

Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE

Item Type	Article
Authors	Klimentidis, Yann C.; Raichlen, David A.; Bea, Jennifer; Garcia, David O.; Wineinger, Nathan E.; Mandarino, Lawrence J.; Alexander, Gene E.; Chen, Zhao; Going, Scott B.
Citation	Choi, K., Chen, C. Y., Stein, M., Klimentidis, Y., Wang, M. J., Koenen, K., & Smoller, J. (2018). Testing Causal Bidirectional Influences between Physical Activity and Depression using Mendelian Randomization. bioRxiv, 364232. https:// doi.org/10.1038/s41366-018-0120-3
DOI	10.1038/s41366-018-0120-3
Publisher	NATURE PUBLISHING GROUP
Journal	INTERNATIONAL JOURNAL OF OBESITY
Rights	Copyright © 2018, Springer Nature.
Download date	27/08/2022 06:55:39
Item License	http://rightsstatements.org/vocab/InC/1.0/
Version	Final accepted manuscript
Link to Item	http://hdl.handle.net/10150/628583

1	Genome-wide association	study of habitual	physical activit	v in over 377	.000 UK Biobar
÷.	Genome while association	study of musicult	physical activity	, m o, ei <i>e i i</i>	,000 CIL DI000

2 participants identifies multiple variants including CADM2 and APOE

- 3 Short Title: Genome-wide association study of habitual physical activity
- 4 Yann C. Klimentidis^{1*}, David A. Raichlen², Jennifer Bea^{3,4}, David O. Garcia⁵, Nathan E. Wineinger,
- 5 Lawrence J. Mandarino⁷, Gene E. Alexander⁸, Zhao Chen¹, Scott B. Going⁴
- ¹Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health,
- 7 University of Arizona, Tucson, Arizona, USA
- 8 ² School of Anthropology, University of Arizona, Tucson, Arizona, USA
- 9 ³Department of Medicine, University of Arizona, Tucson, Arizona, USA
- ⁴Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
- ⁵ Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health,
- 12 University of Arizona, Tucson, Arizona, USA
- ⁶ Scripps Translational Science Institute, La Jolla, CA, USA
- ⁷ Center for Disparities in Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and
- 15 Metabolism, Department of Medicine, University of Arizona, Tucson, Arizona, USA
- ⁸ Departments of Psychology and Psychiatry, Neuroscience and Physiological Sciences Interdisciplinary
- 17 Programs, BIO5 Institute, and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson,
- 18 Arizona, USA; Arizona Alzheimer's Consortium, Phoenix, Arizona, USA
- 19 * Corresponding Author: Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman
- 20 College of Public Health, University of Arizona, Tucson, Arizona, 85724, 520-621-0147,
- 21 yann@email.arizona.edu

Conflict of interest: The authors declare no conflict of interest.

23 Abstract

Background/Objectives: Physical activity (PA) protects against a wide range of diseases. Habitual PA
appears to be heritable, motivating the search for specific genetic variants that may inform efforts to
promote PA and target the best type of PA for each individual.

Subjects/Methods: We used data from the UK Biobank to perform the largest genome-wide association study of PA to date, using three measures based on self-report ($n_{max}=377,234$) and two measures based on wrist-worn accelerometry data ($n_{max}=91,084$). We examined genetic correlations of PA with other traits and diseases, as well as tissue-specific gene expression patterns. With data from the Atherosclerosis Risk in Communities (ARIC; n=8,556) study, we performed a meta-analysis of our top hits for moderate-tovigorous PA (MVPA).

33 **Results:** We identified ten loci across all PA measures that were significant in both a basic and a fully 34 adjusted model ($p < 5 \ge 10^{-9}$). Upon meta-analysis of the nine top hits for MVPA with results from ARIC, 35 eight were genome-wide significant. Interestingly, among these, the rs429358 variant in the APOE gene 36 was the most strongly associated with MVPA, whereby the allele associated with higher Alzheimer's risk was associated with greater MVPA. However, we were not able to rule out possible selection bias 37 38 underlying this result. Variants in *CADM2*, a gene previously implicated in obesity, risk-taking behavior 39 and other traits, were found to be associated with habitual PA. We also identified three loci consistently associated (p<5 x 10⁻⁵) with PA across both self-report and accelerometry, including CADM2. We find 40 41 genetic correlations of PA with educational attainment, chronotype, psychiatric traits, and obesity-related 42 traits. Tissue enrichment analyses implicate the brain and pituitary gland as locations where PA-43 associated loci may exert their actions.

44 Conclusions: These results provide new insight into the genetic basis of habitual PA, and the genetic
45 links connecting PA with other traits and diseases.

46 Introduction

A physically active lifestyle has been shown to protect against a wide range of diseases, including cardiovascular disease, cancer, type-2 diabetes, osteoporosis, and Alzheimer's disease ¹⁻⁴. Levels of engagement in physical activity (PA) vary across individuals, and most people do not meet recommended levels to achieve health benefits. Although cultural, economic, and other environmental factors influence PA engagement ^{5,6}, genetic factors also likely play a role. Understanding the genetic factors underlying inter-individual variation will better inform efforts to promote PA and potentially allow targeting the best type of PA for each person, what might be called "Precision Exercise Prescription".

54 Evidence of genetic factors underlying the propensity to exercise in humans has been demonstrated in a number of studies ⁷⁻¹³. Several studies have utilized a candidate gene approach to 55 identify specific genetic variants associated with a proclivity towards PA^{8,14–18}. This work generally 56 focused on genes related to the serotonin and dopamine systems, energy metabolism, and neurotrophic 57 factors. However, to our knowledge there have been only two previous reports of genome-wide 58 association studies (GWAS) of PA^{19,20}, neither of which identified a locus at genome-wide significance, 59 60 likely due to relatively small sample sizes. Thus, while previous work strongly suggests a genetic basis for engagement in PA, the genes that contribute to this healthy lifestyle behavior remain unknown. 61

In this study, we conduct the largest GWAS of PA to date, aiming to identify genetic variants associated with self-reported and accelerometry-based levels of habitual, leisure-time PA. We sought to identify variants in the UK Biobank, a large cohort study of 500,000 adults measured across a wide range of characteristics including genome-wide markers. We then examined the genetic correlation of PA with other traits, examined putative tissues where PA genes may exert their effects, and meta-analyzed the identified loci for MVPA with data on self-reported PA in an independent cohort from the Atherosclerosis Risk in Communities (ARIC) study.

