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Genome-wide association study of eosinophilic
granulomatosis with polyangiitis reveals genomic
loci stratified by ANCA status
Paul A Lyons et al.#

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of

unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) spe-

cific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676

EGPA cases and 6809 controls, that identifies 4 EGPA-associated loci through conventional

case-control analysis, and 4 additional associations through a conditional false discovery rate

approach. Many variants are also associated with asthma and six are associated with eosi-

nophil count in the general population. Through Mendelian randomisation, we show that a

primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA

reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ANCA

EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ

association with MPO+ANCA-associated vasculitis, while ANCA-negative EGPA may

instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of

therapies in development, supporting their exploration in EGPA.
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E
osinophilic granulomatosis with polyangiitis (EGPA), once
named Churg-Strauss syndrome, has a unique combination
of clinical features that have some overlap with the other

anti-neutrophil cytoplasmic antibody (ANCA)-associated vascu-
litis (AAV) syndromes, granulomatosis with polyangiitis (GPA)
and microscopic polyangiitis (MPA)1,2. The initial report by
Churg and Strauss described necrotising vasculitis, eosinophilic
tissue infiltration and extravascular granulomata at post-
mortem1. After a prodromal period characterised by asthma
and eosinophilia that may last for some years, patients develop
the more distinctive clinical features of EGPA. These include
various combinations of neuropathy, pulmonary infiltrates,
myocarditis, and ear, nose and throat (ENT), skin, gastro-
intestinal and renal involvement2.

Despite being classified as a form of ANCA-associated vascu-
litis3, vasculitis is not always evident (discussed in more detail in
the Supplementary Note 1) and only 30–40% are ANCA-positive
(almost all against myeloperoxidase (MPO) rather than
proteinase-3 (PR3)). These observations, together with increasing
evidence that clinical distinctions can be drawn between the
ANCA-positive and ANCA-negative subsets of EGPA4–6, suggest
that clinically important subsets may exist within it2. The
aetiology of EGPA is unknown; it is too uncommon for familial
clustering to have been quantified or major genetic studies per-
formed. Candidate gene studies in small cohorts have reported
associations of EGPA with HLA-DRB4 and DRB1*07 and pro-
tection by DRB3 and DRB1*137,8, suggesting a genetic contribu-
tion of uncertain size.

Here we perform a genome-wide association study (GWAS) of
EGPA. It demonstrates that EGPA is polygenic with genetic
distinctions between MPO ANCA positive (MPO+) and ANCA-
negative disease, correlating with different clinical features. The
genetic associations themselves point to dysregulation of path-
ways controlling eosinophil biology, severe asthma and vasculitis,
beginning to explain the development and clinical features of
disease. These results suggest that EGPA might be comprised of
two distinct diseases defined by ANCA status, and provide a
scientific rationale for targeted therapy.

Results
The genetic contribution to EGPA. We performed genome-wide
association testing at 9.2 million genetic variants in 534 cases and
6688 controls. The EGPA patients’ clinical features are sum-
marised in Table 1. Further details of the cohorts are presented in
Supplementary Tables 1–3. Consistent with previous reports2,

176 (33%) were positive for ANCA, and of the 164 who were
positive for specific ANCA by ELISA, 159 (97%) had MPO+
ANCA and five PR3+ANCA. Genotyping was performed using
the Affymetrix Axiom UK Biobank array and high-density gen-
otype data was generated through imputation against the 1000
Genomes phase 3 reference panel (see the ‘Methods’ section).
Despite attempting to control for population stratification by the
inclusion of 20 genetic principal components (PCs) as covariates
in the logistic regression model, the genomic inflation factor
lambda remained elevated at 1.10, suggesting residual population
stratification. We therefore used a linear mixed model (LMM; see
the ‘Methods’ section), which more effectively controlled genomic
inflation (lambda 1.047). Using this approach, we identified three
genetic loci associated with EGPA at genome-wide significance
(P < 5 × 10−8) (Fig. 1a, Supplementary Fig. 1, Table 2). The
strongest association was with HLA-DQ, and the others were on
chromosome 2 near BCL2L11 (encoding Bim) and on chromo-
some 5 near the TSLP gene (which encodes Thymic stromal
lymphopoietin; TSLP). In addition, there was a suggestive asso-
ciaton in an intergenic region at 10p14 (P 8 × 10−8).

To quantify the genetic influence on EGPA, the total narrow-
sense heritability (h2) was estimated: the genotyped variants
additively explained ~22% of the total disease liability (EGPA
h2 ≥ 0.22, standard error 0.082). Thus, while specific loci have
substantial effect sizes in EGPA (Table 2), the contribution of
genetics overall is similar to other immune-mediated diseases
(e.g., h2 estimates for Crohn’s disease and ulcerative colitis are
26% and 19%, respectively9).

Conditional false discovery rate analysis finds further loci. One
method to overcome limitations posed by GWAS sample size in
rare diseases is to leverage results from GWAS of related phe-
notypes using the pleiotropy-informed Bayesian conditional false
discovery rate (cFDR) method10,11. Asthma and eosinophil count
were chosen as relevant traits, as they are both ubiquitous features
of EGPA, and genetic variants showing association with them
showed a trend for greater association with EGPA (Supplemen-
tary Fig. 2), with a consistent direction of effect (Supplementary
Table 4), suggesting shared genetic architecture.

Use of the pleiotropy-informed Bayesian cFDR conditioning
on asthma12 revealed additional EGPA associations at 5q31.1 in
C5orf56 (near IRF1 and IL5) and at 6q15 in BACH2. We then
utilised data from a GWAS of eosinophil count in the general
population13, identifying further EGPA associations near LPP
and in the CDK6 gene (Table 2).

