) University of California, Santa Cruz browser image shows evidence of regulatory activity. Included
are a custom track showing the location of most significant SNPs and the annotation tracks from ENCODE showing regulatory activity.
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Figure 4 Genomic region on chromosome 21q22.1 at the KCNJ6 gene showing suggestive evidence of association. (A) Locus zoom plot of the
region of association at single-nucleotide polymorphism (SNP) with strongest signal on ch21 (rs860795). Linkage disequilibrium (LD) between this
SNP (purple diamond) and nearby markers is color-coded based on the strength of LD. The left Y-axis shows the -log10 of the association P-value
and the right Y-axis indicates the recombination rate across each region. The position on the chromosome (hg19) and the nearby genes are shown
below the X-axis. (B) University of California, Santa Cruz browser image shows evidence of regulatory activity. Included are a custom track showing
the location of most significant SNPs and the annotation tracks from ENCODE showing regulatory activity.
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Figure 5 Genomic region on chromosome 21q22.3 at the PDXK gene showing suggestive evidence of association. (A) Locus zoom plot of the
region of association at single-nucleotide polymorphism (SNP) with strongest signal on ch21 (rs2838355). Linkage disequilibrium (LD) between
this SNP (purple diamond) and nearby markers is color-coded based on the strength of LD. The left Y-axis shows the -log10 of the association
P-value and the right Y-axis indicates the recombination rate across each region. The position on the chromosome (hg19) and the nearby genes
are shown below the X-axis. (B) University of California, Santa Cruz browser image shows evidence of regulatory activity. Included are a custom
track showing the location of most significant SNPs and the annotation tracks from ENCODE showing regulatory activity.
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argues for a role of these genes in DS pathology. However, as yet there is

no specific association to any heart phenotype (Salemi et al. 2012). Both

the ch21 candidate regions appear to have high regulatory activity, with

potential enhancer/promoter functions (ENCODE). The Affymetrix 6.0

genotyping microarrays did not have a sufficient marker density to

replicate the recent findings of association reported by Sailani (Sailani

et al. 2013).

Most of the GWAS studies on heart conducted to date employ

aphenotypicallyheterogeneous sample set, therebydiluting thepower to

detect specific associations (Larson et al. 2007; Cordell et al. 2013b; Hu

et al. 2013; Agopian et al. 2014; Xu et al. 2014). Here, using individuals

with DS as a “sensitized” population, we conducted a genome-wide

association study on a carefully phenotyped collection of individuals

from extreme ends of the spectrum. Although our study represents the

largest DS-associated study conducted so far using a homogeneous

heart phenotype, we are still underpowered to detect variants of modest

to low effect sizes. Replication studies with larger sample sizes are

required to confirm the suggestive regions we have identified here.

Finally, despite the 2000-fold risk observed, this elevated risk cannot

be explained easily, but instead represents a complex interplay with the

increased dosage of ch21. Given the complex and multifactorial nature

of the disorder, the next feasible approach would be to use whole

genome-sequencing to characterize the genetic variants, along with

epigenetic interactions and environmental factors in a larger patient

cohort.
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