69

70 Methods

71 Studies

72 Data from the UK Biobank study were used for discovery of variants. Briefly, the UK Biobank is a large prospective cohort study of approximately a half-million adults (ages 40-69) living in the United 73 Kingdom (UK), recruited from 22 centers across the UK²¹. All participants provided written informed 74 75 consent. Ethical approval of the UK Biobank study was given by the North West Multicentre Research 76 Ethics Committee, the National Information Governance Board for Health & Social Care, and the 77 Community Health Index Advisory Group. We also used data from the ARIC study (n=8,556), which is a 78 prospective cohort study of over 15,000 adults aged 45-64 years that took place in four United States 79 communities. The selection of this cohort for replication was based on 1) the quality of the PA phenotype 80 which incorporates multiple questions assessing types, intensities, and frequency of PA (see below), 2) the focus on habitual, leisure-time PA, and 3) the relatively large sample size. In the absence of previous 81 effect size estimates for genetic variants on PA, the sample size in ARIC, although comparatively much 82 83 smaller than the UK Biobank, was deemed, on an a-priori basis, to serve as a suitable replication cohort. Details of the ARIC study can be found elsewhere ²². All participants in ARIC provided written informed 84 85 consent. Institutional review board approval was obtained by each participating field center, and this study was approved by the University of Arizona Human Subjects Protection Program (Protocol number: 86 87 1300000659R001). To reduce the potential for confounding by population stratification, we included only 88 individuals of white race/ethnicity in both studies.

89

90 *Physical activity*

In the UK Biobank, self-reported levels of physical activity during work and leisure time were
 measured via a touchscreen questionnaire, in a fashion similar to the International Physical Activity
 Questionnaire ²³. For moderate PA (MPA), participants were asked: "In a typical WEEK, on how many

94 days did you do 10 minutes or more of moderate physical activities like carrying light loads, cycling at 95 normal pace? (Do not include walking)". For vigorous PA (VPA), participants were asked: "In a typical 96 WEEK, how many days did you do 10 minutes or more of vigorous physical activity? (These are 97 activities that make you sweat or breathe hard such as fast cycling, aerobics, heavy lifting)". For each of 98 these questions, those who indicated 1 or more such days were then asked "How many minutes did you usually spend doing moderate/vigorous activities on a typical DAY". Participants were asked to include 99 100 activities performed for work, leisure, travel and around the house. We excluded individuals who selected 101 "prefer not to answer" or "do not know" on the above questions, those reporting not being able to walk, and individuals reporting more than 16 hours of either MPA or VPA per day. Those reporting >3hr/day of 102 VPA or MPA were recoded to 3 hours, as recommended ²⁴. Moderate-to-vigorous PA (MVPA) was 103 calculated by taking the sum of total minutes/week of MPA multiplied by four and the total number of 104 105 VPA minutes/week multiplied by eight, corresponding to their metabolic equivalents, as previously described ^{23,25}. 106

Since heritability has previously been shown to be higher for intense/vigorous physical activity ¹², 107 108 we also considered VPA on its own. Because the distribution of minutes/week of VPA was highly skewed 109 and zero-inflated, we chose to dichotomize minutes/week of VPA into those who reported 0 days of VPA, 110 and those reporting 3 or more days of VPA and also reporting a typical duration of VPA that is 25 minutes or greater, corresponding to common physical activity guidelines ²⁶. Individuals that did not fall 111 112 into either of these two groups were excluded. We decided to pick extremes because of the heavily skewed and zero-inflated nature of vigorous activity duration, and in order to increase our power to detect 113 114 associations. We also performed a sensitivity analysis in which we included individuals who did not fall 115 into either of the two groups described above, and placed these individuals in the group that did not meet 116 3 days of VPA/week of 25 minutes or greater per day (i.e. those meeting the 3 days/week of VPA at 117 25/mins per day vs. not meeting this amount).

118 We used responses to the question "In the last 4 weeks did you spend any time doing the 119 following?" and follow-up questions assessing the frequency and typical duration of "strenuous sports" 120 and of "other exercises". The possible responses to the initial question were: 'walking for pleasure', 121 'other exercises', 'strenuous sports', 'light DIY', 'heavy DIY', 'none of the above', and 'prefer not to 122 answer'. We identified individuals spending 2-3 days/week or more doing strenuous sports or other 123 exercises (SSOE), for a duration of 15-30 minutes or greater. Controls were those individuals who did not 124 indicate spending any time in the last 4 weeks doing either strenuous sports or other exercises. Individuals 125 that did not fall into either of these two groups were excluded. Extremes were chosen because of the heavily skewed and zero-inflated distributions of these variables. 126

127 Also, in the UK Biobank, approximately 100,000 participants wore an Axivity AX3 wrist-worn accelerometer, as previously described ²⁷. We examined two measures derived from up to seven days of 128 129 accelerometer wear: overall acceleration average, and fraction of accelerations > 425 milli-gravities (mg) 130 27 . Since the variable that is available in the UK Biobank is the fraction < 425 mg, we subtracted 1 from 131 this variable. The 425 mg cutoff was chosen because this corresponds to an equivalent of vigorous physical activity (6 METs), as previously reported ²⁸. For both accelerometry variables, individuals with 132 133 less than three days (72 hours) of data, or those not having data in each one-hour period of the 24-hour 134 cycle were excluded. Based on missing data simulations by Doherty et al, 72 hours of wear was determined to be needed to be within 10% of a complete seven-day measure 27 . Device non-wear time, 135 136 defined as consecutive stationary episodes \geq =60 minutes where all three axes had a standard deviation <13 mg, was imputed using the average of similar time-of-day vector magnitude and intensity distribution 137 data points on different days ²⁷. This accounts for wear-time diurnal bias that may occur if the device was 138 less worn during sleep in some individuals ²⁷. Finally, we also excluded outliers with values more than 4 139 140 standard deviations above the mean.

In ARIC, self-reported PA was assessed for sports/exercise, within the previous year, based on a
 modification of the Baecke questionnaire ^{29,30}. The sport/exercise index is based on up to four

sports/exercises (including modalities of mild, moderate, and strenuous energy exertion) that participants
reported in the past year, and was calculated with responses to 4 items: frequency of participation in
sports/exercise; frequency of sweating during sports/exercise; a subjective rating of the frequency of
participation in sports/exercise compared to others in the same age group; the sum of frequency, duration,
and intensity of up to 4 reported sports/exercises. This derived index is described in greater detail
elsewhere, along with an assessment of its reliability and accuracy ³¹.