Table 1 Comparison of clinical features between MPO+ and ANCA−negative EGPA patients

All patients

n= 534 (%)

ANCA −ve

n= 352 (%)

MPO+ ve

n= 159 (%)

MPO+ ve vs. ANCA −ve

P-value

Bonferroni-corrected

P-value

Eosinophilia 534 (100)

Asthma 534 (100)

Neuropathy 339 (63.5) 201 (57.1) 125 (78.6) 4.5 × 10−6 3.6 × 10−5

Lung infiltrates 301 (56.4) 216 (61.4) 72 (45.3) 0.00098 0.0078

ENT 458 (85.8) 309 (87.8) 128 (80.5) 0.042 0.34

Cardiomyopathy 135 (25.3) 107 (30.4) 23 (14.5) 0.00020 0.0016

Glomerulonephritis 83 (15.5) 33 (9.4) 46 (28.9) 3.2 × 10−8 2.6 × 10−7

Lung haemorrhage 22 (4.1) 14 (4.0) 7 (4.4) 1.0 1.0

Purpura 137 (25.7) 91 (25.9) 37 (23.3) 0.60 1.0

Positive biopsy* 212 (41.3†) 145 (42.9†) 60 (38.5†) 0.40 1.0

ENT ear, nose and throat. P-values were calculated from 1 degree of freedom chi-squared tests with Yates’ continuity correction. Bonferroni correction was undertaken to account for the 8 clinical

features tested; statistically significant P-values in bold

*Defined as a biopsy showing histopathological evidence of eosinophilic vasculitis, or perivascular eosinophilic infiltration, or eosinophil-rich granulomatous inflammation or extravascular eosinophils in a

biopsy including an artery, arteriole, or venule
†Percentages are of those with available data. Biopsy data were unavailable for 21 (3.9%) of patients. Biopsy data was available for 156/159 (98.1%) MPO+ patients and 338/352 (96.0%) ANCA

−negative patients
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While replication is the gold standard for GWAS studies, the
rarity of EGPA (annual incidence 1–2 cases per million) makes
recruitment of an adequately powered replication cohort
challenging. Nonetheless, a second cohort of 142 EGPA patients
from two European centres was identified; 43 (30%) had MPO+
ANCA (Supplementary Table 5). There was a strong correlation
between the estimated effect sizes in the primary and replication
cohorts (Pearson r= 0.96, p= 0.0002), providing additional
support for the reported associations (Supplementary Fig. 3 and
Supplementary Table 6). Following meta-analysis of the primary
and secondary cohorts, the signal at 10p14 became genome-wide
significant (P 2.9 × 10−8). Thus in total we identified 8
associations with EGPA, consistent with it being a polygenic
disease.

Clinically and genetically distinct EGPA subsets. EGPA has
been classified alongside MPA and GPA as an AAV3, despite
ANCA being only found in the minority of cases. While asthma
and eosinophilia are common to all patients with EGPA, the
frequency of other clinical features of the disease vary between
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ANCA-positive and ANCA-negative subgroups2,4–6,14. We con-
firmed these phenotypic differences, with glomerulonephritis and
neuropathy (clinical features consistent with vasculitis) more
prevalent in the MPO+ subgroup, whereas lung infiltrates and
cardiac involvement were common in the ANCA-negative sub-
group (Table 1). These differential clinical associations remained
statistically significant after adjustment for country of origin,
suggesting a true biological difference between the subgroups (see
the ‘Methods’, section Supplementary Tables 7–8). These data,
together with the analogous situation where patients with MPO+
ANCA or PR3+ANCA GPA/MPA have distinct genetic
associations15,16, suggested that there may be genetic differences
between MPO+ and ANCA-negative EGPA.

We therefore compared these subsets to healthy controls,
excluding the PR3+ANCA patients as there were too few to form
a useful subset (Fig. 1b, c, Table 2). The analysis of MPO+ EGPA
versus controls revealed an association at HLA-DQ (sentinel
variant rs17212014; Supplementary Table 9), which was much
stronger than in the comparison of all EGPA against controls,
despite the reduced sample size in the former analysis (Table 2).
A weaker association in the HLA region was also detected in the
analysis of the ANCA-negative subset, but further examination of
this signal revealed it was distinct from HLA-DQ (Supplementary
Fig. 4). In addition, the MPO+ subgroup analysis revealed an
association at rs78478398 on chromosome 12. Variants near
GPA33 and at IRF1/IL5 reached genome-wide significance in the
ANCA-negative subset, but were not associated with the MPO+
group (P 0.96 and 0.17, respectively, LMM). The associations at
BCL2L11, TSLP, CDK6, BACH2, Chromosome 10, and LPP
appeared to be independent of ANCA status, allowing for the
reduced power in the smaller MPO+ subset (Table 2).

A signal that appears specific to one subgroup might reflect lack
of power to detect it in the other rather than necessarily indicating
true genetic heterogeneity between the two subgroups. To formally
address this issue, we compared genotypes of MPO+ and ANCA-
negative samples directly with one another (i.e., a within-cases
analysis, independent of controls), and computed p-values for the
11 variants found to be significant in the previous analyses. A
significant difference in allelic frequency between the two subtypes
at a given genetic variant indicates a subtype dependent effect on
disease susceptibility. This analysis of MPO+ vs. ANCA nega-
tive cases revealed a genome-wide significant association at
rs17212014 in the HLA-DQ region (P 5.5 × 10−13, logistic
regression). No other signals were significant after Bonferroni
adjustment for multiple testing (P value threshold 0.0045). 3
variants had unadjusted P-values < 0.05: rs11745587 in the C5orf56-
IRF1-IL5 region (P 0.018), rs78478398 on chromosome 12 (P 0.02),
and rs72689399 in GPA (P 0.0499; all p-values from logistic
regression). Of note, the HLA association detected in the ANCA-
negative vs. controls analysis was not evident in the within-cases
analysis (P 0.19, logistic regression). In summary, this analysis
provides robust evidence of a differential genetic basis of MPO+
and ANCA-negative EGPA at the HLA-DQ region.

In the small replication cohort, despite only 43 patients with
MPO+ EGPA, the association at the HLA-DQ locus was
replicated (Supplementary Table 9). No evidence of association
was observed between variants at GPA33 and the ANCA-negative
subgroup although, due to the low minor allele frequency and
patient number, power was limited.

In light of the clinical and genetic differences identified between
MPO+ and ANCA-negative EGPA, we tested whether one subset
was more genetically similar to asthma than was the other (see the
‘Methods’ section, Supplementary Note 2). With the HLA region
removed, ANCA-negative EGPA was more genetically similar to
asthma than was MPO+ EGPA (Supplementary Note 2, Supple-
mentary Figs. 5, 6). This provides evidence for genetic differences

between the two subtypes outside the HLA region, and suggests that
the aetiology of ANCA-negative EGPA may more closely resemble
that of asthma than does MPO+ EGPA.

