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Abstract 23 

Background/Objectives: Physical activity (PA) protects against a wide range of diseases. Habitual PA 24 

appears to be heritable, motivating the search for specific genetic variants that may inform efforts to 25 

promote PA and target the best type of PA for each individual.  26 

Subjects/Methods: We used data from the UK Biobank to perform the largest genome-wide association 27 

study of PA to date, using three measures based on self-report (nmax=377,234) and two measures based on 28 

wrist-worn accelerometry data (nmax=91,084). We examined genetic correlations of PA with other traits 29 

and diseases, as well as tissue-specific gene expression patterns. With data from the Atherosclerosis Risk 30 

in Communities (ARIC; n=8,556) study, we performed a meta-analysis of our top hits for moderate-to-31 

vigorous PA (MVPA). 32 

Results: We identified ten loci across all PA measures that were significant in both a basic and a fully 33 

adjusted model (p<5 x 10-9). Upon meta-analysis of the nine top hits for MVPA with results from ARIC, 34 

eight were genome-wide significant. Interestingly, among these, the rs429358 variant in the APOE gene 35 

was the most strongly associated with MVPA, whereby the allele associated with higher Alzheimer’s risk 36 

was associated with greater MVPA. However, we were not able to rule out possible selection bias 37 

underlying this result. Variants in CADM2, a gene previously implicated in obesity, risk-taking behavior 38 

and other traits, were found to be associated with habitual PA. We also identified three loci consistently 39 

associated (p<5 x 10-5) with PA across both self-report and accelerometry, including CADM2. We find 40 

genetic correlations of PA with educational attainment, chronotype, psychiatric traits, and obesity-related 41 

traits. Tissue enrichment analyses implicate the brain and pituitary gland as locations where PA-42 

associated loci may exert their actions. 43 

Conclusions: These results provide new insight into the genetic basis of habitual PA, and the genetic 44 

links connecting PA with other traits and diseases.   45 
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Introduction 46 

A physically active lifestyle has been shown to protect against a wide range of diseases, including 47 

cardiovascular disease, cancer, type-2 diabetes, osteoporosis, and Alzheimer’s disease 1–4. Levels of 48 

engagement in physical activity (PA) vary across individuals, and most people do not meet recommended 49 

levels to achieve health benefits. Although cultural, economic, and other environmental factors influence 50 

PA engagement 5,6, genetic factors also likely play a role. Understanding the genetic factors underlying 51 

inter-individual variation will better inform efforts to promote PA and potentially allow targeting the best 52 

type of PA for each person, what might be called “Precision Exercise Prescription”. 53 

Evidence of genetic factors underlying the propensity to exercise in humans has been 54 

demonstrated in a number of studies 7–13. Several studies have utilized a candidate gene approach to 55 

identify specific genetic variants associated with a proclivity towards PA 8,14–18. This work generally 56 

focused on genes related to the serotonin and dopamine systems, energy metabolism, and neurotrophic 57 

factors. However, to our knowledge there have been only two previous reports of genome-wide 58 

association studies (GWAS) of PA 19,20, neither of which identified a locus at genome-wide significance, 59 

likely due to relatively small sample sizes. Thus, while previous work strongly suggests a genetic basis 60 

for engagement in PA, the genes that contribute to this healthy lifestyle behavior remain unknown. 61 

In this study, we conduct the largest GWAS of PA to date, aiming to identify genetic variants 62 

associated with self-reported and accelerometry-based levels of habitual, leisure-time PA. We sought to 63 

identify variants in the UK Biobank, a large cohort study of 500,000 adults measured across a wide range 64 

of characteristics including genome-wide markers. We then examined the genetic correlation of PA with 65 

other traits, examined putative tissues where PA genes may exert their effects, and meta-analyzed the 66 

identified loci for MVPA with data on self-reported PA in an independent cohort from the Atherosclerosis 67 

Risk in Communities (ARIC) study. 68 

 69 
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Methods 70 

Studies 71 

 Data from the UK Biobank study were used for discovery of variants. Briefly, the UK Biobank is 72 

a large prospective cohort study of approximately a half-million adults (ages 40-69) living in the United 73 

Kingdom (UK), recruited from 22 centers across the UK 21. All participants provided written informed 74 

consent. Ethical approval of the UK Biobank study was given by the North West Multicentre Research 75 

Ethics Committee, the National Information Governance Board for Health & Social Care, and the 76 

Community Health Index Advisory Group. We also used data from the ARIC study (n=8,556), which is a 77 

prospective cohort study of over 15,000 adults aged 45-64 years that took place in four United States 78 

communities. The selection of this cohort for replication was based on 1) the quality of the PA phenotype 79 

which incorporates multiple questions assessing types, intensities, and frequency of PA (see below), 2) 80 

the focus on habitual, leisure-time PA, and 3) the relatively large sample size. In the absence of previous 81 

effect size estimates for genetic variants on PA, the sample size in ARIC, although comparatively much 82 

smaller than the UK Biobank, was deemed, on an a-priori basis, to serve as a suitable replication cohort. 83 

Details of the ARIC study can be found elsewhere 22. All participants in ARIC provided written informed 84 

consent. Institutional review board approval was obtained by each participating field center, and this 85 

study was approved by the University of Arizona Human Subjects Protection Program (Protocol number: 86 

1300000659R001). To reduce the potential for confounding by population stratification, we included only 87 

individuals of white race/ethnicity in both studies. 88 

 89 

Physical activity 90 

 In the UK Biobank, self-reported levels of physical activity during work and leisure time were 91 

measured via a touchscreen questionnaire, in a fashion similar to the International Physical Activity 92 

Questionnaire 23. For moderate PA (MPA), participants were asked: “In a typical WEEK, on how many 93 



6 

 

days did you do 10 minutes or more of moderate physical activities like carrying light loads, cycling at 94 

normal pace? (Do not include walking)”. For vigorous PA (VPA), participants were asked: “In a typical 95 

WEEK, how many days did you do 10 minutes or more of vigorous physical activity? (These are 96 

activities that make you sweat or breathe hard such as fast cycling, aerobics, heavy lifting)”. For each of 97 

these questions, those who indicated 1 or more such days were then asked “How many minutes did you 98 

usually spend doing moderate/vigorous activities on a typical DAY”. Participants were asked to include 99 

activities performed for work, leisure, travel and around the house. We excluded individuals who selected 100 

“prefer not to answer” or “do not know” on the above questions, those reporting not being able to walk, 101 

and individuals reporting more than 16 hours of either MPA or VPA per day. Those reporting >3hr/day of 102 

VPA or MPA were recoded to 3 hours, as recommended 24.  Moderate-to-vigorous PA (MVPA) was 103 

calculated by taking the sum of total minutes/week of MPA multiplied by four and the total number of 104 

VPA minutes/week multiplied by eight, corresponding to their metabolic equivalents, as previously 105 

described 23,25.  106 

 Since heritability has previously been shown to be higher for intense/vigorous physical activity 12, 107 

we also considered VPA on its own. Because the distribution of minutes/week of VPA was highly skewed 108 

and zero-inflated, we chose to dichotomize minutes/week of VPA into those who reported 0 days of VPA, 109 

and those reporting 3 or more days of VPA and also reporting a typical duration of VPA that is 25 110 

minutes or greater, corresponding to common physical activity guidelines 26. Individuals that did not fall 111 

into either of these two groups were excluded. We decided to pick extremes because of the heavily 112 

skewed and zero-inflated nature of vigorous activity duration, and in order to increase our power to detect 113 

associations. We also performed a sensitivity analysis in which we included individuals who did not fall 114 

into either of the two groups described above, and placed these individuals in the group that did not meet 115 

3 days of VPA/week of 25 minutes or greater per day (i.e. those meeting the 3 days/week of VPA at 116 

25/mins per day vs. not meeting this amount). 117 
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 We used responses to the question “In the last 4 weeks did you spend any time doing the 118 

following?” and follow-up questions assessing the frequency and typical duration of “strenuous sports” 119 

and of “other exercises”. The possible responses to the initial question were: ‘walking for pleasure’, 120 

‘other exercises’, ‘strenuous sports’, ‘light DIY’, ‘heavy DIY’, ‘none of the above’, and ‘prefer not to 121 

answer’. We identified individuals spending 2-3 days/week or more doing strenuous sports or other 122 

exercises (SSOE), for a duration of 15-30 minutes or greater. Controls were those individuals who did not 123 

indicate spending any time in the last 4 weeks doing either strenuous sports or other exercises. Individuals 124 

that did not fall into either of these two groups were excluded. Extremes were chosen because of the 125 

heavily skewed and zero-inflated distributions of these variables. 126 

 Also, in the UK Biobank, approximately 100,000 participants wore an Axivity AX3 wrist-worn 127 

accelerometer, as previously described 27. We examined two measures derived from up to seven days of 128 

accelerometer wear: overall acceleration average, and fraction of accelerations > 425 milli-gravities (mg) 129 

27. Since the variable that is available in the UK Biobank is the fraction < 425 mg, we subtracted 1 from 130 

this variable. The 425 mg cutoff was chosen because this corresponds to an equivalent of vigorous 131 

physical activity (6 METs), as previously reported 28. For both accelerometry variables, individuals with 132 

less than three days (72 hours) of data, or those not having data in each one-hour period of the 24-hour 133 

cycle were excluded. Based on missing data simulations by Doherty et al, 72 hours of wear was 134 

determined to be needed to be within 10% of a complete seven-day measure 27. Device non-wear time, 135 

defined as consecutive stationary episodes >=60 minutes where all three axes had a standard deviation 136 

<13 mg, was imputed using the average of similar time-of-day vector magnitude and intensity distribution 137 

data points on different days 27. This accounts for wear-time diurnal bias that may occur if the device was 138 

less worn during sleep in some individuals 27. Finally, we also excluded outliers with values more than 4 139 

standard deviations above the mean.  140 

In ARIC, self-reported PA was assessed for sports/exercise, within the previous year, based on a 141 

modification of the Baecke questionnaire 29,30.  The sport/exercise index is based on up to four 142 
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sports/exercises (including modalities of mild, moderate, and strenuous energy exertion) that participants 143 

reported in the past year, and was calculated with responses to 4 items: frequency of participation in 144 

sports/exercise; frequency of sweating during sports/exercise; a subjective rating of the frequency of 145 

participation in sports/exercise compared to others in the same age group; the sum of frequency, duration, 146 

and intensity of up to 4 reported sports/exercises. This derived index is described in greater detail 147 

elsewhere, along with an assessment of its reliability and accuracy 31.  148 

 149 

Genotypes 150 

 The majority of UK Biobank participants were genotyped with the Affymetrix UK Biobank 151 