149

150 Genotypes

151 The majority of UK Biobank participants were genotyped with the Affymetrix UK Biobank 152 Axiom Array (Santa Clara, CA, USA), while 10% of participants were genotyped with the Affymetrix 153 UK BiLEVE Axiom Array. Detailed quality control and imputation procedures are described elsewhere ³². Briefly, phasing was performed by the UK Biobank team in chunks of 15,000 markers, using 154 SHAPEIT3 ³³ software and 1,000 Genomes phase 3³⁴ dataset as a reference panel. Imputation was 155 performed using a combined panel of the Haplotype Reference Consortium³⁵ and the UK10K haplotype 156 resource ³⁶ after appropriate marker and sample QC in chunks of 50,000 imputed markers. Principal 157 Components Analysis was also performed by the UK Biobank team, using fastPCA ³⁷ software on a set of 158 159 147,604 high-quality directly genotyped markers (pruned to minimize LD), and a set of 407,219 unrelated high-quality samples. All other samples were then projected onto the principal components ³². Since 160 161 corrections for potential problems with the position assignment of the SNPs from the UK10K haplotype 162 resource were not available at the time of analysis, we only included SNPs imputed from the Haplotype 163 Reference Consortium. To minimize the possibility of confounding due to population stratification, only participants who self-identified as European were included. Individuals were excluded based on unusually 164 165 high heterozygosity or >5% missing rate, a mismatch between self-reported and genetically-inferred sex. These criteria resulted in a total available sample size of 458,969 individuals with genotype data. SNP 166

167	exclusions were made based on Hardy-Weinberg equilibrium ($p<1x10^{-6}$), high missingness (>1.5%), low
168	minor allele frequency (<0.1%), and low imputation quality (info<0.4). A total of approximately 11.8
169	million SNPs were used in analyses. Of these, 4.1 million have a minor allele frequency $< 1\%$.
170	In ARIC, participants were genotyped with the Affymetrix Genome-Wide Human SNP Array 6.0
171	(Affymetrix, Santa Clara, CA, USA). Standard quality control procedures were implemented prior to
172	imputation with IMPUTE2 ³⁸ , using all individuals in the 1,000 Genomes phase 1 integrated v3 release.
173	Quality-control procedures consisted of excluding SNPs with minor allele frequency $< 1\%$, with
174	missingness > 10%, and SNPs out of Hardy-Weinberg equilibrium ($p<1 \ge 10^{-6}$), and excluding individuals
175	with SNP missingness > 10%. We used principal components for the European-ancestry group as
176	provided by ARIC in dbGaP. Briefly, LD pruning resulted in 71,702 SNPs that were used to derive
177	principal components. A total sample size of 8,556 participants was used in the analysis.

179 Statistical analyses

180 For the continuous variables in the UK Biobank (MVPA and accelerometry variables) we created 181 an adjusted phenotype corresponding to the residual of the regression of the following independent 182 variables on the respective dependent PA variable: age, sex, genotyping chip, first ten genomic principal 183 components, center, season (month) at center visit or wearing accelerometer (coded 0 for Winter, 1 for Fall or Spring, and 2 for Summer). In another model (Model 2), we considered the additional inclusion of 184 185 the following covariates: levels of physical activity at work (coded as 0 by default, 1 for 'sometimes', 2 186 for 'usually', and 3 for 'always'), extent of walking or standing at work (coded similarly as previous 187 variable), and the Townsend Deprivation Index (TDI; a composite measure of deprivation as previously described ^{39,40}). We also considered a third model (Model 3) in which body mass index (BMI) was 188 189 included as an additional covariate. These covariates were considered since both self-reported and 190 accelerometer-based measures of PA could include PA done as part of one's employment, as opposed to

PA during leisure-time. Additionally, both SES and BMI may affect participation in leisure-time PA⁵. 191 192 Since the MVPA and fraction of accelerations > 425 mg variables exhibited skewed distributions, we 193 inverse-normalized these variables prior to inclusion in the models. Model residuals conformed to the 194 assumptions of normality and homoscedasticity. GWAS were performed with BOLT-LMM software ^{41,42}, 195 which implements a mixed-model linear regression that includes a random effect consisting of the SNPs other than the one being tested, and thus takes into account relatedness among subjects. Since BOLT-196 197 LMM implements a linear regression, effect size estimates for case-control outcomes are unreliable. Therefore, as previously done elsewhere ^{43,44}, we derived effect size estimates for the genome-wide 198 significant SNPs for the binary outcomes (VPA and SSOE) using logistic regression in R with the same 199 set of fixed-effect covariates. Given the number of low-frequency SNPs ⁴⁵ and phenotypes tested, we used 200 a more stringent genome-wide significance threshold: $p < 5 \times 10^{-9}$. To examine the relationship of PA-201 202 associated SNPs with BMI, we tested the association of identified SNPs with BMI, which was first 203 inverse-normalized, then adjusted via a linear regression with age, sex, genotyping chip, first ten genomic 204 principal components, and center as independent variables. We also sought to identify variants 205 consistently associated with PA across self-report and accelerometry PA measures, for overall PA and for high-intensity PA. We thus searched for variants associated in the same direction, with $p < 5 \ge 10^{-5}$ for: 1) 206 MVPA and average acceleration, and 2) VPA, SSOE, and fraction of accelerations >425 mg. 207

To determine the extent to which the loci identified in Model 3 may have been subject to collider bias on account of including BMI as a covariate, we derived an approach to estimate the unbiased effect of each SNP of interest on each metric of PA. Our approach was an extension of the methodology employed in Yaghootkar et al. ⁴⁶ – the primary difference being the collider in our method (i.e., BMI) is a quantitative trait as opposed to a categorical/disease trait. The unbiased coefficient can be expressed as:

213
$$\beta_{SNP \to PA}^* = \frac{\beta_{SNP,I} + \beta_{SNP,II} \beta_{BMI,I}}{1 - \beta_{BMI,I} \beta_{PA,II}}$$

214 where each $\beta_{i,i}$ is the corresponding coefficient of the ith variable in the jth model:

215
$$I: PA \sim SNP + BMI$$
$$II: BMI \sim SNP + PA.$$

We confirmed this approach via simulation under a variety of conditions, including the inclusion of additional covariates and different relationships between BMI, PA, and a genetic marker (results not shown). For simplicity we modeled PA as a quantitative trait in all cases.