Thus EGPA has a complex inheritance. Some loci are
associated with both MPO+ANCA and ANCA-negative EGPA,
consistent with the phenotypic overlap between the subsets and
with their shared prodrome. Others are associated with only one
subgroup. That these genetically distinct subsets of EGPA align
with clinical disease phenotype (Table 1) suggests that differences
in pathogenesis exist and that the current clinical classification
system should be re-visited (Fig. 3).

Candidate genes and EGPA pathogenesis. All genetic loci
implicated in EGPA are detailed in Supplementary Figs. 7, 8, and
four exemplars are shown in Fig. 2. We cross-referenced the lead
EGPA-associated variant at each locus with disease-associated
variants in linkage disequilibrium from the NHGRI GWAS
Catalogue (Supplementary Data 1). It is interesting that 7 of the 8
alleles associated with increased EGPA risk are also associated
with increased physiological eosinophil count at genome-wide
significance (Fig. 4a, Supplementary Table 4). Given that some
associations with EGPA were detected by cFDR analysis using
eosinophil count GWAS data, we considered the possibility that
this result was a consequence of our analytical approach. We
therefore performed an unbiased assessment of all eosinophil-
associated variants for their effect on EGPA risk in our primary
GWAS analysis (i.e., agnostic of cFDR), and observed that the
relationship between genetic effect on eosinophil count and
EGPA risk held true (Supplementary Fig. 9). In addition, 5 non-
MHC EGPA risk alleles also confer increased risk of asthma
(Supplementary Table 4), and 2 confer increased risk of nasal
polyps (Supplementary Table 10, Supplementary Data 1), con-
sistent with the association between EGPA and these traits.

To identify potential candidate genes, we sought long-range
interactions between the EGPA-associated variants and gene
promoters and regulatory regions in promoter capture Hi-C
datasets using the CHiCP browser (see the ‘Methods’ section).
We emphasise that whilst Hi-C data can suggest a link between a
disease-associated variant and a candidate gene, it does not
provide conclusive evidence of causality. In addition, we
identified genes for which the sentinel EGPA-associated variants
(or their proxies in linkage disequilibrium (LD)) are expression
quantitative loci (eQTLs) (Supplementary Data 2).

We sought external evidence from genomic databases (Sup-
plementary Data 1–3) and the experimental literature (Supple-
mentary Table 10) to provide corroboration for the candidate
genes that we identified. For the majority of loci, we identified
strong experimental evidence to implicate candidate genes in the
pathogenesis of EGPA. Individual loci are discussed below.

BCL2L11 and MORRBID. The sentinel EGPA-associated variant
lies in an intron in ACOXL, near BCL2L11, that encodes BIM, a
Bcl2 family member essential for controlling apoptosis, immune
homeostasis and autoimmune disease17–19, and mast cell survi-
val20. The EGPA-associated variant also lies within MIR4435-
2HG (MORRBID), that encodes a long non-coding RNA that
regulates Bim transcription, controls eosinophil apoptosis and
may be dysregulated in hypereosinophilic syndrome21. In addi-
tion, Hi-C data showed interaction of the EGPA-associated var-
iant with the promoter of MORRBID. These relevant functional
associations suggest BCL2L11 and MORRBID are more likely
than ACOXL to be the causal gene at this locus. The EGPA risk
allele is also associated with higher eosinophil count, and with
increased risk of asthma and primary sclerosing cholangitis (PSC)
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(Supplementary Table 10, Supplementary Data 1), diseases in
which eosinophils have been implicated.

TSLP. The EGPA susceptibility variant rs1837253 lies immediately
upstream of TSLP. TSLP is released by stromal and epithelial cells
in response to inflammatory stimuli, and drives eosinophilia and
enhanced TH2 responses through effects on mast cells, group 2
innate lymphoid cells (ILC2), and dendritic cells. The risk allele,
rs1837253:C, is associated with higher TSLP protein secretion in
stimulated nasal epithelial cultures22. No known genetic variants are
in high LD with rs1837253, with no variants with r2 > 0.3 in

European-ancestry populations in the 1000 Genomes phase 3 data,
suggesting that it is either the causal variant or, alternatively, that
rs1837253 is tagging a rare variant that was not present in the
individuals sequenced in the 1000 Genomes Project. rs1837253:C is
also associated with higher risk of asthma, nasal polyps, and allergic
rhinitis and with higher eosinophil counts (Supplementary
Table 10, Supplementary Data 1), increasing the risk of EGPA more
strongly than it does asthma (OR 1.51 vs. 1.12–1.27: Supplementary
Fig. 10). Other variants in the TSLP region, independent of
rs1837253, are associated with asthma, eosinophil count, eosino-
philic oesophagitis and allergic traits (Supplementary Data 3).
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Fig. 2 Genomic features at four EGPA-associated loci. Genomic positions from the hg19 genome build, representative RefSeq genes, long-range DNA

interactions, genetic variant associations with EGPA, causal variant mapping (expressed as posterior probabilities, PP) and H3K4 mono-methylation data

are shown for (a) the BCL2L11 region, (b) the LPP region, (c) the C5orf56-IRF1-IL5 region and (d) the 10p14 intergenic region. Arrows indicate direction of

transcription. P-values for genetic association are from a linear mixed model (BOLT-LMM). For further details regarding the promoter enhancer interaction

mapping, including cell types analysed at each locus, see the ‘Methods’ section and Supplementary Fig. 7
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GPA33. GPA33 encodes a cell surface glycoprotein that maintains
barrier function in the intestinal epithelium23. Intriguingly, the
EGPA-associated variant correlates with GPA33 expression in
bronchial tissue24, suggesting GPA33 control of respiratory or
intestinal barrier function might play a role in EGPA pathogen-
esis. In keeping with this hypothesis, we find shared genetic
architecture between ANCA-negative EGPA and inflammatory
bowel disease (IBD) (Supplementary Fig. 11), a disease commonly
attributed to mucosal barrier dysfunction. This association was
not seen with MPO+ EGPA, which is not associated with the
GPA33 variant.