Axiom Array (Santa Clara, CA, USA), while 10% of participants were genotyped with the Affymetrix 152 

UK BiLEVE Axiom Array. Detailed quality control and imputation procedures are described elsewhere 153 

32. Briefly, phasing was performed by the UK Biobank team in chunks of 15,000 markers, using 154 

SHAPEIT3 33 software and 1,000 Genomes phase 334 dataset as a reference panel. Imputation was 155 

performed using a combined panel of the Haplotype Reference Consortium 35 and the UK10K haplotype 156 

resource 36 after appropriate marker and sample QC in chunks of 50,000 imputed markers. Principal 157 

Components Analysis was also performed by the UK Biobank team, using fastPCA 37 software on a set of 158 

147,604 high-quality directly genotyped markers (pruned to minimize LD), and a set of 407,219 unrelated 159 

high-quality samples. All other samples were then projected onto the principal components 32. Since 160 

corrections for potential problems with the position assignment of the SNPs from the UK10K haplotype 161 

resource were not available at the time of analysis, we only included SNPs imputed from the Haplotype 162 

Reference Consortium. To minimize the possibility of confounding due to population stratification, only 163 

participants who self-identified as European were included. Individuals were excluded based on unusually 164 

high heterozygosity or >5% missing rate, a mismatch between self-reported and genetically-inferred sex. 165 

These criteria resulted in a total available sample size of 458,969 individuals with genotype data. SNP 166 
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exclusions were made based on Hardy-Weinberg equilibrium (p<1x10-6), high missingness (>1.5%), low 167 

minor allele frequency (<0.1%), and low imputation quality (info<0.4). A total of approximately 11.8 168 

million SNPs were used in analyses. Of these, 4.1 million have a minor allele frequency < 1%.  169 

 In ARIC, participants were genotyped with the Affymetrix Genome-Wide Human SNP Array 6.0 170 

(Affymetrix, Santa Clara, CA, USA). Standard quality control procedures were implemented prior to 171 

imputation with IMPUTE2 38, using all individuals in the 1,000 Genomes phase 1 integrated v3 release. 172 

Quality-control procedures consisted of excluding SNPs with minor allele frequency < 1%, with 173 

missingness > 10%, and SNPs out of Hardy-Weinberg equilibrium (p<1 x 10-6), and excluding individuals 174 

with SNP missingness > 10%. We used principal components for the European-ancestry group as 175 

provided by ARIC in dbGaP. Briefly, LD pruning resulted in 71,702 SNPs that were used to derive 176 

principal components. A total sample size of 8,556 participants was used in the analysis. 177 

  178 

Statistical analyses 179 

 For the continuous variables in the UK Biobank (MVPA and accelerometry variables) we created 180 

an adjusted phenotype corresponding to the residual of the regression of the following independent 181 

variables on the respective dependent PA variable: age, sex, genotyping chip, first ten genomic principal 182 

components, center, season (month) at center visit or wearing accelerometer (coded 0 for Winter, 1 for 183 

Fall or Spring, and 2 for Summer). In another model (Model 2), we considered the additional inclusion of 184 

the following covariates: levels of physical activity at work (coded as 0 by default, 1 for ‘sometimes’, 2 185 

for ‘usually’, and 3 for ‘always’), extent of walking or standing at work (coded similarly as previous 186 

variable), and the Townsend Deprivation Index (TDI; a composite measure of deprivation as previously 187 

described 39,40). We also considered a third model (Model 3) in which body mass index (BMI) was 188 

included as an additional covariate. These covariates were considered since both self-reported and 189 

accelerometer-based measures of PA could include PA done as part of one’s employment, as opposed to 190 
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PA during leisure-time. Additionally, both SES and BMI may affect participation in leisure-time PA 5. 191 

Since the MVPA and fraction of accelerations > 425 mg variables exhibited skewed distributions, we 192 

inverse-normalized these variables prior to inclusion in the models. Model residuals conformed to the 193 

assumptions of normality and homoscedasticity. GWAS were performed with BOLT-LMM software 41,42, 194 

which implements a mixed-model linear regression that includes a random effect consisting of the SNPs 195 

other than the one being tested, and thus takes into account relatedness among subjects. Since BOLT-196 

LMM implements a linear regression, effect size estimates for case-control outcomes are unreliable. 197 

Therefore, as previously done elsewhere 43,44, we derived effect size estimates for the genome-wide 198 

significant SNPs for the binary outcomes (VPA and SSOE) using logistic regression in R with the same 199 

set of fixed-effect covariates. Given the number of low-frequency SNPs 45 and phenotypes tested, we used 200 

a more stringent genome-wide significance threshold: p<5 × 10-9. To examine the relationship of PA-201 

associated SNPs with BMI, we tested the association of identified SNPs with BMI, which was first 202 

inverse-normalized, then adjusted via a linear regression with age, sex, genotyping chip, first ten genomic 203 

principal components, and center as independent variables. We also sought to identify variants 204 

consistently associated with PA across self-report and accelerometry PA measures, for overall PA and for 205 

high-intensity PA. We thus searched for variants associated in the same direction, with p<5 x 10-5 for: 1) 206 

MVPA and average acceleration, and 2) VPA, SSOE, and fraction of accelerations >425 mg. 207 

To determine the extent to which the loci identified in Model 3 may have been subject to collider 208 

bias on account of including BMI as a covariate, we derived an approach to estimate the unbiased effect 209 

of each SNP of interest on each metric of PA. Our approach was an extension of the methodology 210 

employed in Yaghootkar et al. 46 – the primary difference being the collider in our method (i.e., BMI) is a 211 

quantitative trait as opposed to a categorical/disease trait. The unbiased coefficient can be expressed as: 212 

,I ,II ,I*

,I ,II1

SNP SNP BMI

SNP PA

BMI PA

β β β
β

β β→

+
=

−
 213 



11 

 

 where each ,i j
β  is the corresponding coefficient of the ith variable in the jth model: 214 

I : ~

II : ~ .

PA SNP BMI

BMI SNP PA

+
+

 215 

We confirmed this approach via simulation under a variety of conditions, including the inclusion of 216 

additional covariates and different relationships between BMI, PA, and a genetic marker (results not 217 

shown). For simplicity we modeled PA as a quantitative trait in all cases.  218 

 Given the association that we identified with the rs428358 variant in APOE (see Results), we 219 

performed several additional analyses. First, we examined the associations with the APOE ε4 haplotype, 220 

using this SNP along with the rs7412 SNP. Different protein isoforms of APOE, which is a component of 221 

various lipoproteins, are produced by the different haplotypes defined by these two SNPs, and these 222 

haplotypes are well-established risk factors for Alzheimer’s disease 47 and coronary artery disease 48,49. 223 

Individuals with homozygous CC genotypes at both of these SNPs were classified as homozygous for the 224 

APOE ε4 allele. Individuals with homozygous CC genotypes at either SNP and heterozygous at the other 225 

SNP were classified as being heterozygous for the ε4 allele. We excluded a relatively small number of 226 

individuals heterozygous at both SNPs (n≈10,000), because it is not possible to assign a haplotype status 227 

when both loci are heterozygous. We assumed an additive model in association testing. Second, to 228 

examine whether this association may be driven by individuals with a known family history of 229 

Alzheimer’s disease increasing their levels of PA, we examined the association of a binary variable 230 

indicating any self-reported first-degree family history (mother, father, or siblings) of Alzheimer’s disease 231 

or dementia with MVPA. Third, we examined the interaction of family history with the rs429358 SNP on 232 

MVPA. Fourth, we examined whether the association of rs429358 with MVPA was modified by age, by 233 

testing the interaction of this SNP with age, and testing the association of rs429358 with MVPA among 234 

individuals in their 40s, 50s, and 60s. Finally, given prior evidence of an association of APOE variants 235 

with BMI and the slightly attenuated associations upon our adjustment for BMI, we tested whether BMI 236 
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mediated the association of rs429358 with MVPA. For this analysis, we used the mediation package 50 in 237 

R statistical software 51.  238 

All genome-wide significant loci were examined in ARIC, where we modeled PA as a continuous 239 

variable (as described above). We used multiple linear regression to model PA as a function of age, sex, 240 

first ten genomic principal components, center, season (coded in the same way as described above). 241 

Residuals from this model conformed to the assumptions of normality and homoscedasticity. They were 242 

standardized to have a mean of 0 and standard deviation of 1, and were used as the outcome in the 243 

genome-wide SNP association analysis. We performed meta-analysis of the top hits for MVPA in the UK 244 

Biobank with the corresponding SNP association results in ARIC, using fixed-effects inverse-variance 245 

weighted meta-analysis. We also used a method that uses only the p-values 52 to perform meta-analyses of 246 

the top hits for the other UK Biobank PA measures. Additional analyses were performed with R statistical 247 

software.  248 

To examine the association of genes identified in the UK Biobank with gene expression patterns 249 

in different tissues, we used the web-based platform, Functional Mapping and Annotation of Genome-250 

Wide Association Studies (FUMA GWAS) 53, which uses data from GTEx 54 and the MAGMA gene-251 

based analysis 55. Also from this platform, we examined results of gene-set analyses performed for 252 

curated gene sets and Gene Ontology terms. We also used the summary statistics from our UK Biobank 253 

GWAS to examine heritability of PA traits and their genetic correlation with over 200 traits and diseases 254 

using LD score regression 56–58, implemented in an online interface (http://ldsc.broadinstitute.org/). 255 

Briefly, this method tests the correlation between the LD score of each SNP (reflecting how correlated it 256 

is with nearby SNPs) and its test statistic, where the slope corresponds to the SNP/chip heritability, and 257 

the intercept is an estimate of inflation. It uses only SNPs that are likely well imputed (1,000 Genomes 34 258 