219 Given the association that we identified with the rs428358 variant in APOE (see Results), we 220 performed several additional analyses. First, we examined the associations with the APOE ɛ4 haplotype, using this SNP along with the rs7412 SNP. Different protein isoforms of APOE, which is a component of 221 222 various lipoproteins, are produced by the different haplotypes defined by these two SNPs, and these haplotypes are well-established risk factors for Alzheimer's disease ⁴⁷ and coronary artery disease ^{48,49}. 223 224 Individuals with homozygous CC genotypes at both of these SNPs were classified as homozygous for the APOE ɛ4 allele. Individuals with homozygous CC genotypes at either SNP and heterozygous at the other 225 226 SNP were classified as being heterozygous for the $\varepsilon 4$ allele. We excluded a relatively small number of 227 individuals heterozygous at both SNPs ($n\approx 10,000$), because it is not possible to assign a haplotype status 228 when both loci are heterozygous. We assumed an additive model in association testing. Second, to 229 examine whether this association may be driven by individuals with a known family history of 230 Alzheimer's disease increasing their levels of PA, we examined the association of a binary variable 231 indicating any self-reported first-degree family history (mother, father, or siblings) of Alzheimer's disease 232 or dementia with MVPA. Third, we examined the interaction of family history with the rs429358 SNP on 233 MVPA. Fourth, we examined whether the association of rs429358 with MVPA was modified by age, by 234 testing the interaction of this SNP with age, and testing the association of rs429358 with MVPA among 235 individuals in their 40s, 50s, and 60s. Finally, given prior evidence of an association of APOE variants with BMI and the slightly attenuated associations upon our adjustment for BMI, we tested whether BMI 236

mediated the association of rs429358 with MVPA. For this analysis, we used the mediation package ⁵⁰ in
R statistical software ⁵¹.

239 All genome-wide significant loci were examined in ARIC, where we modeled PA as a continuous 240 variable (as described above). We used multiple linear regression to model PA as a function of age, sex, 241 first ten genomic principal components, center, season (coded in the same way as described above). 242 Residuals from this model conformed to the assumptions of normality and homoscedasticity. They were standardized to have a mean of 0 and standard deviation of 1, and were used as the outcome in the 243 244 genome-wide SNP association analysis. We performed meta-analysis of the top hits for MVPA in the UK 245 Biobank with the corresponding SNP association results in ARIC, using fixed-effects inverse-variance weighted meta-analysis. We also used a method that uses only the p-values ⁵² to perform meta-analyses of 246 247 the top hits for the other UK Biobank PA measures. Additional analyses were performed with R statistical 248 software.

249 To examine the association of genes identified in the UK Biobank with gene expression patterns 250 in different tissues, we used the web-based platform, Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS)⁵³, which uses data from GTEx ⁵⁴ and the MAGMA gene-251 252 based analysis ⁵⁵. Also from this platform, we examined results of gene-set analyses performed for curated gene sets and Gene Ontology terms. We also used the summary statistics from our UK Biobank 253 254 GWAS to examine heritability of PA traits and their genetic correlation with over 200 traits and diseases using LD score regression ^{56–58}, implemented in an online interface (http://ldsc.broadinstitute.org/). 255 Briefly, this method tests the correlation between the LD score of each SNP (reflecting how correlated it 256 257 is with nearby SNPs) and its test statistic, where the slope corresponds to the SNP/chip heritability, and 258 the intercept is an estimate of inflation. It uses only SNPs that are likely well imputed (1,000 Genomes³⁴ 259 EUR MAF>5%), while removing strand-ambiguous SNPs, insertions/deletions, those that do not match those in the 1000 Genomes data phase 3, those in the MHC region, and those with extremely large effect 260 sizes ^{57,58}. The genetics of other traits and diseases are inferred from previously published GWAS. A 261

significant genetic correlation was considered if $p < 2.5 \times 10^{-4}$, assuming a correction for 200 different tests, which is conservative given that many of the traits/diseases tested are correlated with each other. Finally, we queried our top hits in the Oxford Brain Imaging Genetics Server to examine associations with other traits, including brain imaging phenotypes, in the UK Biobank (<u>http://big.stats.ox.ac.uk/</u>) ⁵⁹, and in the GTEx Portal for expression quantitative trait locus (eQTL) analysis.

267

268 **Results**

269 Self-reported PA in UK Biobank

270 There were 377,234 individuals with non-missing MVPA data. 80,721 individuals were excluded 271 due to insufficient data on either moderate or vigorous PA days and/or duration. There were 261,055 272 individuals with non-missing VPA data. 175,965 individuals were excluded from the VPA analysis 273 because they belonged to neither of the two defined groups. 21,946 individuals were excluded from VPA 274 analyses because of insufficient data on VPA days and/or duration. For both measures, individuals 275 excluded because of insufficient data were more likely to be female, older, and have a higher BMI ($p<2 \times$ 10⁻¹⁶). A summary of self-report PA variables can be found in Table 1. BMI and TDI were consistently 276 277 negatively associated with these variables, whereas warmer season and male gender were consistently 278 positively associated with them (see Supplementary Table 1). Physical activity at work was positively 279 associated with MVPA and VPA, and negatively associated with SSOE. Self-report PA measures were 280 weakly correlated with accelerometry-based measures (see Supplementary Table 2). 'Chip heritability' estimates for self-report PA measures were approximately 5% (Supplementary Table 3). Although Q-Q 281 plots show some evidence of inflation (see Supplementary Figure 1), LD score regression intercepts 282 283 (<1.03) suggest no significant systematic inflation of test statistics.

We found nine loci significantly associated (p < 5 × 10⁻⁹) with MVPA (see Figure 1 and Table 2).
Among these, four were significantly associated with MVPA in both Models 1 and 3: *APOE*, *EXOC4*,

286 CADM2, and PAX5. The RPP21 and ZNF165 were significant in Models 1 and 2, but not in Model 3. However, effect estimates were generally similar for all nine loci across Models 1 and 3. The CALU locus 287 288 was only significant in Model 1. The PBX2 and ARHGEF26-AS1 loci were only significant in Models 2 289 and 3. Two loci, C11orf80 and CCDC188, were only significant in Model 3 (see Supplementary Tables 4 290 and 5, Supplementary Figures 2 and 3). Among the nine identified SNPs, six exhibited trends with BMI 291 in the expected direction, based on the negative phenotypic correlation between PA and BMI. Among the 292 other three, the PA-increasing alleles at the CADM2 and PAX5 loci are associated with higher BMI $(p=7.9 \times 10^{-13} \text{ and } 5.2 \times 10^{-8}, \text{ respectively; see Table 2}).$ 293