LPP. EGPA-associated rs9290877 is within LPP, encoding a LIM
domain protein25, and is associated with asthma, allergy and
plasma IgE (Supplementary Table 10, Supplementary Data 1).
CHiCP analysis links this variant to BCL6 (Fig. 2b), encoding a
transcriptional repressor central to immune, and in particular
TH2, regulation; BCL6-deficient mice die of overwhelming eosi-
nophilic inflammation characterised by myocarditis and pul-
monary vasculitis26.

C5orf56-IRF1-IL5. rs11745587:A is associated with increased
susceptibility to EGPA, higher eosinophil count13, asthma
(including the severe asthma subtype) and allergic rhinitis, as well
as IBD and juvenile idiopathic arthritis (Supplementary Table 10,
Supplementary Data 1). CHiCP analysis shows interactions with
the putative regulatory regions of IL4, IL5, and IRF1, all excellent
candidates (Fig. 2c). IL-4 and IL5 are archetypal Th2 cytokines,
and IL-5 in particular drives eosinophilic inflammation27.

BACH2. BACH2 encodes a transcription factor that plays critical
roles in B and T cell biology, BACH2 deficient mice die of
eosinophilic pneumonitis28, and polymorphisms in the BACH2
region have been associated with susceptibility to numerous
immune-mediated diseases (Supplementary Table 10, Supple-
mentary Data 1). The EGPA-associated variant, rs6454802, is in
LD with variants associated with asthma, nasal polyps, and
allergy. This genomic region is also associated with other
immune-mediated diseases including celiac disease, IBD, PSC and
multiple sclerosis (Supplementary Data 3).

CDK6. CDK6 encodes a protein kinase that plays a role in cell
cycle regulation. The EGPA-associated variant, rs42041, is asso-
ciated with eosinophil count13 and rheumatoid arthritis (Sup-
plementary Table 10, Supplementary Data 3).

10p14 intergenic region and GATA3. The associated variant is
not near any candidate genes, but CHiCP analysis shows inter-
action with the promoter of GATA3 (Fig. 2d). GATA3 encodes a
master regulator transcription factor expressed by immune cells
including T, NK, NKT, and ILC2 cells, that drives Th2 differ-
entiation and secretion of IL-4, IL-5, and IL-13, and thus eosi-
nophilic inflammation29. This genomic region is also associated
with asthma and allergic rhinitis (Supplementary Table 11, Sup-
plementary Data 1).

HLA. MPO+ EGPA was associated with a region encompassing
the HLA-DR and –DQ loci (Supplementary Fig. 4). The classical
HLA alleles at 2 or 4 digit resolution, and amino acid variants at 8
HLA loci, were then imputed. Using LMM, 9 HLA alleles con-
ferring either susceptibility to or protection from MPO+ EGPA
were identified (Supplementary Table 11). Conditional analyses
revealed 3 signals conferred by 2 extended haplotypes encoding
either HLA-DRB1*0801-HLA-DQA1*04:01-HLA-DQB1*04:02; or
HLA-DRB1*07:01-HLA-DQA1*02:01- HLA-DQB1*02:02/HLA-DQ

B1*03:03; together with an additional signal at HLA-DRB1*01:03
(Supplementary Table 11 and Supplementary Fig. 4). The stron-
gest independent associations with disease risk were seen at HLA-
DRB1*08:01 (OR 35.8, p= 7.6 × 10−24), HLA-DQA1*02:01 (OR
4.8, p= 1.8 × 10−15) and HLA-DRB1*01:03 (OR 14.0, p= 4.2 ×
10−8) (all P-values from LMM). Protection from disease was
associated with the presence of HLA-DQA1*05:01 (OR 0.4, p=
1.2 × 10−8). A similar analysis of the MHC signal seen in the
ANCA-negative EGPA subset revealed no association with any of
the imputed classical alleles. Analysis of HLA allelic frequencies
stratified by country of recruitment revealed a consistent pattern
(Supplementary Table 12), indicating that our findings were not
the result of residual population stratification.

Individual amino acid variants in HLA-DRB1, HLA-DQA1 and
HLA-DQB1 were associated with MPO+ANCA EGPA (Supple-
mentary Fig. 12A). Conditioning on the most associated amino
acid variants at each locus, position 74 in HLA-DRB1, position
175 in HLA-DQA1 and position 56 in HLA-DQB1 demonstrated
that HLA-DRB1 and HLA-DQB1 were independently associated
with disease risk (Supplementary Fig. 12B-D). Conditioning on
all three variants accounted for the entire signal seen at the MHC
locus. The HLA-DQ locus associated with MPO+ EGPA appears
the same as that previously associated with MPO+ANCA-
associated vasculitis15. To quantify the relative contribution of
the MHC to the heritable phenotypic variance we partitioned the
variance using BOLT-REML30. Using this approach, 6% of the
heritable variance could be attributed to the MHC, an observation
similar to that seen in other autoimmune diseases where the
MHC contribution ranges from 2% in systemic lupus erythema-
tosus to 30% in type 1 diabetes31.

Mendelian randomisation implicates eosinophils in aetiology.
The observation that eosinophilia is a ubiquitous clinical feature
in EGPA does not necessarily imply that eosinophils play a causal
role in the disease, since eosinophilia might instead be either an
epiphenomenon or a downstream consequence of EGPA. The
observation that 7 of the 8 alleles associated with increased EGPA
risk are also associated with increased physiological eosinophil
count in population-based cohorts, however, supports the notion
of a causal role for eosinophils in EGPA. To formally test this
hypothesis, we employed the technique of Mendelian randomi-
sation (MR) (see the ‘Methods’ section). In contrast to observa-
tional associations, which are liable to confounding and/or
reverse causation, MR analysis is akin to a natural randomised
trial, exploiting the random allocation of alleles at meiosis to
allow causal inference. MR analysis provided strong support (P <
7.7 × 10−12, inverse-variance weighted method) for a causal effect
of eosinophil count on EGPA risk (Fig. 4b). This result was robust
to a number of sensitivity analyses (see the ‘Methods’ section,
Supplementary Fig. 13, Supplementary Data 4).