EUR MAF>5%), while removing strand-ambiguous SNPs, insertions/deletions, those that do not match 259 

those in the 1000 Genomes data phase 3 , those in the MHC region, and those with extremely large effect 260 

sizes 57,58. The genetics of other traits and diseases are inferred from previously published GWAS. A 261 

http://ldsc.broadinstitute.org/
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significant genetic correlation was considered if p< 2.5 × 10-4, assuming a correction for 200 different 262 

tests, which is conservative given that many of the traits/diseases tested are correlated with each other. 263 

Finally, we queried our top hits in the Oxford Brain Imaging Genetics Server to examine associations 264 

with other traits, including brain imaging phenotypes, in the UK Biobank (http://big.stats.ox.ac.uk/) 59, 265 

and in the GTEx Portal for expression quantitative trait locus (eQTL) analysis. 266 

 267 

Results 268 

Self-reported PA in UK Biobank 269 

There were 377,234 individuals with non-missing MVPA data. 80,721 individuals were excluded 270 

due to insufficient data on either moderate or vigorous PA days and/or duration. There were 261,055 271 

individuals with non-missing VPA data. 175,965 individuals were excluded from the VPA analysis 272 

because they belonged to neither of the two defined groups. 21,946 individuals were excluded from VPA 273 

analyses because of insufficient data on VPA days and/or duration. For both measures, individuals 274 

excluded because of insufficient data were more likely to be female, older, and have a higher BMI (p<2 × 275 

10-16). A summary of self-report PA variables can be found in Table 1. BMI and TDI were consistently 276 

negatively associated with these variables, whereas warmer season and male gender were consistently 277 

positively associated with them (see Supplementary Table 1). Physical activity at work was positively 278 

associated with MVPA and VPA, and negatively associated with SSOE. Self-report PA measures were 279 

weakly correlated with accelerometry-based measures (see Supplementary Table 2). ‘Chip heritability’ 280 

estimates for self-report PA measures were approximately 5% (Supplementary Table 3). Although Q-Q 281 

plots show some evidence of inflation (see Supplementary Figure 1), LD score regression intercepts 282 

(<1.03) suggest no significant systematic inflation of test statistics.  283 

We found nine loci significantly associated (p < 5 × 10-9) with MVPA (see Figure 1 and Table 2). 284 

Among these, four were significantly associated with MVPA in both Models 1 and 3: APOE, EXOC4, 285 

http://big.stats.ox.ac.uk/
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CADM2, and PAX5. The RPP21 and ZNF165 were significant in Models 1 and 2, but not in Model 3. 286 

However, effect estimates were generally similar for all nine loci across Models 1 and 3. The CALU locus 287 

was only significant in Model 1. The PBX2 and ARHGEF26-AS1 loci were only significant in Models 2 288 

and 3. Two loci, C11orf80 and CCDC188, were only significant in Model 3 (see Supplementary Tables 4 289 

and 5, Supplementary Figures 2 and 3). Among the nine identified SNPs, six exhibited trends with BMI 290 

in the expected direction, based on the negative phenotypic correlation between PA and BMI. Among the 291 

other three, the PA-increasing alleles at the CADM2 and PAX5 loci are associated with higher BMI 292 

(p=7.9 x 10-13 and 5.2 x 10-8, respectively; see Table 2). 293 

Most notably among the MVPA associations, the C allele at SNP rs429358 in APOE was 294 

associated with higher self-reported MVPA. This MVPA-increasing allele is the one associated with 295 

higher Alzheimer’s disease risk (see Discussion). We found it to also be associated with higher levels of 296 

the four other PA measures, though not always reaching nominal significance (VPA: p=5.3 × 10-7; SSOE: 297 

p=0.097; average acceleration: p=8.2 × 10-3; fraction of accelerations>425mg: p=0.24). Testing the 298 

association of the Alzheimer’s disease-related APOE ε4 allele with MVPA resulted in nearly identical 299 

findings. In models adjusted for other covariates, including BMI, this APOE variant remained genome-300 

wide significant (see Supplementary Tables 4 and 5 and Supplementary Figures 2 and 3). Mediation 301 

analysis suggests partial mediation (~14%, p<2 x 10-16) by BMI on the association of rs429358 with 302 

MVPA. There were 45,440 individuals reporting any family history of Alzheimer’s disease or dementia 303 

among parents and siblings. These individuals reported lower levels of MVPA (p=1.2 × 10-4). We found a 304 

significant interaction of rs429358 with family history (p=0.012), whereby the association of rs429358 305 

with MVPA was stronger among those reporting a family history (β=0.042, p=5.13 × 10-8) compared to 306 

among those without a reported family history (β=0.019, p=6.38 × 10-9). We also observed a significant 307 

interaction of age with this variant (p=0.005). Specifically, among individuals in their forties, the 308 

association was weaker (β=0.011, se=0.006, p=0.067) than among individuals in their fifties (β=0.017, 309 

se=0.005, p=0.0013) and sixties (β=0.030, se=0.005, p=1.28 × 10-10). In addition, the frequency of the C 310 



15 

 

allele decreased slightly across these age groups (r=-0.006, p<5 x 10-5), at 0.314, 0.309, and 0.305 among 311 

individuals in their forties, fifties and sixties, respectively.  312 

Five loci were significantly associated with VPA using Model 1. The strongest among these were 313 

variants in CADM2. Four of these were significantly associated with VPA in all three models tested: 314 

CADM2, EXOC4, CTBP2, and DPY19L1. The FOXO3 locus was significant in Models 1 and 2, but not 315 

Model 3, and loci NEGR1 and MYOM3 were significant only in Model 3 (see Supplementary Tables 4 316 

and 5, Supplementary Figures 2 and 3). The VPA-increasing G allele at the NEGR1 SNP (rs3101340) is 317 

in LD (r2=0.60) with a previously identified variant (rs3101336-C) associated with increased BMI 60. 318 

Although different individual CADM2 SNPs were identified across models and with MVPA, these SNPs 319 

were in strong to moderate LD, suggesting allelic heterogeneity at this locus (see Supplementary Figures 320 

4 and 5). Among all five VPA-associated SNPs, only two had consistent trends of association with BMI 321 

in the direction expected based on the negative phenotypic correlation. Notably, the PA-increasing allele 322 

at the CADM2 SNP was associated with higher BMI (p=6.8 x 10-7; see Table 2). In a sensitivity analysis 323 

in which all individuals who did not self-report at least 3 days/week at 25 minutes/day of VPA were 324 

included as controls (as opposed to only individuals reporting 0 days of VPA), results were similar but 325 

generally weaker despite a larger sample size, with a chip heritability of approximately one half of that for 326 

the analysis using more extreme controls (h2=0.026 (0.002) vs. 0.054 (0.003); see Supplementary Figure 327 

6). 328 

Six loci were significantly associated with SSOE using Model 1(see Table 2 and Figure 1). 329 

CADM2 was the most strongly associated locus. Four loci (CADM2, AKAP10, CTC-436P18.1, and 330 

SIPA1L1) were consistently significantly associated in both Models 1 and 3. Locus GATAD2A was 331 

associated with SSOE only in Model 1, and HIST1H1D was associated with SSOE only in Models 1 and 332 

2 (see Supplementary Tables 4 and 5, Supplementary Figures 2 and 3). The C allele at a variant in FTO 333 

(rs55872725) was associated with lower odds of SSOE only upon adjustment for BMI (Model 3). This 334 

allele is in complete LD (r2=1) with the T allele of the well-established variant (rs1558902) associated 335 
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with lower BMI. Correction for collider bias, shown in Supplementary Table 5, reduces the strength of 336 

this FTO SNP association with SSOE from p=7.0 x 10-13 to p=3.0 x 10-3 in the unbiased model, with the 337 

same direction of association. Among all five SSOE-associated SNPs, three showed consistent trends of 338 

association with BMI in the direction expected based on the negative phenotypic correlation. Notably, the 339 

PA-increasing allele at the CADM2 SNP was associated with higher BMI (p=1.2 x 10-7; see Table 2). 340 

Upon meta-analysis of the 9 top hits for MVPA with the results in ARIC, 8 were genome-wide 341 

significant (p<5 × 10-9), including the APOE, EXOC4, and CADM2 variants (see Supplementary Table 6). 342 

The direction of effect was consistent across ARIC and the UK Biobank for all 9 loci. For both VPA and 343 

SSOE, we observed consistent directions of effect for 3 out of the 5 top loci (see Supplementary Table 7). 344 

 345 

Accelerometer-based PA in UK Biobank 346 

There were approximately 91,000 individuals with non-missing accelerometry data. 347 

Approximately 6,500 individuals were excluded because of insufficient wear-time. These excluded 348 

individuals were slightly more likely to be male (p=0.03), younger (p<2 × 10-16) and have a higher BMI 349 

(p<2 × 10-16). ‘Chip heritability’ estimates for the accelerometry-based measures were higher (14% for 350 

average acceleration, and 11% for fraction of accelerations >425 mg) than for self-report PA measures 351 

(Supplementary Table 3). Although Q-Q plots show some evidence of inflation (see Supplementary 352 

Figure 1), LD score regression intercepts (<1.008) suggest no significant systematic inflation of test 353 

statistics.  354 

Using Model 1, two loci were found to be significantly associated with average acceleration and 355 

one locus with fraction of accelerations >425 mg (see Table 2 and Figure 1).  Only the CRHR1 locus 356 

remained genome-wide significant in Model 3. The RIT2/SYT4 locus was only associated with average 357 

acceleration in Model 1, and the PML locus was only significant with fraction of accelerations >425 mg 358 

in Models 1 and 2 (see Table 2, Supplementary Tables 4 and 5, and Supplementary Figures 1 and 2).  359 
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In general, with the exception of the FTO locus as mentioned above, we observed minimal 360 

evidence of collider bias because of adjustment for BMI (see Supplementary Table 5). 361 