294 Most notably among the MVPA associations, the C allele at SNP rs429358 in APOE was associated with higher self-reported MVPA. This MVPA-increasing allele is the one associated with 295 296 higher Alzheimer's disease risk (see Discussion). We found it to also be associated with higher levels of the four other PA measures, though not always reaching nominal significance (VPA: $p=5.3 \times 10^{-7}$; SSOE: 297 p=0.097; average acceleration: $p=8.2 \times 10^{-3}$; fraction of accelerations>425mg: p=0.24). Testing the 298 association of the Alzheimer's disease-related APOE ɛ4 allele with MVPA resulted in nearly identical 299 300 findings. In models adjusted for other covariates, including BMI, this APOE variant remained genomewide significant (see Supplementary Tables 4 and 5 and Supplementary Figures 2 and 3). Mediation 301 analysis suggests partial mediation (~14%, p<2 x 10^{-16}) by BMI on the association of rs429358 with 302 MVPA. There were 45,440 individuals reporting any family history of Alzheimer's disease or dementia 303 among parents and siblings. These individuals reported lower levels of MVPA ($p=1.2 \times 10^{-4}$). We found a 304 305 significant interaction of rs429358 with family history (p=0.012), whereby the association of rs429358 with MVPA was stronger among those reporting a family history (β =0.042, p=5.13 × 10⁻⁸) compared to 306 among those without a reported family history (β =0.019, p=6.38 × 10⁻⁹). We also observed a significant 307 308 interaction of age with this variant (p=0.005). Specifically, among individuals in their forties, the association was weaker (β =0.011, se=0.006, p=0.067) than among individuals in their fifties (β =0.017, 309 se=0.005, p=0.0013) and sixties (β =0.030, se=0.005, p=1.28 × 10⁻¹⁰). In addition, the frequency of the C 310

allele decreased slightly across these age groups (r=-0.006, p<5 x 10⁻⁵), at 0.314, 0.309, and 0.305 among individuals in their forties, fifties and sixties, respectively.

Five loci were significantly associated with VPA using Model 1. The strongest among these were 313 314 variants in CADM2. Four of these were significantly associated with VPA in all three models tested: 315 CADM2, EXOC4, CTBP2, and DPY19L1. The FOXO3 locus was significant in Models 1 and 2, but not 316 Model 3, and loci NEGR1 and MYOM3 were significant only in Model 3 (see Supplementary Tables 4 and 5, Supplementary Figures 2 and 3). The VPA-increasing G allele at the NEGR1 SNP (rs3101340) is 317 in LD ($r^2=0.60$) with a previously identified variant (rs3101336-C) associated with increased BMI ⁶⁰. 318 319 Although different individual CADM2 SNPs were identified across models and with MVPA, these SNPs 320 were in strong to moderate LD, suggesting allelic heterogeneity at this locus (see Supplementary Figures 321 4 and 5). Among all five VPA-associated SNPs, only two had consistent trends of association with BMI 322 in the direction expected based on the negative phenotypic correlation. Notably, the PA-increasing allele at the CADM2 SNP was associated with higher BMI ($p=6.8 \times 10^{-7}$; see Table 2). In a sensitivity analysis 323 324 in which all individuals who did not self-report at least 3 days/week at 25 minutes/day of VPA were 325 included as controls (as opposed to only individuals reporting 0 days of VPA), results were similar but 326 generally weaker despite a larger sample size, with a chip heritability of approximately one half of that for the analysis using more extreme controls ($h^2=0.026$ (0.002) vs. 0.054 (0.003); see Supplementary Figure 327 328 6).

Six loci were significantly associated with SSOE using Model 1(see Table 2 and Figure 1). *CADM2* was the most strongly associated locus. Four loci (*CADM2*, *AKAP10*, *CTC-436P18.1*, and *SIPA1L1*) were consistently significantly associated in both Models 1 and 3. Locus *GATAD2A* was associated with SSOE only in Model 1, and *HIST1H1D* was associated with SSOE only in Models 1 and 2 (see Supplementary Tables 4 and 5, Supplementary Figures 2 and 3). The C allele at a variant in *FTO* (rs55872725) was associated with lower odds of SSOE only upon adjustment for BMI (Model 3). This allele is in complete LD ($r^2=1$) with the T allele of the well-established variant (rs1558902) associated

336	with lower BMI. Correction for collider bias, shown in Supplementary Table 5, reduces the strength of
337	this <i>FTO</i> SNP association with SSOE from $p=7.0 \times 10^{-13}$ to $p=3.0 \times 10^{-3}$ in the unbiased model, with the
338	same direction of association. Among all five SSOE-associated SNPs, three showed consistent trends of
339	association with BMI in the direction expected based on the negative phenotypic correlation. Notably, the
340	PA-increasing allele at the CADM2 SNP was associated with higher BMI ($p=1.2 \times 10^{-7}$; see Table 2).

341 Upon meta-analysis of the 9 top hits for MVPA with the results in ARIC, 8 were genome-wide 342 significant ($p < 5 \times 10^{-9}$), including the *APOE*, *EXOC4*, and *CADM2* variants (see Supplementary Table 6). 343 The direction of effect was consistent across ARIC and the UK Biobank for all 9 loci. For both VPA and 344 SSOE, we observed consistent directions of effect for 3 out of the 5 top loci (see Supplementary Table 7).

345

346 Accelerometer-based PA in UK Biobank

347 There were approximately 91,000 individuals with non-missing accelerometry data. Approximately 6,500 individuals were excluded because of insufficient wear-time. These excluded 348 individuals were slightly more likely to be male (p=0.03), younger ($p<2 \times 10^{-16}$) and have a higher BMI 349 $(p<2 \times 10^{-16})$. 'Chip heritability' estimates for the accelerometry-based measures were higher (14% for 350 351 average acceleration, and 11% for fraction of accelerations >425 mg) than for self-report PA measures 352 (Supplementary Table 3). Although Q-Q plots show some evidence of inflation (see Supplementary Figure 1), LD score regression intercepts (<1.008) suggest no significant systematic inflation of test 353 354 statistics.

Using Model 1, two loci were found to be significantly associated with average acceleration and one locus with fraction of accelerations >425 mg (see Table 2 and Figure 1). Only the *CRHR1* locus remained genome-wide significant in Model 3. The *RIT2/SYT4* locus was only associated with average acceleration in Model 1, and the *PML* locus was only significant with fraction of accelerations >425 mg in Models 1 and 2 (see Table 2, Supplementary Tables 4 and 5, and Supplementary Figures 1 and 2).

- 360 In general, with the exception of the *FTO* locus as mentioned above, we observed minimal 361 evidence of collider bias because of adjustment for BMI (see Supplementary Table 5).
- 362
- 363 *Consistent loci across self-report and accelerometry*

We found a total of seven loci associated (p < 5 × 10⁻⁵) with both self-report and accelerometry measures using Model 1 (see Supplementary Table 8). For MVPA and average acceleration, we identified four loci (*MEF2C*, *RCOR1*, *STOML1* and *CRHR1*). For VPA, SSOE, and fraction of acceleration >425 mg, we identified three loci (*CADM2*, *PML*, and *CCNE1*). However, among these, only *RCOR1*, *CRHR1*, and *CADM2* remained significant in Models 2 and 3 (see Supplementary Table 9).