Discussion
This study has identified 11 loci associated with EGPA, and
reveals genetic and clinical differences between the MPO+ EGPA
subset, and the larger ANCA-negative subset (with PR3+ANCA
patients too rare to be informative). There was a strong associa-
tion of the MPO+ subset with HLA-DQ, and no HLA-DQ asso-
ciation with ANCA-negative EGPA. The ANCA-negative group
alone was associated with variants at the GPA33 and IL5/IRF1
loci. There was clear evidence of association of both EGPA sub-
groups with variants at the TSLP, BCL2L11 and CDK6 loci, and
suggestive evidence for BACH2, Chromosome 10, and LPP. A
number of these loci have previously been shown to be associated
with other autoimmune diseases, including PSC (Supplementary
Table 10). Thus EGPA is characterised by certain genetic variants
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that associate with the syndrome as a whole, but others that
indicate a genetic distinction between the MPO+ and ANCA-
negative subsets. This distinction suggests important hetero-
geneity in the pathogenesis of the clinical syndrome, as the sub-
sets have distinct clinical phenotypes and outcomes to therapy
(Fig. 3). The increased efficacy of rituximab in the MPO+ subset
of EGPA32 suggests that future trials of novel therapies might
need to be stratified according to ANCA status.

EGPA shares susceptibility variants with asthma (Table 2,
Supplementary Table 4), and this genetic relatedness (Supple-
mentary Fig. 2) allowed the use of the cFDR technique to detect
additional EGPA-associated variants. For the TSLP variant, the
estimated effect size in EGPA was much greater than in asthma
(Supplementary Fig. 10), suggesting its association with asthma
might be driven by a subset of patients. Consistent with this,
rs1837253 (near TSLP) shows a trend towards association with
a subset of severe asthmatics12, as does the EGPA-associated
variant at C5orf56/IL5. This raises the possibility that common
EGPA-associated variants may be particularly associated
with severe, adult-onset asthma– the asthma endotype typical
of the EGPA prodrome. All or some of this subset of asthma
patients may be at higher risk of subsequently developing
EGPA.

Notably, 7 of 8 variants associated with EGPA (as a
whole) were also associated with eosinophil count at genome-
wide significance in normal individuals. The increase in EGPA
risk conferred by each of the 7 genetic variants was proportional
to its effect on eosinophil count (Fig. 4a), a correlation that held
true when all eosinophil-associated variants were assessed for

EGPA risk (Supplementary Fig. 9). The causal nature of this
association was supported by Mendelian randomisation analysis.
This dose-response relationship between the genetic effects on
eosinophil count and on risk of EGPA is consistent with a sce-
nario where the genetic control of physiological variation in the
eosinophil count contributes directly to the risk of pathological

% of patients with feature

Clinical feature MPO+ AAV

(non EGPA)

MPO+ EGPA ANCA−

EGPA

Glomerulonephritis 85 29* 9

Neuropathy 20 79* 57

Asthma n.d. 100 100

Eosinophilia 4.5 100 100

Pulmonary hemorrhage 17 4 4

Ear nose or throat 32 81 88

Pulmonary infiltrates 20 45 61*

Cardiac involvement 3 15 30*

Rituximab response 98 80 38

HLA-DQ GPA33, IL5

MPO+

AAV

MPO+

EGPA

ANCA–

EGPA

TSLP BIM CDK6 GATA3

BACH2 LPP/BCL6

Fig. 3 Clinically and genetically distinct subsets within EGPA, and their

relation to MPO+AAV. Above: schematic showing relationship between

MPO+AAV, MPO+ EGPA and ANCA-negative EGPA, and putative genes

underlying this classification. Below: Unshaded cells in the table show a

comparison of the clinical features of MPO+ and ANCA-negative EGPA

from this study as % (*p < 0.0002 compared to other EGPA subset: see

Table 1), but also see refs. 4, 5. Shaded cells show data from external

sources: MPO+ AAV clinical data was derived from the EVGC AAV

GWAS15, and rituximab response rates for MPO+ AAV from the RAVE

study53 and for EGPA from ref. 32. n.d. not determined
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eosinophilia and eosinophilic inflammatory disease. This infer-
ence is possible because the genetic effects on eosinophil count
were derived in an independent dataset of healthy individuals
(and thus the eosinophil count in this cohort is not confounded
by the presence of disease). This concept that genetic variants that
control a cell number within the normal range might, when
combined, predispose to and perhaps initiate disease might
extend beyond eosinophil-driven conditions. By analogy to stu-
dies establishing the relationship between genetic associations
with LDL-cholesterol and with coronary artery disease risk33, our
data supporting a causal role for eosinophils could pave the way
for novel eosinophil-targeted therapies in EGPA.

The shared eosinophil count and asthma-associated variants
may explain the shared clinical features of the two EGPA
subsets–both in the prodromal phase and after the development
of frank EGPA. Moreover, they raise the possibility that persistent
eosinophilia driven by variation in genes controlling physiological
eosinophil levels can predispose to, or even directly give rise to,
adult-onset asthma and to the EGPA prodrome (or to a pro-
gression from adult-onset asthma to the eosinophilic prodrome).
After some time, an unknown proportion of people with this
prodrome proceed to develop the clinical features characteristic of
EGPA. Whether this progression is stochastic, is related to the
severity of ongoing eosinophilic inflammation, is influenced by
genetic factors or is triggered by an environmental factor remains
unknown.

Around a third of EGPA patients develop ANCA against MPO
and clinical features that overlap with MPO+AAV, such as
vasculitis and necrotising glomerulonephritis (Fig. 3). These
patients appear to have a classic HLA class II-associated auto-
immune disease with prominent eosinophilic features. The
remaining patients, in contrast, develop disease characterised
more by tissue eosinophilia, and its cardiac and pulmonary
manifestations, in the absence of both autoantibodies or an
association with a HLA class I or class II allele. This subgroup has
a genetic association with expression of the barrier protein
GPA3324 and shared genetic architecture with IBD, suggesting
that ANCA-negative EGPA might arise from mucosal/bar-
rier dysfunction, rather than autoimmune disease.