 362 

Consistent loci across self-report and accelerometry 363 

We found a total of seven loci associated (p < 5 × 10-5) with both self-report and accelerometry 364 

measures using Model 1 (see Supplementary Table 8). For MVPA and average acceleration, we identified 365 

four loci (MEF2C, RCOR1, STOML1 and CRHR1). For VPA, SSOE, and fraction of acceleration >425 366 

mg, we identified three loci (CADM2, PML, and CCNE1). However, among these, only RCOR1, CRHR1, 367 

and CADM2 remained significant in Models 2 and 3 (see Supplementary Table 9).  368 

 369 

Follow-up analyses 370 

 We found highly significant negative genetic correlations of both MVPA and VPA with 371 

intelligence (see Figure 2). We also found significant positive genetic correlations of MVPA and VPA 372 

with early-morning chronotype and psychiatric diseases, and negative correlations with body fat and waist 373 

circumference. In contrast to the genetic correlations with MVPA and VPA, we found a positive 374 

correlation of SSOE with years of schooling and intelligence. We also found positive genetic correlations 375 

with age at first birth and negative correlations with neuroticism, depressive symptoms, insomnia, body 376 

fat, and waist circumference (see Figure 2). Among the accelerometry-based measures, we found highly 377 

significant negative genetic correlations of PA with waist and hip circumference, body fat, obesity, BMI, 378 

and other cardiometabolic traits (see Figure 3). Genetic correlation results remained very similar with 379 

GWAS models including activity at work and TDI as covariates, except for generally attenuated 380 

correlations with intelligence in the model with all covariates except BMI (Model 2, see Figure 2). 381 

However, upon the addition of BMI as a covariate (Model 3), the direction of genetic correlation between 382 
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PA and obesity traits was reversed (see Figures 2 and 3). As we note below, caution may be warranted in 383 

interpreting results from these adjusted models, especially since we observed a reversal of direction of 384 

correlations with obesity-related traits upon BMI adjustment.  385 

Gene-based tissue enrichment analysis using data from GTEx generally implicate the brain and 386 

pituitary gland as primary tissues through which the PA-associated loci may exert their effects (see Figure 387 

4). Examination of more specific tissues reveals several different parts of the brain. The cerebellum and 388 

the frontal cortex appear most consistently implicated across the five PA phenotypes (see Supplementary 389 

Figures 7 and 8). Results remained similar when using Models 2 and 3. Gene-set analyses reveal several 390 

nervous system gene sets across the PA phenotypes, but the only significant gene set after correction for 391 

multiple testing was for enrichment of genes involved in the synapse, for SSOE (see Supplementary Table 392 

10).  393 

Look-up of top SNPs in the Oxford Brain Imaging server suggests associations with mental 394 

health, body composition, educational attainment, sleep and psychiatric traits, in addition to physical 395 

activity traits. The rs62253088-T PA-increasing allele in CADM2 was also associated with decreased 396 

neuroticism, and decreased self-reported nervous and anxious feelings. The rs7804463-C allele (EXOC4) 397 

associated with less PA is also associated with higher self-reported time spent using computer, fewer 398 

mood swings, and greater daytime dozing. The rs55657917-G allele (CRHR1) associated with greater PA 399 

was also associated with greater neuroticism, lower pulmonary function, greater sense of hurt feelings, 400 

and fewer naps during the day (see Supplementary Figure 9). Gene expression analyses imply several 401 

different tissues including the brain, adrenal and thyroid gland, skeletal muscle and adipose tissue, among 402 

others (see Supplementary Tables 11 and 12). Genes that we identified have previously been implicated in 403 

a range of other traits and diseases, including behavioral, cardiometabolic, psychiatric, educational 404 

attainment, and pulmonary function traits (see Supplementary Table 11). 405 

 406 
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Discussion 407 

 Given the importance of PA for many dimensions of health, and its’ reported heritability, we 408 

sought to identify genetic variants that are associated with engagement in habitual physical activity, while 409 

considering important covariates such as season, physical activity at work, socio-economic status, and 410 

BMI. In the UK Biobank, with a very large sample size and multiple measures of PA, we identified ten 411 

loci that were genome-wide significant for at least one of the PA measures and were consistently 412 

associated with the respective PA measure in both the basic (Model 1) and the fully adjusted model 413 

(Model 3). We also identified three loci that exhibit consistent associations across both self-report and 414 

accelerometry measures. 415 

Although most of the identified loci were novel, the genes that they were in or in proximity to 416 

have previous links to various diseases and traits (see Supplementary Table 11). Among these, variants in 417 

CADM2, a gene which encodes cell adhesion molecule 2, and is primarily expressed in the brain, has been 418 

linked to BMI variation 60,61, risk-taking behavior and other personality and behavioral traits 62–65, as well 419 

as with information processing speed 66. The previously identified BMI-associated variant (rs13078960) 420 

60,61 is not in LD (r2<0.07) with the PA–associated variants that we identified, except for the SSOE-421 

increasing allele at rs62253088 being positively, but weakly, correlated with the BMI-increasing allele at 422 

rs13078960 (r2=0.2). The previously identified G alleles at both rs13084531 64 and rs57401290 63 423 

associated with risk taking are weakly to moderately correlated (r2=0.52 and 0.23, respectively) with the 424 

SSOE-increasing allele that we identified at rs62253088 (see Supplementary Figure 5). It thus appears 425 

that this locus may be important for several personality, cognitive, and behavioral traits, and may 426 

potentially be involved in reward systems. We found that the association of CADM2 variants with PA in 427 

Model 1 was unaffected by the inclusion of BMI as a covariate. Furthermore, the PA-increasing alleles at 428 

this locus are associated with higher BMI, in the opposite direction of the phenotypic correlation. Along 429 

these lines, but with slightly deviating results, a recent study in mice found that Cadm2-deficient mice 430 

exhibit increased locomotor activity along with reduced adiposity 67. Finally, it is important to note that 431 
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this locus appeared to be more strongly associated with VPA and SSOE as compared to MVPA. It may 432 

thus be specifically implicated in the proclivity to engage in intentional high-intensity exercise and sport, 433 

as opposed to more general and/or lower intensity PA. 434 

Interestingly, a well-established variant in APOE (part of APOE ε4 allele), strongly implicated in 435 

Alzheimer’s disease 47,68, exhibited one of the strongest associations with PA, and remained significant 436 

upon meta-analysis. How the APOE risk allele is associated with greater PA is not clear. An exercise 437 

training study found that APOE ε4 carriers had a greater increase in aerobic capacity 69. This increased 438 

responsivity to PA could reinforce engagement in PA or be related to other factors that influence the 439 

tendency to engage in PA. Although another potential explanation for our finding is that individuals with 440 

a known family history of dementia or Alzheimer’s disease purposefully increase their levels of PA in the 441 

hope of reducing risk for developing the disease, our findings do not suggest that individuals with a first-442 

degree family history of Alzheimer’s disease or dementia engage in higher levels of PA. However, we 443 

could not rule out the possibility of selection bias. Since the association was markedly stronger among 444 

older participants and the frequency of the risk allele decreased slightly with age from 40 to 69 years, it 445 

may be that the older APOE risk allele carriers are particularly enriched for healthy lifestyles. It is 446 

important to note that an association between APOE and PA may lead to spurious gene-environment 447 

interactions 70, and thus further work is needed to confirm and clarify this observed association.  448 

Among the other specific loci that we identified, we did not find any of the loci that have 449 

previously been linked to PA 15,16. The pattern of tissue-specific expression of the identified genes (or 450 

nearby genes) varied quite widely, although we observe an overall enrichment of genes expressed in the 451 

brain and pituitary gland, and more specifically in the cerebellum and frontal cortex. The cerebellum is 452 

involved in the precise coordination of motor activity, and the frontal cortex is involved in decision 453 

making, personality expression, and executive function. We also observed an enrichment of genes 454 

involved in the nervous system, including in the synapse. Other than CADM2 and APOE, the other 455 

identified genes have been previously associated with a wide variety of traits, including intelligence, 456 
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cognitive decline, blood cell traits, schizophrenia, and obesity among others. They are also expressed in a 457 

wide variety of tissues. We suspect that there are many potential paths leading to differences in PA. These 458 

could include response to exercise, personality, hormonal levels, body composition. Future research is 459 

needed to help elucidate the genetic underpinnings of these proximate mechanisms, and to provide insight 460 

into how each of the identified loci contribute to habitual PA behavior.   461 

 Previous studies have shown that BMI-associated genetic variants are also associated with PA 462 

71,72. Similarly, we found an overall shared genetic basis for PA (especially accelerometer-based 463 

measures) with several obesity-related traits (in the expected negative direction of association), 464 

suggesting that genetic risk for obesity coincides with genetic propensity for lower PA. There is likely a 465 

complex set of genetic, environmental, and phenotypic factors that connect PA and obesity across the 466 

lifespan, that involve many pleiotropic genetic factors. Although we identified previously identified BMI-467 

associated genes (FTO and NEGR1) in Model 3, these results appear to be at least partly attributed to 468 

collider bias.  Similarly, for all five PA traits, we observed that the direction of the genetic correlation 469 

between PA and obesity-related traits is reversed when BMI is included as a covariate, despite a strong 470 

negative phenotypic correlation between PA and BMI. In addition to the caution warranted by potential 471 

collider bias which occurs when one controls for a variable (i.e. BMI) that is caused by both another 472 

covariate (i.e. gene) and the outcome variable in the model (i.e. PA) 46,73, caution is also warranted in 473 

interpreting results of genetic associations in which heritable covariates are included in the association 474 

model 74. On the other hand, however, adjustment for the covariates may help identify/confirm loci that 475 

may or may not be spuriously associated with PA because of confounding via correlated factors.  476 

 Our study is strengthened by the large sample size, the availability of both self-reported and 477 

objective accelerometer-based measures of PA, and the availability of a replication cohort from a 478 

different country. However, we note several limitations. Given the relatively small genetic effect sizes 479 

observed for these PA phenotypes, we were insufficiently powered to formally replicate associations in 480 

the much smaller sample size in ARIC. Our inability to firmly replicate these findings does detract from 481 
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our confidence in the generalizability of the UK Biobank results. It could be, for example, that the genetic 482 

architecture and implicated genes for habitual PA differ widely by country, as well as by age group (see 483 

below), and by PA measure. Additional and larger replication studies are thus needed to more robustly 484 

identify PA-associated loci. Furthermore, the self-report measures of PA used in ARIC differed from the 485 

one used in the UK Biobank. The ARIC measure focuses more explicitly on leisure-time PA and 486 

incorporates more detailed information about PA, such as the frequency of sweating and a comparison of 487 