369

370 Follow-up analyses

We found highly significant negative genetic correlations of both MVPA and VPA with 371 372 intelligence (see Figure 2). We also found significant positive genetic correlations of MVPA and VPA 373 with early-morning chronotype and psychiatric diseases, and negative correlations with body fat and waist 374 circumference. In contrast to the genetic correlations with MVPA and VPA, we found a positive 375 correlation of SSOE with years of schooling and intelligence. We also found positive genetic correlations 376 with age at first birth and negative correlations with neuroticism, depressive symptoms, insomnia, body 377 fat, and waist circumference (see Figure 2). Among the accelerometry-based measures, we found highly significant negative genetic correlations of PA with waist and hip circumference, body fat, obesity, BMI, 378 379 and other cardiometabolic traits (see Figure 3). Genetic correlation results remained very similar with 380 GWAS models including activity at work and TDI as covariates, except for generally attenuated 381 correlations with intelligence in the model with all covariates except BMI (Model 2, see Figure 2). 382 However, upon the addition of BMI as a covariate (Model 3), the direction of genetic correlation between

PA and obesity traits was reversed (see Figures 2 and 3). As we note below, caution may be warranted in
interpreting results from these adjusted models, especially since we observed a reversal of direction of
correlations with obesity-related traits upon BMI adjustment.

386 Gene-based tissue enrichment analysis using data from GTEx generally implicate the brain and 387 pituitary gland as primary tissues through which the PA-associated loci may exert their effects (see Figure 388 4). Examination of more specific tissues reveals several different parts of the brain. The cerebellum and 389 the frontal cortex appear most consistently implicated across the five PA phenotypes (see Supplementary 390 Figures 7 and 8). Results remained similar when using Models 2 and 3. Gene-set analyses reveal several 391 nervous system gene sets across the PA phenotypes, but the only significant gene set after correction for 392 multiple testing was for enrichment of genes involved in the synapse, for SSOE (see Supplementary Table 393 10).

394 Look-up of top SNPs in the Oxford Brain Imaging server suggests associations with mental health, body composition, educational attainment, sleep and psychiatric traits, in addition to physical 395 396 activity traits. The rs62253088-T PA-increasing allele in CADM2 was also associated with decreased 397 neuroticism, and decreased self-reported nervous and anxious feelings. The rs7804463-C allele (EXOC4) 398 associated with less PA is also associated with higher self-reported time spent using computer, fewer 399 mood swings, and greater daytime dozing. The rs55657917-G allele (CRHR1) associated with greater PA 400 was also associated with greater neuroticism, lower pulmonary function, greater sense of hurt feelings, 401 and fewer naps during the day (see Supplementary Figure 9). Gene expression analyses imply several 402 different tissues including the brain, adrenal and thyroid gland, skeletal muscle and adipose tissue, among others (see Supplementary Tables 11 and 12). Genes that we identified have previously been implicated in 403 404 a range of other traits and diseases, including behavioral, cardiometabolic, psychiatric, educational 405 attainment, and pulmonary function traits (see Supplementary Table 11).

406

407 Discussion

Given the importance of PA for many dimensions of health, and its' reported heritability, we 408 409 sought to identify genetic variants that are associated with engagement in habitual physical activity, while 410 considering important covariates such as season, physical activity at work, socio-economic status, and 411 BMI. In the UK Biobank, with a very large sample size and multiple measures of PA, we identified ten loci that were genome-wide significant for at least one of the PA measures and were consistently 412 associated with the respective PA measure in both the basic (Model 1) and the fully adjusted model 413 414 (Model 3). We also identified three loci that exhibit consistent associations across both self-report and 415 accelerometry measures.

416 Although most of the identified loci were novel, the genes that they were in or in proximity to 417 have previous links to various diseases and traits (see Supplementary Table 11). Among these, variants in 418 *CADM2*, a gene which encodes cell adhesion molecule 2, and is primarily expressed in the brain, has been 419 linked to BMI variation 60,61 , risk-taking behavior and other personality and behavioral traits $^{62-65}$, as well as with information processing speed ⁶⁶. The previously identified BMI-associated variant (rs13078960) 420 60,61 is not in LD (r²<0.07) with the PA–associated variants that we identified, except for the SSOE-421 422 increasing allele at rs62253088 being positively, but weakly, correlated with the BMI-increasing allele at rs13078960 ($r^2=0.2$). The previously identified G alleles at both rs13084531 ⁶⁴ and rs57401290 ⁶³ 423 associated with risk taking are weakly to moderately correlated ($r^2=0.52$ and 0.23, respectively) with the 424 425 SSOE-increasing allele that we identified at rs62253088 (see Supplementary Figure 5). It thus appears 426 that this locus may be important for several personality, cognitive, and behavioral traits, and may 427 potentially be involved in reward systems. We found that the association of CADM2 variants with PA in 428 Model 1 was unaffected by the inclusion of BMI as a covariate. Furthermore, the PA-increasing alleles at this locus are associated with higher BMI, in the opposite direction of the phenotypic correlation. Along 429 430 these lines, but with slightly deviating results, a recent study in mice found that *Cadm2*-deficient mice exhibit increased locomotor activity along with reduced adiposity ⁶⁷. Finally, it is important to note that 431

this locus appeared to be more strongly associated with VPA and SSOE as compared to MVPA. It may
thus be specifically implicated in the proclivity to engage in intentional high-intensity exercise and sport,
as opposed to more general and/or lower intensity PA.

435 Interestingly, a well-established variant in APOE (part of APOE ɛ4 allele), strongly implicated in Alzheimer's disease ^{47,68}, exhibited one of the strongest associations with PA, and remained significant 436 437 upon meta-analysis. How the APOE risk allele is associated with greater PA is not clear. An exercise training study found that APOE ɛ4 carriers had a greater increase in aerobic capacity ⁶⁹. This increased 438 439 responsivity to PA could reinforce engagement in PA or be related to other factors that influence the 440 tendency to engage in PA. Although another potential explanation for our finding is that individuals with a known family history of dementia or Alzheimer's disease purposefully increase their levels of PA in the 441 hope of reducing risk for developing the disease, our findings do not suggest that individuals with a first-442 443 degree family history of Alzheimer's disease or dementia engage in higher levels of PA. However, we 444 could not rule out the possibility of selection bias. Since the association was markedly stronger among 445 older participants and the frequency of the risk allele decreased slightly with age from 40 to 69 years, it 446 may be that the older APOE risk allele carriers are particularly enriched for healthy lifestyles. It is 447 important to note that an association between APOE and PA may lead to spurious gene-environment interactions ⁷⁰, and thus further work is needed to confirm and clarify this observed association. 448