EGPA has traditionally been treated with similar non-selective
immunosuppression to AAV, such as steroids, cyclophosphamide
or rituximab2,32. This study suggests investigation of further
therapies may be warranted. Anti-IL5 (mepolizumab) has been
developed for severe asthma, and efficacy in EGPA was recently
confirmed in the MIRRA study34. Given the genetic variant at
IRF1/IL5 is associated with ANCA-negative EGPA, it would be
interesting to specifically analyse this subset. Anti-TSLP agents
are undergoing trials in asthma and might be considered in
EGPA. BCL2 antagonists (e.g., ABT737) act by disrupting the
sequestration of BIM by BCL2 and are being developed as cancer
chemotherapeutics35. Their immunomodulatory effect36 and
exquisite sensitivity for driving mast cell apoptosis37 suggests they
may be effective in EPGA at low, perhaps non-toxic, doses. CDK6
inhibitors are also under development, and their impact in pre-
clinical models38 makes them additional therapeutic candidates
for EGPA.

Our study had potential limitations. Whilst the MIRRA criteria
are the most suitable diagnostic criteria for this study, it is pos-
sible that some patients with idiopathic hypereosinophilic syn-
drome may also meet these criteria. The choice of diagnostic
criteria is discussed in detail in the Supplementary Note 1. We
observed elevation of the genomic inflation factor even after
adjustment for genetic principal components, suggesting potential
residual population stratification. We therefore used a linear
mixed model analysis which resulted in improved genomic
control.

The rarity of EGPA makes GWAS challenging. Compared to
GWAS of common diseases, our sample sizes were necessarily
small and consequently our power was limited, particularly for
uncommon or rare variants. Nevertheless, the majority of variants
that achieved genome-wide significance in our primary cohort
achieved nominal significance in our small replication cohort.
Moreover, we observed strong correlation between estimated
odds ratios at each EGPA-associated variant in our primary and
replication cohorts. In addition, we were able to identify strong
functional data and experimental literature to support the asso-
ciations at the majority of loci identified (Supplementary
Table 10). Finally, we highlight that the variant on chromosome
12 associated specifically with the MPO+ subgroup has a low
minor allele frequency and was imputed rather than directly
genotyped, and so its reproducibility will need to be evaluated in
future larger studies.

In summary, this GWAS has demonstrated that EGPA is a
polygenic disease. Most genetic variants associated with EGPA
are also associated with control of the normal eosinophil count in
the general population, suggesting a primary tendency to eosi-
nophilia underlies susceptibility. Given the rarity of EGPA, it is
likely that additional as yet unidentified environment or genetic
factors are necessary to trigger disease. After the asthma/eosi-
nophilia prodrome, EGPA develops and comprises two geneti-
cally and clinically distinguishable syndromes with different
treatment responsiveness. MPO+ EGPA is an eosinophilic
autoimmune disease sharing both clinical features and an MHC
association with anti-MPO AAV. ANCA-negative EGPA may
instead have a mucosal/barrier origin. Thus the identification of
genes associated with EGPA helps explain its pathogenesis, points
to logical therapeutic strategies, and supports a case for formally
recognising the two distinct conditions that comprise it.

Methods
Inclusion criteria. The important issue of diagnostic criteria is discussed in the
Supplementary Note 1. We used the recently developed diagnostic criteria used in
the Phase III clinical trial “Study to Investigate Mepolizumab in the Treatment
of Eosinophilic Granulomatosis With Polyangiitis” (MIRRA: Supplementary
Table 1)34. These define EGPA diagnosis based on the history or presence of both
asthma and eosinophilia (>1.0 × 109/L and/or >10% of leucocytes) plus at least two
additional features of EGPA.

Subjects. We recruited 599 individuals with a clinical diagnosis of EGPA from 17
centres in 9 European countries (Supplementary Table 2). Nine individuals were
excluded because they did not fulfil the MIRRA criteria. In total, 534 patients were
included in the GWAS after poor quality and duplicated samples and individuals
with non-European ancestry were excluded (see section ‘Genotyping and quality
control’ below). Of these, 294 (55%) were female and 240 (45%) male. Clinical
characteristics are shown in Table 1. Three hundred and fifty two patients were
ANCA-negative, 159 patients were MPO-ANCA+ve, and 5 were PR3-ANCA+ve.
For 5 patients, there was no data on ANCA status. Thirteen patients were
ANCA positive with either no data on specific antibodies to PR3 or MPO, or with
positive ANCA immunofluorescence without detectable antibodies to PR3
or MPO.

Genotype data for 6000 UK controls was obtained from the European
Prospective Investigation of Cancer (EPIC) Consortium. Four hundred and ninety
eight individuals with a history of asthma were excluded. After QC, 5465
individuals remained. In addition, we recruited and genotyped controls from 6
European countries (Supplementary Table 2).

A further 150 patients with a clinical diagnosis of EGPA that fulfilled the
MIRRA criteria were recruited from Germany and Italy for replication purposes,
along with 125 controls from these countries. In total, 142 cases were included in
the study following the removal of poor quality samples, of these 43 were MPO
ANCA+ ve. All individuals provided written informed consent.

Genotyping and quality control (QC). Genomic DNA was extracted from whole
blood using magnetic bead technologies at the Centre for Integrated Genomic
Medical Research (Manchester, UK) according to manufacturer’s instructions.
Patients with EGPA and healthy controls were genotyped using the Affymetrix UK
Biobank Axiom array according to the manufacturer’s protocol. Genotyping of
cases and non-UK controls was performed by AROS Applied Biotechnology
(Aarhus, Denmark). Genotyping of UK controls had been performed previously by
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the EPIC-Norfolk consortium39, also using the Affymetrix Axiom UK
Biobank array.

Genotype calling was performed using the Affymetrix Powertools software.
Calling was performed in batches of contemporaneously run plates as per the
manufacturer’s advice. After genotype calling, genetic data was processed in the
following sequence using PLINK v1.940. Samples with a sex mismatch, abnormal
heterozygosity, or proportion of missing variants > 5%, were removed. Variants
with missing calls >2%, deviation from Hardy-Weinberg Equilibrium (p-value <
1 × 10−6), or which were monomorphic were removed. The QC process was
performed separately for each batch. The post-QC genotype data from each batch
was then merged. Following this merger, duplicated or related samples (identified
using Identity by State) were removed, and the genetic variant QC was performed
again so that variants with missing calls >2% or deviation from Hardy-Weinberg
Equilibrium (p-value < 1 × 10−6) in the combined data were excluded. Variants
that showed significant differential missingness (Benjamini-Hochberg adjusted
p-value < 0.05) between cases and controls were removed. Finally, principal
components analysis (PCA) of the post-QC genotype calls combined with calls
from 1000 Genome individuals was performed (Supplementary Fig. 14). Samples of
non-European ancestry by PCA were excluded as described below. The means and
standard deviations of PC1 and PC2 were calculated for the EUR subset of the 1000
Genomes samples. Cases or controls lying outside +/− 3 standard deviations from
the mean on either PC1 or PC2 were removed. Following these QC steps, 534
patients and 6688 controls remained (see Supplementary Table 2). 543,639
autosomal variants passed QC.