PA frequency with others of the same age. Both self-reported and accelerometer-based measures of PA 488 

are subject to various biases. Since both the UK Biobank and ARIC cohorts are comprised of middle- to 489 

late-middle-aged adults, the extent to which these results generalize to other age groups is not known. For 490 

example, it has been shown that the heritability of PA changes with age, with a decreased heritability in 491 

older ages 75. Thus our power to detect strong effects may have been compromised by the older age range 492 

in both cohorts that we examined. Furthermore, our results may not generalize to other ethnic/racial 493 

groups.  494 

 In conclusion, our study revealed several important new findings. Effect sizes were generally 495 

very small, given the very large sample size, the common variants identified, and the modest p-values. 496 

We identified over 20 variants, most of which were novel, and thus need further study. We identified a 497 

variant in CADM2, a gene previously been found to be associated with obesity, as well as several 498 

personality traits. We also identified a well-established major risk variant for Alzheimer’s disease in 499 

APOE, which was associated with higher levels of PA, suggesting the need for follow up studies to help 500 

clarify the nature of this observed association and its implication for understanding gene-environment 501 

interactions related to PA. We found genetic correlation of PA with obesity 60,76, psychiatric 77,78, 502 

educational 79, chronotype 80, and other traits. Genetic correlations with obesity may indicate extensive 503 

pleiotropy involving genes associated with both PA and obesity. The identification of genetic factors that 504 

predispose to high or low levels of PA will lead to a better understanding of the biological mechanisms 505 

underlying these proclivities. It may also lead to the identification of individuals less likely to engage in 506 
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and/or adhere to PA, and consequently to the development of tailored behavioral strategies. Finally, the 507 

integration of genetic characteristics with lifestyle and environmental information may point to how 508 

lifestyle/environmental factors interact with genetic factors to influence levels of PA. 509 
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Figure Legends 764 

Figure 1: Manhattan plot of GWAS for self-reported MVPA and VPA, strenuous sports or other 765 

exercises (abbreviated as SS or Other Exer.), and for accelerometer-based average accelerations and 766 

fraction of accelerations > 425 mg. Negative log10-transformed p-value for each SNP is plotted by 767 

chromosome and position (x-axis). The red horizontal line represents the threshold for genome-wide 768 

significant associations (p<5 × 10-9). 769 

 770 

Figure 2: Genetic correlation of self-reported PA variables with other traits and diseases across the three 771 

statistical models employed. Traits/diseases shown are those that are in the top 10 of genetically 772 

correlated traits/diseases (according to p-value) for at least one of the 3 models. Traits/diseases are 773 

ordered from top to bottom in order of increasing p-value for Model 1. Horizontal position of bars 774 

corresponds to the genetic correlation (rg) between PA and the respective trait/disease. Error bars 775 

represent 95% confidence intervals for rg estimates. Bright green bars represent traits that showed a 776 

correlation with p-value <2.5 × 10-4, and light green bars represent traits with genetic correlation p<0.05. 777 

We excluded highly redundant traits (e.g. obesity, overweight) after leaving higher ranked one in. 778 

 779 

Figure 3: Genetic correlation of accelerometry-based PA variables with other traits and diseases across 780 

the three statistical models employed. Traits/diseases shown are those that are in the top 10 of genetically 781 

correlated traits/diseases (according to p-value) for at least one of the 3 models. Traits/diseases are 782 

ordered from top to bottom in order of increasing p-value for Model 1. Horizontal position of bars 783 

corresponds to the genetic correlation (rg) between PA and the respective trait/disease. Error bars 784 

represent 95% confidence intervals for rg estimates. Bright green bars represent traits that showed a 785 

correlation with p-value <2.5 × 10-4, and light green bars represent traits with genetic correlation p<0.05. 786 

We excluded highly redundant traits (e.g. obesity, overweight) after leaving higher ranked one in. 787 
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 788 

Figure 4: Results of gene-based enrichment analysis for 30 general tissue types for PA-associated loci. 789 

Dashed line represents the Bonferroni-corrected significance threshold. 790 



Supplementary Table 1: Association of covariates with five measures of physical activity. Other covariates included in 

the model (PCs, center, and genotyping chip) are not shown here. The beta coefficient units for MVPA are standard 

deviations of MVPA (MET-minutes/week), after inverse normalization. Beta coefficients for VPA and Stren. Sports or 

other Exerc. are log-OR. The beta coefficient unit for acceleration average is milli-gravities. The beta coefficient for 

“Fraction Accel. > 425 mg” is fraction of time. 

  MVPA VPA Stren. Sports or other Exerc. Accel. Average Fraction Accel. > 425 mg 

 

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 

Age 0.012 <2E-16 -0.025 <2E-16 -0.04 <2E-16 -0.25 <2E-16 -0.035 <2E-16 

Sex 0.055 <2E-16 0.47 <2E-16 0.21 <2E-16 -0.28 1.68E-8 0.30 <2E-16 

BMI -0.028 <2E-16 -0.068 <2E-16 -0.066 <2E-16 -0.47 <2E-16 -0.047 <2E-16 

Season 0.047 <2E-16 0.078 <2E-16 0.066 <2E-16 0.67 <2E-16 0.033 <2E-16 

Work - Walk/Stand 7.69E-03 0.0002 -0.048 <2E-16 -0.058 <2E-16 0.49 <2E-16 0.031 4.80E-15 

Work - Physical activity 0.400 <2E-16 0.499 <2E-16 -0.17 <2E-16 0.98 <2E-16 0.031 2.74E-07 

TDI -5.35E-03 <2E-16 -0.046 <2E-16 -0.086 <2E-16 -0.12 <2E-16 -0.019 <2E-16 

BMI: body mass index, TDI: Townsend deprivation index 

  



Supplementary Table 2: Phenotypic correlation (Pearson’s product-moment correlation/Spearman’s rho are shown for 

continuous variable correlations, phi coefficient is shown for correlation between two dichotomous variables, and point-

biserial correlations are shown for correlations between a continuous and a dichotomous variable) among the five 

different PA measures. All correlations were highly significant. 

 
MVPA VPA 

Stren. Sports 

or Other Ex. 

Accel. 

Average 

Fract. 

Accel.>425mg 

MVPA 
 

0.65 0.28 0.19/0.22 0.15/0.20 

VPA 
  

0.73 0.29 0.32 

Stren. Sports or 

Other Ex. 
  

 
0.23 0.27 

Accel. Average 
  

 
 

0.68/0.71 

   



Supplementary Table 3: ‘Chip Heritability’ and inflation estimates from LD score regression analysis. Ratio is 

(intercept-1)/(mean(χ2)-1), which measures the proportion of the inflation in the mean χ2 that the LD Score regression 

intercept ascribes to causes other than polygenic heritability. 

 
h2 

Lambda 

GC 

Mean 

χ2 

Ratio (s.d.) Intercept 

Self-reported measures 

 

    

MVPA 0.046 (0.0023) 1.31 1.35 0.040 (0.009) 1.014 

VPA 0.054 (0.0029) 1.25 1.30 0.099 (0.030) 1.030 

Stren. Sports or Other Exerc. 0.056 (0.0025) 1.31 1.41 0.058 (0.022) 1.024 

      

Accelerometry 

 

    

Average Acceleration 0.143 (0.0083) 1.20 1.26 0.030 (0.032) 1.008 

Fraction Accelerations > 425 mg 0.110 (0.0067) 1.15 1.19 0.010 (0.037) 1.002 

h2: heritability; GC: genomic control.   



Supplementary Table 4: Summary of polymorphisms identified in the UK Biobank using a model additionally adjusted 

for Townsend Deprivation index, walk or standing at work, and physical activity at work (Model 2). The beta coefficient 

units for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. The beta coefficient 

unit for acceleration average is milli-gravities. The beta coefficient unit for “Fraction Accel. > 425 mg” is fraction of time. 

The beta coefficient units for BMI correspond to residualized BMI after inverse normalization. 