Among the other specific loci that we identified, we did not find any of the loci that have 449 previously been linked to PA^{15,16}. The pattern of tissue-specific expression of the identified genes (or 450 451 nearby genes) varied quite widely, although we observe an overall enrichment of genes expressed in the 452 brain and pituitary gland, and more specifically in the cerebellum and frontal cortex. The cerebellum is 453 involved in the precise coordination of motor activity, and the frontal cortex is involved in decision 454 making, personality expression, and executive function. We also observed an enrichment of genes 455 involved in the nervous system, including in the synapse. Other than CADM2 and APOE, the other 456 identified genes have been previously associated with a wide variety of traits, including intelligence,

457 cognitive decline, blood cell traits, schizophrenia, and obesity among others. They are also expressed in a 458 wide variety of tissues. We suspect that there are many potential paths leading to differences in PA. These 459 could include response to exercise, personality, hormonal levels, body composition. Future research is 460 needed to help elucidate the genetic underpinnings of these proximate mechanisms, and to provide insight 461 into how each of the identified loci contribute to habitual PA behavior.

462 Previous studies have shown that BMI-associated genetic variants are also associated with PA ^{71,72}. Similarly, we found an overall shared genetic basis for PA (especially accelerometer-based 463 464 measures) with several obesity-related traits (in the expected negative direction of association), 465 suggesting that genetic risk for obesity coincides with genetic propensity for lower PA. There is likely a complex set of genetic, environmental, and phenotypic factors that connect PA and obesity across the 466 467 lifespan, that involve many pleiotropic genetic factors. Although we identified previously identified BMI-468 associated genes (FTO and NEGR1) in Model 3, these results appear to be at least partly attributed to 469 collider bias. Similarly, for all five PA traits, we observed that the direction of the genetic correlation 470 between PA and obesity-related traits is reversed when BMI is included as a covariate, despite a strong 471 negative phenotypic correlation between PA and BMI. In addition to the caution warranted by potential 472 collider bias which occurs when one controls for a variable (i.e. BMI) that is caused by both another covariate (i.e. gene) and the outcome variable in the model (i.e. PA)^{46,73}, caution is also warranted in 473 interpreting results of genetic associations in which heritable covariates are included in the association 474 model ⁷⁴. On the other hand, however, adjustment for the covariates may help identify/confirm loci that 475 may or may not be spuriously associated with PA because of confounding via correlated factors. 476

Our study is strengthened by the large sample size, the availability of both self-reported and
objective accelerometer-based measures of PA, and the availability of a replication cohort from a
different country. However, we note several limitations. Given the relatively small genetic effect sizes
observed for these PA phenotypes, we were insufficiently powered to formally replicate associations in
the much smaller sample size in ARIC. Our inability to firmly replicate these findings does detract from

482 our confidence in the generalizability of the UK Biobank results. It could be, for example, that the genetic 483 architecture and implicated genes for habitual PA differ widely by country, as well as by age group (see 484 below), and by PA measure. Additional and larger replication studies are thus needed to more robustly 485 identify PA-associated loci. Furthermore, the self-report measures of PA used in ARIC differed from the 486 one used in the UK Biobank. The ARIC measure focuses more explicitly on leisure-time PA and 487 incorporates more detailed information about PA, such as the frequency of sweating and a comparison of 488 PA frequency with others of the same age. Both self-reported and accelerometer-based measures of PA 489 are subject to various biases. Since both the UK Biobank and ARIC cohorts are comprised of middle- to 490 late-middle-aged adults, the extent to which these results generalize to other age groups is not known. For 491 example, it has been shown that the heritability of PA changes with age, with a decreased heritability in older ages ⁷⁵. Thus our power to detect strong effects may have been compromised by the older age range 492 493 in both cohorts that we examined. Furthermore, our results may not generalize to other ethnic/racial 494 groups.

495 In conclusion, our study revealed several important new findings. Effect sizes were generally 496 very small, given the very large sample size, the common variants identified, and the modest p-values. 497 We identified over 20 variants, most of which were novel, and thus need further study. We identified a 498 variant in CADM2, a gene previously been found to be associated with obesity, as well as several 499 personality traits. We also identified a well-established major risk variant for Alzheimer's disease in 500 APOE, which was associated with higher levels of PA, suggesting the need for follow up studies to help 501 clarify the nature of this observed association and its implication for understanding gene-environment interactions related to PA. We found genetic correlation of PA with obesity ^{60,76}, psychiatric ^{77,78}, 502 educational ⁷⁹, chronotype ⁸⁰, and other traits. Genetic correlations with obesity may indicate extensive 503 504 pleiotropy involving genes associated with both PA and obesity. The identification of genetic factors that 505 predispose to high or low levels of PA will lead to a better understanding of the biological mechanisms 506 underlying these proclivities. It may also lead to the identification of individuals less likely to engage in

and/or adhere to PA, and consequently to the development of tailored behavioral strategies. Finally, the
integration of genetic characteristics with lifestyle and environmental information may point to how
lifestyle/environmental factors interact with genetic factors to influence levels of PA.

510

511 Acknowledgments

512 This research was conducted using the UK Biobank Resource under Application Number 15678.

513 We thank the participants and organizers of the UK Biobank. We also thank the participants and

organizers of the ARIC study. Data from ARIC was obtained from dbGaP through accession number

515 phs000280.v2.p1. The authors would like to acknowledge support from the National Institute of Diabetes

and Digestive and Kidney Diseases grant (K01DK095032), the National Institute on Aging (AG019610),

517 the State of Arizona and Arizona Department of Health Services (ADHS), and the McKnight Brain

518 Research Foundation. The funders had no role in study design, data collection and analysis, decision to

519 publish, or preparation of the manuscript.

520

521 Atherosclerosis Risk in Communities

522 The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by

523 National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C,

524 HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C,

525 HHSN268201100011C, and HHSN268201100012C). Funding for GENEVA was provided by National

526 Human Genome Research Institute grant U01HG004402 (E. Boerwinkle). The authors thank the staff and

527 participants of the ARIC study for their important contributions.