Replication cohort genotyping. Replication cohort samples were genotyped using
the Affymetrix UK Biobank Axiom array according to the manufacturer’s protocol
by Cambridge Genomic Services (Cambridge, UK). Genotype calling and QC was
performed as outlined above except that samples were processed as a single batch.
Following these steps, 142 cases, 121 controls and 626,229 autosomal genetic
variants passed QC (Supplementary Table 5).

Association testing on the directly genotyped data. Case-control association
testing on the 543,639 directly genotyped autosomal variants was initially per-
formed using logistic regression with the SNPTEST software. Principal compo-
nents (PCs) were included as covariates to adjust for confounding factors. We
calculated PCs on the genotype matrix containing both cases and controls. Whilst
this carries a small risk of masking true disease associations, we felt that this more
conservative approach was appropriate since (i) the UK controls were genotyped in
a different facility thereby potentially leading to confounding from a batch effect,
and (ii) we did not have French controls. QQ plots of expected test statistics under
the null hypothesis of no genotype-disease association vs. the observed test sta-
tistics are shown in Supplementary Fig. 15. The genomic inflation factor (lambda,
the ratio of the median of the observed chi-squared statistics to the median
expected chi-squared statistic under the null hypothesis) was calculated. We
assessed the effect of using increasing numbers of PCs as covariates on lambda.
Using the first 20 PCs produced a reduction in lambda to 1.09, with little benefit
from the inclusion of further PCs.

Pre-phasing and imputation. Imputation was performed using the 1000 genomes
phase 3 individuals as a reference panel (data download date 7th July 2015). Pre-
phasing was first performed with SHAPEIT41, and then imputation was performed
using IMPUTE242,43. For the IMPUTE2 Monte Carlo Markov Chain algorithm we
used the default settings (30 iterations, with the first 10 discarded as the ‘burn-in’
period). The ‘k_hap’ parameter was set to 500. IMPUTE2 was provided with all
available reference haplotypes from the 1000 Genomes individuals, as the software
chooses a custom reference panel for each individual to be imputed.

Association testing following imputation. Association testing on the imputed
data was initially carried out using the SNPTEST software. We used an additive
genetic model (option ‘--frequentist 1’). Uncertainty in the imputed genotypes was
taken into account in the association testing by using a missing data likelihood
score test. Despite inclusion of the first 20 PCs as covariates, the genomic inflation
factor for the association tests using the imputed data was 1.10.

Since lambda was 1.10 despite inclusion of 20 PCs as covariates, suggesting
residual population stratification, we performed the GWAS using a linear mixed
model with the BOLT-LMM software44. 9,246,221 autosomal variants either
directly typed or imputed with an info metric greater than 0.7 were taken forward
for association testing. This approach resulted in an improved lambda value
of 1.047.

Analysis stratified by ANCA. In addition to testing all EGPA cases vs. controls,
we also tested MPO+ cases (n= 159) against controls, and ANCA-negative cases
(n= 352) against controls. These subset analyses were performed using BOLT-
LMM. Five individuals who were PR3-ANCA positive and 18 individuals in whom
we had either no data on ANCA status, or who were ANCA positive by immu-
nofluorescence but in whom specific antibodies to MPO and PR3 were negative or

unknown were excluded from these subset analyses. In addition, we performed a
within-cases genetic analysis, comparing MPO+ cases (n= 159) against ANCA-
negative cases (n= 352). This analysis was performed with logistic regression with
inclusion of 10 principal components. Lambda for this analysis was 1.037.

Leveraging association statistics from related traits. In order to increase power
to detect EGPA-associated genetic variants, we used a conditional FDR (cFDR)
method10,11 to leverage findings from other GWAS studies of related phenotypes.
We used the summary statistics from a GWAS of asthma12 and a population-scale
GWAS of peripheral blood eosinophil counts13 to calculate a conditional
FDR for each variant for association with EGPA conditional on each of these other
traits. We used the P-values for EGPA from the linear mixed model analysis with
BOLT-LMM.

Given p-values Pi for EGPA and Pj for the conditional trait (eg asthma), and a
null hypothesis of no association with EGPA H0, the cFDR for p-value thresholds pi
and pj is defined as

cFDRðpi; pjÞ ¼ PrðH0jPi � pi; Pj � pjÞ

� pi
#ðvariants with Pi � piÞ

#ðvariants with Pi � pi; Pj � pjÞ

roughly analogous to Storey’s q-value computed only on the variants for which
Pj≤ pj.

The cFDR has the advantage of asymmetry, only testing against one phenotype at
a time. Intuitively, if we know that associations are frequently shared between asthma
and EGPA, and attention is restricted to a set of variants with some degree of
association with asthma, we may relax our threshold for association with EGPA. The
cFDR formalises this intuition in a natural way, with the adjustment in the threshold
responding to the total degree of observed overlap between disease associations.

The cFDR lacks a convenient property of the Q-value limiting the overall FDR
to the significance threshold for the test statistic. Namely, if we reject H0 at all
variants with cFDR < α, the overall FDR is not necessarily bound above by α11. An
upper bound on the overall FDR can be obtained by considering the region of the
unit square for which pi, pj reaches significance, with the bound typically larger
than α.

We used a threshold α= cFDR (5 × 10−8, 1), chosen to be the most stringent
threshold for which all variants reaching genome-wide significance in a univariate
analysis will also reach significance in the cFDR analysis. The value α is equal to the
FDR for this univariate analysis on the set of variants for which the cFDR is
defined. Put more intuitively, cFDR thresholds for the analyses conditioning on
asthma and eosinophilia were chosen so that the overall FDR was less than the
FDR corresponding to a P value for genome-wide significance in the standard
univariate analysis.