                  BMI association 

SNP ID Chr. Gene/Nearest Gene Position EA EAF Beta/OR p-value n Beta p-value 

MVPA 
  

rs429358 19 APOE 45,411,941 T 0.85 -0.022 2.4E-14 376,789 2.5E-02 2.4E-21 

rs169504 6 PBX2 32,153,406 C 0.81 0.018 4.9E-11 376,789 -1.1E-02 1.8E-05 

rs4129572 7 EXOC4 133,636,888 T 0.40 -0.14 2.9E-10 376,789 3.4E-03 8.0E-02 

rs3094622 6 RPP21 30,327,952 A 0.86 0.019 3.1E-10 376,789 -9.9E-03 3.8E-04 

rs181220614 3 ARHGEF26-AS1 153,806,914 C 0.99 -0.07 8.8E-10 376,789 -1.2E-02 2.6E-01 

rs149943 6 ZNF165 28,002,388 G 0.85 0.018 9.9E-10 376,789 -1.2E-02 1.4E-05 

rs2988004 9 PAX5 37,044,388 T 0.55 -0.013 2.8E-09 376,789 -1.1E-02 5.2E-08 

           
Vigorous PA: ≥ 3 vs. 0 days/week 

  
rs1248860 3 CADM2 85,015,779 G 0.48 0.96 1.1E-13 260,738 -9.5E-03 6.8E-07 

rs2764261 6 FOXO3 108,927,842 A 0.37 1.04 9.3E-11 260,738 -1.8E-02 8.7E-20 

rs3781411 10 CTBP2 126,715,436 C 0.88 1.06 2.3E-10 260,738 1.7E-03 5.6E-01 

rs12707131 7 EXOC4 133,620,982 A 0.61 1.04 4.6E-10 260,738 -3.9E-03 4.7E-02 

rs328919 7 DPY19L1 35,033,983 A 0.69 0.96 9.3E-10 260,738 -6.2E-03 2.7E-03 

           
Strenuous sports or other exercises: ≥ 2-3 vs. 0 days/week 

      
rs62253088 3 CADM2 85,400,801 T 0.33 1.05 1.5E-20 350,492 1.1E-02 1.2E-07 

 rs166840 17 AKAP10 19,799,698 G 0.59 1.03 3.0E-10 350,492 5.4E-03 5.8E-03 

rs10946808 6 HIST1H1D 26,233,387 A 0.73 0.96 5.5E-10 350,492 1.2E-02 3.6E-08 

rs75930676 14 SIPA1L1 71,826,547 T 0.95 0.93 8.5E-10 350,492 2.1E-03 6.4E-01 

rs4865656 5 LOC642366 50,659,788 G 0.62 1.03 3.0E-09 350,492 -9.0E-03 4.6E-06 

           
Accelerometry – Average acceleration 

  
rs55657917 17 CRHR1 43,844,560 T 0.78 -0.31 1.1E-12 90,986 -3.7E-03 1.1E-01 

rs185829646 10 ANKRD22 90,583,705 A 0.998 -2.7 4.8E-09 90,986 -2.6E-02 3.0E-01 

           
Accelerometry – Fraction accelerations > 425 milli-gravities 

  
rs743580 15 PML 74,328,116 A 0.51 0.024 2.5E-09 90,569 -1.2E-02 1.4E-09 

rs6433478 2 CIR1 175,241,482 T 0.46 -0.024 4.9E-09 90,569 9.9E-03 2.8E-07 

 

EA refers to effect allele that Beta/OR corresponds to. EAF: effect allele frequency 

 

 

  



Supplementary Table 5: Summary of polymorphisms identified in the UK Biobank using a model additionally adjusted 

for Townsend Deprivation index, walk or standing at work, physical activity at work, and BMI. The beta coefficient units 

for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. The beta coefficient unit 

for acceleration average is milli-gravities. The beta coefficient for “Fraction Accel. > 425 mg” is fraction of time. The 

beta coefficient units for BMI correspond to residualized BMI after inverse normalization. The collider bias quantification 

columns refer to estimates for the respective SNP, with (corrected) and without correction (uncorrected) for collider bias 

resulting from adjustment for BMI. The uncorrected and corrected estimates are from a linear model (for all PA measures) 

without incorporating the other SNP effects as is implemented in the GWAS analysis by the BOLT-LMM software. 

           
Collider Bias Quantification 

                  BMI association Uncorrected Corrected 

SNP ID Chr. 
Gene/Nearest 

Gene 
Position EA EAF Beta/OR p n Beta p Beta p Beta  p 

MVPA 
  

    rs2988004 9 PAX5 37,044,388 T 0.56 -0.014 2.4E-11 375,862 -1.1E-02 5.2E-08 -0.013 1.1E-09 -0.012 2.6E-08 

rs429358 19 APOE 45,411,941 T 0.85 -0.019 7.3E-11 375,862 2.5E-02 2.4E-21 -0.019 1.2E-10 -0.022 7.1E-14 

rs181220614 3 ARHGEF26-AS1 153,806,914 C 0.99 -0.072 2.3E-10 375,862 -1.2E-02 2.6E-01 -0.076 7.9E-09 -0.073 3.8E-08 

rs7804463 7 EXOC4 133,447,651 T 0.53 0.013 4.1E-10 375,862 -2.9E-04 8.8E-01 0.013 7.6E-10 0.013 1.2E-09 

rs4576826 11 C11orf80 66,560,982 T 0.74 0.015 5.5E-10 375,862 6.3E-03 3.7E-03 0.015 2.3E-10 0.014 4.0E-09 

rs13081745 3 CADM2 85,063,983 G 0.33 -0.014 9.6E-10 375,862 -1.5E-02 1.0E-12 -0.014 8.9E-10 -0.012 4.3E-08 

rs11913445 22 CCDC188 20,142,513 C 0.83 0.017 2.1E-09 375,862 5.4E-03 3.6E-02 0.017 5.5E-09 0.016 6.1E-08 

rs169504 6 PBX2 32,153,406 C 0.81 0.017 1.4E-09 375,862 -1.1E-02 1.8E-05 0.016 2.2E-09 0.018 4.6E-11 

         
      Vigorous PA: ≥ 3 vs. 0 days/week 

      rs653481 3 CADM2 85,005,685 A 0.33 0.95 1.9E-15 259,991 -1.4E-02 1.5E-12 -0.011 9.3E-16 -0.010 8.3E-14 

rs3781411 10 CTBP2 126,715,436 C 0.88 1.06 1.0E-10 259,991 1.7E-03 5.6E-01 0.013 5.0E-11 0.013 5.6E-11 

rs328902 7 DPY19L1 35,020,843 C 0.69 0.96 1.3E-10 259,991 -6.2E-03 2.7E-03 -0.009 8.7E-11 -0.009 4.2E-10 

rs3101340 1 NEGR1 72,744,144 G 0.49 1.04 1.1E-09 259,991 1.7E-02 8.0E-20 0.008 1.7E-09 0.007 1.6E-07 

rs12707131 7 EXOC4 133,620,982 A 0.61 1.04 2.0E-09 259,991 -3.9E-03 4.7E-02 0.008 1.9E-09 0.008 3.3E-10 

rs6689056 1 MYOM3 24,364,531 G 0.67 1.04 4.9E-09 259,991 2.0E-03 3.3E-01 0.008 9.8E-09 0.008 8.2E-09 

         
      Strenuous sports or other exercises: ≥ 2-3 vs. 0 days/week 

    
      rs1691471 3 CADM2 85,011,013 C 0.62 0.95 6.5E-23 349,082 -1.3E-02 8.0E-12 -0.013 1.7E-22 -0.011 7.0E-20 

rs55872725 16 FTO 53,809,123 C 0.6 0.96 3.0E-13 349,082 -7.4E-02 3.4E-312 -0.008 7.0E-13 -0.003 3.0E-03 

rs166840 17 AKAP10 19,799,698 G 0.59 1.03 7.3E-11 349,082 5.4E-03 5.8E-03 0.007 2.0E-10 0.007 8.5E-10 

rs75930676 14 SIPA1L1 71,826,547 T 0.95 0.93 8.5E-10 349,082 2.1E-03 6.4E-01 -0.016 1.3E-10 -0.016 1.2E-09 

rs159544 5 CTC-436P18.1 60,489,247 A 0.61 0.97 2.7E-09 349,082 -5.5E-03 5.3E-03 -0.007 2.4E-09 -0.007 7.1E-09 

         
      Accelerometry – Average acceleration 

      rs55915917 17 CRHR1 43,892,784 T 0.78 -0.28 1.5E-11 90,845 -4.0E-03 8.4E-02 -0.28 5.0E-11 -0.31 6.7E-13 

rs62398709 5 LINC01470 152,055,235 A 0.65 0.24 7.1E-11 90,845 8.9E-03 1.1E-05 0.23 3.0E-10 0.21 1.6E-08 

rs185829646 10 ANKRD22 90,583,705 A 1 -2.69 1.5E-09 90,845 -2.6E-02 3.0E-01 -2.94 2.0E-09 2.97 1.4E-09 

rs17551090 5 MEF2C 88,037,209 T 0.89 0.34 3.0E-09 90,845 1.3E-02 2.0E-05 0.34 3.2E-09 0.32 2.6E-08 

           
    Accelerometry – Fraction accelerations > 425 milli-gravities 

  
    No significant associations                         

EA refers to effect allele that Beta/OR corresponds to. EAF: effect allele frequency 

 

  



Supplementary Table 6: Meta-analysis of UK Biobank MVPA top hits with ARIC PA. Beta coefficient units are 

standard deviations of MVPA MET-minutes/week, after inverse normalization. 

     

ARIC 

(n=8,556) 

Meta-analysis 

(n=385,790) 

SNP Chr. Gene/Nearest Gene Position EA Beta p Beta p 

rs429358 19 APOE 45,411,941 T -0.035 0.22 -0.002 2.80E-13 

rs7804463 7 EXOC4 133,447,651 T 0.003 0.87 0.015 1.30E-11 

 rs2854277 6 HLA-DQB1 32,628,084 C 0.009 0.72 0.031 5.00E-10 

rs7791992 7 C7orf72/SPATA48 50,237,784 C -0.005 0.73 -0.014 2.20E-10 

 rs3094622 6 RPP21 30,327,952 A 0.035* 0.17 0.020 1.84E-10 

rs149943 6 ZNF165 28,002,388 G 0.031 0.20 0.019 4.25E-10 

rs2035562 3 CADM2 85,056,521 A -0.014 0.38 -0.014 3.68E-10 

rs2988004 9 PAX5 37,044,388 T -0.033 0.03 -0.013 1.46E-09 

rs1043595 7 CALU 128,410,012 G 0.015 0.37 0.014 7.27E-09 

*rs3094034-A allele used as a proxy for rs3094622-A 

  



Supplementary Table 7: Association with PA in ARIC of SNPs identified in Model 1 of UK Biobank for PA phenotypes 

other than MVPA. Beta coefficients for ARIC correspond to standardized residualized units of the sport/exercise index. 

Meta-analysis using only p-values is only reported for SNPs that have consistent directions of effect in UK Biobank and 

ARIC. 