Clearly, the cFDR method requires that genotype data for a given variant is
available for both traits. The cFDR analysis was limited to variants that were
directly typed in each GWAS. The cFDR analysis for EGPA conditional on asthma
examined 74,776 variants and that for EGPA conditional on eosinophil count
513,801.

Replication cohort analysis. Significant variants from the primary cohort analysis
(identified either through the linear mixed model analysis or the cFDR method)
were tested in the replication cohort using SNPTEST and including 2 principal
components as covariates to control for population stratification. The results of the
two cohorts were meta-analysed using the META software using an inverse-
variance method based on a fixed-effects model.

Fine-mapping. To identify the most likely causal variant we performed fine-
mapping as follows. We computed approximate Bayes factors for each variant
using the Wakefield approximation45, with a prior parameter W= 0.09, indicating
our prior expectation that true effect sizes (relative risks) exceed 2 only 1% of the
time. Thus, we calculated posterior probabilities that each variant is causal,
assuming a single causal variant per LD-defined region as previously proposed46.
Code to perform these steps is available at https://github.com/chr1swallacw/lyons-
et-al.

HLA imputation. Two thousand seven hundred and seventy seven SNPs, 343
classical HLA alleles to 2 or 4 digit resolution and 1438 amino acid variants were
imputed at 8 HLA loci (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-
DQB1, HLA-DPA1 and HLA-DPB1) from phased genotype data using the
HLA*IMP:03 software47. Association testing for HLA variants was performed with
BOLT-LMM.

Narrow-sense heritability estimation. The narrow-sense heritability (h2) of
EGPA was estimated using LD-score regression48. LD scores were calculated using
the European 1000 Genomes Project reference panel. To estimate the contribution
of the MHC to heritable phenotypic variance we performed a variance-components
analysis using BOLT-REML30.
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Promoter enhancer interaction mining. Long-range interactions between genetic
variants associated with EGPA and gene promoter and regulatory regions were
identified in promoter capture Hi-C datasets from a range of primary cell types49

and cell lines50 using the CHiCP browser51.

Data mining. Other traits associated with EGPA-associated loci were identified using
PhenoScanner52. Phenoscanner searches GWAS data from multiple sources includ-
ing the NHGRI-EBI (National Human Genome Research Institute-European
Bioinformatics Institute) GWAS Catalogue and NHLBI GRASP (Genome-Wide
Repository of Associations Between SNPs and Phenotype) Catalogue, and accounts
for LD between queried genetic variants and those in the catalogues of trait-associated
variants. For each locus associated with EGPA, we searched for traits associated with
variants in LD (r2 0.6 or higher) with the lead EGPA variant. We searched for all
associations with a p-value of 1 × 10−5 or lower so that in addition to identifying all
associations that have achieved genome-wide significance (P < 5 × 10−8), we also
identified associations that are suggestive/sub-genome wide. We also used Phe-
noScanner to identify eQTLs at EGPA-associated loci. Run date 22nd July 2019.

Associations of clinical characteristic with ANCA status. Comparisons of
clinical features between MPO+ EGPA patients (n= 159) and ANCA-negative
patients (n= 352) were performed from 2 × 2 contingency tables using 1 degree of
freedom chi-squared tests with Yates’ continuity correction. Bonferroni correction
of P values was undertaken to account for the multiple testing of 8 clinical features.
Associations with PR3 antibodies were not assessed as this subgroup (n= 5) was
too small for statistical analysis. Patients with missing or incomplete ANCA data,
and those who were ANCA positive by immunofluorescence without MPO or PR3
antibodies were excluded from this analysis.

ANCA status was tested for association with country of origin using a chi-
squared test on the 8 × 2 contingency table (Supplementary Table 7). Columns
represented ANCA status (ANCA-negative or MPO+) and rows represented
country of origin. The Republic of Ireland and the UK were considered as one
entity for the purposes of this analysis. We found a significant association between
ANCA status and country of origin (P 7.6 × 10−10). Since there were only 5 cases
from the Czech Republic, in sensitivity analysis, we repeated the chi-squared test
after merging the counts for Czech and German cases. This did not materially
affect the association (P 1.9 × 10−9). This association is likely to reflect the differing
specialities of recruiting centres (ANCA positive patients are more likely to be
found in nephrology clinics than rheumatology clinics). Nevertheless, to ensure
that the clinical associations that we identified with ANCA status were not in fact
driven by geographical differences, we repeated the association testing adjusting for
country of origin. We did this by performing logistic regression of each clinical
feature on ANCA status (MPO+ vs. ANCA-negative), with country of origin
(coded using dummy variables) as a covariate (Supplementary Table 8).

Mendelian randomisation. “Two-sample” Mendelian randomisation (MR) was
performed to assess whether there is a causal effect of eosinophil count (the
exposure) on EGPA (the outcome). MR analysis was performed using the Men-
delianRandomization R package. Summary statistics were obtained for 209 con-
ditionally independent variants associated with peripheral blood eosinophil count
in a population study by Astle et al.13. One hundred and ninety three of these were
typed or imputed in the EGPA dataset. MR analysis was performed using the beta
coefficients and standard errors for these 193 variants in the eosinophil count
GWAS and in our EGPA GWAS (all EGPA vs. controls using BOLT-LMM). The
beta coefficients from BOLT-LMM are distinct from the log(OR) obtained from
logistic regression. Therefore beta coefficients from BOLT-LMM and their stan-
dard errors were transformed by dividing them by (μ × (1− μ)), where μ is the case
fraction, to provide estimates comparable to traditional log(ORs). These trans-
formed betas and standard errors were then used in the MR analysis. The primary
MR analysis was conducted using the inverse-variance weighted method. Addi-
tional sensitivity analyses were performed using alternative methods less suscep-
tible to violation of MR assumptions by pleiotropy (Supplementary Fig. 13).

Study approval. Written informed consent was received from participants prior to
inclusion in the study. Details of ethical approval for each participating centre are
shown in Supplementary Table 3.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The authors declare that all data supporting the findings of this study are available within

the paper and its supplementary information files. Per-variant genetic association

summary statistics are included as Source Data File.
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