            UK Biobank ARIC (n=8,556) Meta-analysis 

SNP Chr. 
Gene/Nearest 

Gene 
Position EA EAF Beta/OR p Beta p p 

Vigorous PA: ≥ 3 vs. 0 days/week 

 rs1248860 3 CADM2 85,015,779 G 0.48 0.96 1.10E-13 0.008 0.614 NA 

rs2764261 6 FOXO3 108,927,842 A 0.37 1.04 2.00E-11 0.010 0.500 0.16 

rs3781411 10 CTBP2 126,715,436 C 0.88 1.06 3.00E-10 0.029 0.193 0.09 

rs12707131 7 EXOC4 133,620,982 A 0.61 1.04 9.00E-11 -0.002 0.917 NA 

rs328919 7 DPY19L1 35,033,983 A 0.69 0.96 5.50E-10 -0.011 0.503 0.16 

        
   Strenuous sports or other exercises: ≥ 2-3 vs. 0 days/week 

   
   rs62253088 3 CADM2 85,400,801 T 0.33 1.05 1.00E-19 -0.007 0.660 NA 

 rs166840 17 AKAP10 19,799,698 G 0.59 1.03 3.10E-11 -0.011 0.500 NA 

rs10946808 6 HIST1H1D 26,233,387 A 0.73 0.97 9.90E-10 -0.006 0.727 0.21 

rs159544 5 CTC-436P18.1 60,489,247 A 0.61 0.97 1.30E-09 0.010 0.536 NA 

rs75930676 14 SIPA1L1 71,826,547 T 0.95 0.93 2.00E-09 -0.077 0.059 0.04 

rs111901094 19 GATAD2A 19,513,570 G 0.82 1.04 3.00E-09 0.001 0.972 0.31 

        
   Accelerometry – Average acceleration 

 rs55657917 17 CRHR1 43,844,560 T 0.78 -0.3 5.00E-12 0.020 0.296 NA 

rs59499656 18 RIT2/SYT4 40,768,309 A 0.66 -0.23 2.40E-09 0.015 0.343 NA 

          
 Accelerometry – Fraction accelerations > 425 milli-gravities 

 rs743580 15 PML 74,328,116 A 0.51 0.025 1.30E-09 0.019 0.208 0.09 

NA indicates not applicable since direction of effect is not consistent. 

  



Supplementary Table 8: Loci consistently associated with PA across self-report and accelerometry measures (each p<5 x 

10-5 and in consistent direction) using Model 1. The beta coefficient units for MVPA are standard deviations of MVPA 

(MET-minutes/week), after inverse normalization. The beta coefficient unit for acceleration average is milli-gravities. The 

beta coefficient for “Fraction Accel. > 425 mg” is fraction of time. 

          MVPA VPA SSOE AA AF>425 

SNP Chr. 
Nearest 

Gene 
Position 

Effect 

Allele 
Beta p OR p OR p Beta p Beta p 

MVPA and AA 

           rs447801 5 MEF2C 88002653 T -0.010 7.5E-06 0.98 5.0E-01 1.02 1.2E-01 -0.164 8.5E-06 -0.014 7.2E-04 

rs8013957* 14 RCOR1 103140254 C 0.010 1.4E-05 1.03 2.0E-04 1.02 2.4E-04 0.155 4.8E-05 0.015 5.6E-04 

rs7174985 15 STOML1 74274948 T 0.011 2.5E-06 1.03 7.0E-06 1.02 1.0E-05 0.175 6.4E-06 0.021 1.0E-06 

rs55915917* 17 CRHR1 43892784 T -0.012 8.7E-06 0.98 1.2E-02 0.98 1.7E-04 -0.303 5.5E-12 -0.025 7.9E-07 

               VPA, SSOE, and AF>425 

          rs1248860* 3 CADM2 85015779 G -0.011 2.0E-07 0.96 1.1E-13 0.96 7.8E-17 -0.113 1.8E-03 -0.018 8.9E-06 

rs5742915 15 PML 74336633 T -0.011 6.2E-07 0.96 5.2E-07 0.97 3.4E-05 -0.191 1.7E-07 -0.024 2.9E-09 

rs17599450 19 CCNE1 30328753 C 0.008 1.0E-03 1.03 1.5E-05 1.02 1.4E-06 0.185 1.9E-06 0.019 1.5E-05 

SSOE: Strenuous sports or other exercises; AA: Average acceleration, AF>425: acceleration fraction greater than 425mg. 

* indicates SNPs or loci that remain significant in Model 3. 

 

  



Supplementary Table 9: Loci consistently associated with PA across self-report and accelerometry measures (each p<5 x 

10-5 and in consistent direction) using Models 2 and 3. The beta coefficient units for MVPA are standard deviations of 

MVPA (MET-minutes/week), after inverse normalization. The beta coefficient unit for acceleration average is milli-

gravities. The beta coefficient for “Fraction Accel. > 425 mg” is fraction of time. 

  

          MVPA VPA SSOE AA AF>425 

SNP Chr. 
Nearest 

Gene 
Position 

Effect 

Allele 
Beta p OR p OR p Beta p Beta p 

Model 2 
              

MVPA and average acceleration 

           rs55915917 17 CRHR1 43892784 T -0.011 3.8E-05 0.97 8.9E-03 0.97 1.8E-05 -0.310 1.2E-12 -0.025 4.2E-07 

rs5742915 15 PML 74336633 T -0.010 2.5E-06 0.96 3.5E-06 0.97 6.1E-05 -0.187 2.2E-07 -0.024 4.4E-09 

rs580241 11 TMEM151A 66066349 G -0.013 3.9E-07 0.96 9.3E-05 0.98 9.3E-03 -0.189 1.3E-05 -0.014 5.4E-03 

rs8013957 14 RCOR1 103140254 C 0.010 1.6E-05 1.02 2.9E-04 1.02 1.4E-04 0.162 1.8E-05 0.015 4.7E-04 

               VPA, SSOE, and fraction acceleration > 425 mg 

          rs1248860 3 CADM2 85015779 G -0.010 1.8E-06 0.96 1.1E-13 0.96 1.8E-17 -0.112 1.9E-03 -0.018 7.1E-06 

rs7174985 15 STOML1 74274948 T 0.011 1.5E-06 1.02 2.3E-05 1.02 1.7E-05 0.172 7.0E-06 0.021 1.6E-06 

rs17599450 19 CCNE1 30328753 C 0.008 7.4E-04 1.03 2.8E-05 1.03 1.8E-06 0.179 3.4E-06 0.019 2.4E-05 

               Model 3 

              MVPA and average acceleration 

           rs7559547 2 TMEM18 615627 C -0.014 5.2E-07 0.96 9.5E-06 0.97 6.0E-07 -0.232 3.6E-07 -0.021 6.3E-05 

rs580241 11 TMEM151A 66066349 G -0.013 3.9E-07 0.97 9.8E-05 0.98 1.0E-02 -0.176 2.4E-05 -0.012 1.0E-02 

rs8013957 14 RCOR1 103140254 C 0.010 1.3E-05 1.02 2.4E-04 1.02 9.7E-05 0.150 3.9E-05 0.014 9.0E-04 

rs8044769 16 FTO 53839135 T -0.009 6.6E-06 0.97 1.3E-06 0.96 1.1E-08 -0.187 4.5E-08 -0.015 1.8E-04 

rs55915917 17 CRHR1 43892784 T -0.011 1.1E-05 0.97 4.0E-03 0.97 6.1E-06 -0.284 1.5E-11 -0.022 3.2E-06 

               VPA, SSOE, and fraction acceleration > 425 mg 

          rs7567570 2 TMEM18 615140 T -0.014 1.0E-06 0.98 1.4E-05 0.97 1.0E-06 -0.236 2.5E-07 -0.021 4.2E-05 

rs4856584 3 CADM2 85580328 A 0.012 3.1E-08 1.05 1.4E-14 1.06 6.0E-21 0.110 2.4E-03 0.021 5.3E-07 



Supplementary Table 10: Top ten significant gene sets from MAGMA-based gene-set analysis using Model 1 for each 

of 5 PA phenotypes. 

  

Gene Set N genes Beta Beta STD SE P Pbon

MVPA

GO_bp:go_positive_regulation_of_histone_methylation 32 0.694 0.029 0.176 4.10E-05 0.4461

GO_cc:go_mhc_class_ii_protein_complex 14 1.33 0.0369 0.339 4.36E-05 0.4753

GO_mf:go_mhc_class_ii_receptor_activity 10 1.43 0.0335 0.368 4.99E-05 0.5430

GO_bp:go_neuron_migration 105 0.362 0.0274 0.1 1.42E-04 1

GO_bp:go_adaptive_immune_response_based_on_somatic_recombination_of_immune_receptors_built_from_immunoglobulin_superfamily_domains 113 0.326 0.0255 0.09 1.47E-04 1

GO_mf:go_pdz_domain_binding 88 0.377 0.0261 0.106 1.81E-04 1

GO_bp:go_cell_morphogenesis_involved_in_neuron_differentiation 354 0.185 0.0254 0.052 1.99E-04 1

GO_mf:go_nucleic_acid_binding_transcription_factor_activity 1134 0.107 0.0259 0.03 2.09E-04 1

GO_bp:go_neuron_projection_guidance 198 0.246 0.0255 0.07 2.10E-04 1

GO_cc:go_voltage_gated_calcium_channel_complex 39 0.569 0.0263 0.161 2.10E-04 1

VPA

GO_bp:go_dendrite_development 72 0.473 0.0296 0.115 2.13E-05 0.2314

GO_bp:go_neurogenesis 1355 0.107 0.0281 0.027 2.92E-05 0.3182

GO_bp:go_neuron_projection_development 522 0.157 0.0262 0.042 7.83E-05 0.8523

GO_bp:go_dendrite_morphogenesis 39 0.601 0.0277 0.159 7.99E-05 0.8701

GO_bp:go_regulation_of_nervous_system_development 722 0.127 0.0248 0.036 1.76E-04 1

GO_bp:go_cell_morphogenesis_involved_in_neuron_differentiation 354 0.178 0.0245 0.05 1.91E-04 1

GO_bp:go_negative_regulation_of_neuron_differentiation 183 0.232 0.0231 0.066 2.07E-04 1

GO_bp:go_neuron_projection_morphogenesis 386 0.169 0.0243 0.048 2.11E-04 1

GO_bp:go_negative_regulation_of_nitric_oxide_metabolic_process 10 1.11 0.026 0.323 2.92E-04 1

GO_bp:go_negative_regulation_of_nitric_oxide_biosynthetic_process 10 1.11 0.026 0.323 2.92E-04 1

SSOE

GO_cc:go_synapse 718 0.188 0.0364 0.039 5.90E-07 0.0064

GO_cc:go_synapse_part 580 0.181 0.0318 0.043 1.13E-05 0.1227

Curated_gene_sets:myllykangas_amplification_hot_spot_3 4 1.84 0.0272 0.504 1.30E-04 1

GO_bp:go_t_cell_mediated_immunity 26 0.675 0.0255 0.186 1.45E-04 1

GO_cc:go_postsynapse 355 0.195 0.027 0.054 1.60E-04 1

Curated_gene_sets:cheok_response_to_mercaptopurine_and_ld_mtx_up 8 1.26 0.0263 0.349 1.63E-04 1

GO_bp:go_presynaptic_process_involved_in_synaptic_transmission 109 0.335 0.0258 0.096 2.51E-04 1

GO_cc:go_protein_phosphatase_type_2a_complex 19 0.821 0.0264 0.236 2.55E-04 1

Curated_gene_sets:dacosta_uv_response_via_ercc3_dn 834 0.128 0.0268 0.037 2.77E-04 1

GO_bp:go_glutamate_receptor_signaling_pathway 40 0.527 0.0246 0.153 2.84E-04 1

AA

GO_bp:go_regulation_of_transporter_activity 191 0.303 0.0308 0.071 9.85E-06 0.1073

GO_cc:go_synapse 718 0.15 0.0292 0.036 1.31E-05 0.1426

Curated_gene_sets:basso_hairy_cell_leukemia_dn 77 0.421 0.0273 0.11 6.46E-05 0.7031

GO_bp:go_sterol_catabolic_process 11 1.15 0.0283 0.303 6.76E-05 0.7356

GO_bp:go_cholesterol_catabolic_process 11 1.15 0.0283 0.303 6.76E-05 0.7356

GO_cc:go_synapse_part 580 0.15 0.0262 0.04 8.13E-05 0.8847

Curated_gene_sets:schaeffer_sox9_targets_in_prostate_development_dn 44 0.545 0.0267 0.145 8.26E-05 0.8986

GO_mf:go_transition_metal_ion_binding 1313 0.097 0.025 0.026 1.15E-04 1

Curated_gene_sets:sesto_response_to_uv_c7 66 0.413 0.0247 0.113 1.39E-04 1

GO_bp:go_phenol_containing_compound_biosynthetic_process 31 0.596 0.0245 0.166 1.63E-04 1

AF

GO_mf:go_transcriptional_activator_activity_rna_polymerase_ii_core_promoter_proximal_region_sequence_specific_binding 218 0.258 0.028 0.065 3.13E-05 0.3406

Curated_gene_sets:nikolsky_breast_cancer_20q11_amplicon 31 1.31 0.0541 0.331 3.68E-05 0.4009

GO_bp:go_cell_fate_determination 43 0.532 0.0258 0.137 5.47E-05 0.5961

GO_mf:go_transcription_factor_activity_rna_polymerase_ii_core_promoter_proximal_region_sequence_specific_binding 320 0.197 0.0258 0.052 7.45E-05 0.8110

Curated_gene_sets:cui_tcf21_targets_2_dn 789 0.125 0.0253 0.034 1.14E-04 1

GO_bp:go_homophilic_cell_adhesion_via_plasma_membrane_adhesion_molecules 145 0.342 0.0303 0.093 1.24E-04 1

GO_bp:go_zinc_ii_ion_transport 26 0.645 0.0243 0.176 1.25E-04 1

Curated_gene_sets:reactome_adherens_junctions_interactions 27 0.665 0.0255 0.182 1.30E-04 1

GO_bp:go_neuron_projection_morphogenesis 386 0.165 0.0237 0.046 1.75E-04 1

GO_bp:go_cell_junction_organization 179 0.234 0.023 0.065 1.79E-04 1



Supplementary Table 11: Gene expression and previous GWAS associations for each of the genes (nearest genes) 

confirmed across Models 1 & 3.  

Gene 
Tissue with highest median expression 

(from GTeX v6) 

Previous GWAS associations (from NHGRI-EBI GWAS 

catalog) 

APOE adrenal gland Alzheimer's disease; cognitive decline; longevity; coronary 

artery disease; lipid levels 

EXOC4 transformed fibroblasts educational attainment; intelligence; cognitive decline; blood 

pressure; schizophrenia 

PAX5 EBV-transformed lymphocytes HIV-1 susceptility; response to tocilizumab; intelligence; 

obesity related traits 

CADM2 brain obesity; alcohol consumption; risk taking; rubella; longevity; 

information processing speed; temperament; educational 

attainment; executive function; Alzheimer's disease; cognitive 

function; blood toxins; age at menarche; photic sneeze reflex; 

FEV1   

CTBP2 cervix prostate cancer; height; body mass index 

DPY19L1 testis FEV1 

AKAP10 spleen schizophrenia; blood cell traits 

CTC-436P18.1 EBV-transformed lymphocytes schizophrenia 

SIPA1L1 brain response to alcohol consumption; obesity; heart rate variability 

traits; FEV1 

CRHR1 brain 
Parkinson's disease; blood cell traits; bone mineral density; 

neuroticism; Alzheimer's disease; neurodegeneration 

RCOR1 esophagus-mucosa allergic disease; blood cell traits 

FEV1: forced expiratory volume in first second of forced breath  



Supplementary Table 12: Expression quantitative trait locus analysis using GTEx v7 data and GTEx Portal online 

server, for each of the top 10 PA-associated SNPs identified across the five PA phenotypes. Only top five eQTLs are 

listed here in cases where there are more than five.  

SNP Nearest gene Expressed Gene Tissue P-value 

rs429358 APOE No significant eQTLs found 

  rs7804463 EXOC4 No significant eQTLs found 

  rs62253088 CADM2 CADM2 Lung 7.40E-07 

  

CADM2 Adipose-Subcutaneous 4.20E-06 

  

CADM2 Adipose-Visceral 6.50E-05 

rs2988004 PAX5 RP11-220I1.1 Muscle - Skeletal 3.90E-10 

  

RP11-220I1.1 Adrenal gland 1.80E-08 

  

RP11-220I1.1 Testis 1.30E-06 

rs3781411 CTBP2 No significant eQTLs found 

  rs328902 DPY19L1 DPY19L1 Brain - Frontal cortex (BA9) 4.80E-08 

  

DPY19L1 Brain - Cortex 1.60E-07 

  

DPY19L1 Muscle - Skeletal 7.60E-07 

  

DPY19L1P1 Brain - Cerebellum 1.60E-06 

  

DPY19L1P1 Thyroid 8.80E-06 

rs166840 AKAP10 AKAP10 Whole Blood 3.30E-17 

  

RP11-209D14.2 Testis 6.00E-14 

  

KRT16P3 Esophagus - Mucosa 4.50E-13 

  

LGALS9B Esophagus - Mucosa 3.50E-10 

  

RP11-78O7.2 Esophagus - Muscularis 2.60E-09 

rs159544 CTC-436P18.1 ERCC8 Cells - Transformed fibroblasts 4.00E-06 

  

NDUFAF2 Brain - Nucleus Accumbens 4.10E+06 

  

ERCC8 Muscle - Skeletal 6.50E-06 

  

ELOVL7 Stomach 7.40E-06 

  

CTC-436P18.1 Testis 9.50E-06 

rs75930676 SIPA1L1 No significant eQTLs found 

  rs55657917 CRHR1 CRHR1-IT1 Skin - Sun Exposed 2.30E-137 

  

CRHR1-IT1 Adipose - Subcutaneous 3.80E-130 

  

CRHR1-IT1 Artery - Tibial 6.20E-122 

  

CRHR1-IT1 Nerve - Tibial 1.00E-121 

    LRRC37A4P Thyroid 1.10E-120 

  



Supplementary Figure 1: Q-Q plots of Model 1 GWAS of all 5 PA phenotypes in the UK Biobank. Plots were drawn 

after uploading summary statistics into the FUMA GWAS online tool. Overlapping data points are not drawn (filtering 

was performed only for SNPs with P-value ≥ 1e-5) 

  



Supplementary Figure 2: Manhattan plot for PA phenotypes using a model additionally adjusted for Townsend 

Deprivation index, walk or standing at work, and physical activity at work. 

 

  



Supplementary Figure 3: Manhattan plot for PA phenotypes using a model additionally adjusted for Townsend 

Deprivation index, walk or standing at work, physical activity at work, and BMI. 

 



Supplementary Figure 4: Linkage Disequilibrium of PA-associated SNPs at the CADM2 locus (from data on CEU and 

GBR from 1,000 Genomes data, phase 3. rs2035562, rs1248860, and rs62253088 were associated with MVPA, VPA and 

SSOE, respectively in Model 1 and/or Model 2. rs1308175, rs653481, and rs1691471 were associated with MVPA, VPA, 

and SSOE, respectively, in Model 3.    

 



Supplementary Figure 5 (next page): Linkage disequilibrium among PA-associated SNPs and previously identified 

CADM2 SNPs for BMI, and behavioral traits (from 1,000 Genomes data, phase 3 data on CEU and GBR). rs2035562, 

rs1248860, rs62253088, rs1308175, rs653481, and rs1691471 were associated with PA measures in the present study. 

rs13078960 was previously associated with BMI (Locke et al., 2015). rs12714592 and rs57401290 were previously 

associated with age at first sexual intercourse (Day et al. 2016), rs1865251 was associated with risk-taking behavior 

(Boutwell et al., 2017), rs9841829 with alcohol consumption (Clarke et al., 2017). rs17518584 was associated with 

cognitive processing speed (Ibrahim-Verbaas et al, 2016). Rs4856591 was associated with risk taking propensity (Day et 

al., 2016).  

 

 



  



Supplementary Figure 6: Manhattan plot for VPA phenotype, using Model 1, not excluding individuals with 

intermediate levels of VPA. 

 



Supplementary Figure 7: Results of gene-based tissue enrichment analysis for 53 tissue types, using Model 1 for self-

reported PA phenotypes. 

  



Supplementary Figure 8: Results of gene-based tissue enrichment analysis for 53 tissue types, using Model 1 for 

accelerometry-based PA phenotypes. 

 

 

 

 

 

 

  



Supplementary Figure 9: Association of top PA-associated SNPs with other phenotypes in the UK Biobank (Images 

from the Oxford Brain Imaging Genetics (BIG) Server - version 2.0; http://big.stats.ox.ac.uk/) 
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