528 LDHUB Acknowledgements

529	We gratefully acknowledge all the studies and databases that made GWAS summary data available:
530	ADIPOGen (Adiponectin genetics consortium), C4D (Coronary Artery Disease Genetics Consortium),
531	CARDIoGRAM (Coronary ARtery DIsease Genome wide Replication and Meta-analysis), CKDGen
532	(Chronic Kidney Disease Genetics consortium), dbGAP (database of Genotypes and Phenotypes),
533	DIAGRAM (DIAbetes Genetics Replication And Meta-analysis), ENIGMA (Enhancing Neuro Imaging
534	Genetics through Meta Analysis), EAGLE (EArly Genetics & Lifecourse Epidemiology Eczema
535	Consortium, excluding 23andMe), EGG (Early Growth Genetics Consortium), GABRIEL (A
536	Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European
537	Community), GCAN (Genetic Consortium for Anorexia Nervosa), GEFOS (GEnetic Factors for
538	OSteoporosis Consortium), GIANT (Genetic Investigation of ANthropometric Traits), GIS (Genetics of
539	Iron Status consortium), GLGC (Global Lipids Genetics Consortium), GPC (Genetics of Personality
540	Consortium), GUGC (Global Urate and Gout consortium), HaemGen (haemotological and platelet traits
541	genetics consortium), HRgene (Heart Rate consortium), IIBDGC (International Inflammatory Bowel
542	Disease Genetics Consortium), ILCCO (International Lung Cancer Consortium), IMSGC (International
543	Multiple Sclerosis Genetic Consortium), MAGIC (Meta-Analyses of Glucose and Insulin-related traits
544	Consortium), MESA (Multi-Ethnic Study of Atherosclerosis), PGC (Psychiatric Genomics Consortium),
545	Project MinE consortium, ReproGen (Reproductive Genetics Consortium), SSGAC (Social Science
546	Genetics Association Consortium) and TAG (Tobacco and Genetics Consortium), TRICL
547	(Transdisciplinary Research in Cancer of the Lung consortium), UK Biobank. We gratefully acknowledge
548	the contributions of Alkes Price (the systemic lupus erythematosus GWAS and primary biliary cirrhosis
549	GWAS) and Johannes Kettunen (lipids metabolites GWAS).

Supplementary information is available at IJO's website

552 References

553 1. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiol. 2013;

- US Surgeon General. Physical Activity and Health: A Report of the Surgeon General. S/N 017 023-00196-5. 1996.
- Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports
 Med [Internet]. 2009 Jan 9;43(1):1 LP-2.
- Kaplan GA, Strawbridge WJ, Cohen RD, Hungerford LR. Natural history of leisure-time physical
 activity and its correlates: associations with mortality from all causes and cardiovascular disease
 over 28 years. Am J Epidemiol. 1996;
- 5. Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW. Correlates of physical activity:
 Why are some people physically active and others not? Lancet. 2012. p. 258–71.
- 563 6. Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults' participation in
 564 physical activity: review and update. Med Sci Sport Exerc. 2002;
- den Hoed M, Brage S, Zhao JH, Westgate K, Nessa A, Ekelund U, et al. Heritability of objectively
 assessed daily physical activity and sedentary behavior. Am. J. Clin. Nutr. 2013. p. 1317–25.
- 567 8. Gielen M, Westerterp-Plantenga MS, Bouwman FG, Joosen AMCP, Vlietinck R, Derom C, et al.
- 568 Heritability and genetic etiology of habitual physical activity: a twin study with objective
- 569 measures. [Internet]. Genes Nutr. 2014. p. 415.
- 570 9. Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skytthe A, et al. Genetic influences
 571 on exercise participation in 37.051 twin pairs from seven countries. PLoS One. 2006.
- Joosen AMCP, Gielen M, Vlietinck R, Westerterp KR. Genetic analysis of physical activity in
 twins. Am J Clin Nutr. United States; 2005 Dec;82(6):1253–9.

574	11.	Pérusse L, Tremblay A, Leblanc C, Bouchard C. Genetic and environmental influences on level of
575		habitual physical activity and exercise participation. Am J Epidemiol. 1989;
576	12.	Lauderdale DS, Fabsitz R, Meyer JM, Sholinsky P, Ramakrishnan V, Goldberg J. Familial
577		determinants of moderate and intense physical activity: a twin study. Med Sci Sports Exerc.
578		United States; 1997 Aug;29(8):1062-8.
579	13.	Kaprio J, Koskenvuo M, Sarna S. Cigarette smoking, use of alcohol, and leisure-time physical
580		activity among same-sexed adult male twins. Prog Clin Biol Res. United States; 1981;69 Pt C:37-
581		46.
582	14.	Thompson PD, Tsongalis GJ, Ordovas JM, Seip RL, Bilbie C, Miles M, et al. Angiotensin-
583		converting enzyme genotype and adherence to aerobic exercise training. Prev Cardiol. 2006;
584	15.	Herring MP, Sailors MH, Bray MS. Genetic factors in exercise adoption, adherence and obesity.
585		Obes Rev. England; 2014 Jan;15(1):29–39.
586	16.	Wilkinson A V., Gabriel KP, Wang J, Bondy ML, Dong Q, Wu X, et al. Sensation-seeking genes
587		and physical activity in youth. Genes, Brain Behav. 2013;
588	17.	Caldwell Hooper AE, Bryan AD, Hagger MS. What keeps a body moving? The brain-derived
589		neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J
590		Behav Med. United States; 2014 Dec;37(6):1180–92.
591	18.	Lightfoot JT. Current understanding of the genetic basis for physical activity. J Nutr. United
592		States; 2011 Mar;141(3):526–30.
593	19.	De Moor MHM, Liu Y-J, Boomsma DI, Li J, Hamilton JJ, Hottenga J-J, et al. Genome-wide
594		association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc.
595		United States; 2009 Oct;41(10):1887–95.

596	20.	Kim J, Min H, Oh S, Kim Y, Lee AH, Park T. Joint identification of genetic variants for physical
597		activity in Korean population. Int J Mol Sci. 2014;15(7):12407-21.

- Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open Access
 Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old
 Age. PLoS Med. Public Library of Science; 2015;12(3).
- 601 22. The Aric Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and
 602 objectives. The ARIC investigators. Am J Epidemiol [Internet]. 1989;129(4):687–702.
- Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International
 physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc
 [Internet]. 2003 Aug [cited 2013 Aug 6];35(8):1381–95.
- 4. Ipaq, Sci M, Med S, Hardcastle S, Blake N, Hagger MS, et al. Guidelines for Data Processing and
 Analysis of the International Physical Activity Questionnaire (IPAQ) Short Form. J Am Diet
 Assoc. 2002:
- 609 25. Ekelund U, Sepp H, Brage S, Becker W, Jakes R, Hennings M, et al. Criterion-related validity of
- 610 the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adults.
 611 Public Health Nutr. 2006;
- 61226.American Heart Association. American Heart Association Recommendations for Physical Activity
- 613 in Adults [Internet]. 2016 [cited 2003 Aug 20]. Available from:
- 614 http://www.heart.org/HEARTORG/HealthyLiving/PhysicalActivity/FitnessBasics/American-
- 615 Heart-Association-Recommendations-for-Physical-Activity-in-
- 616 Adults_UCM_307976_Article.jsp#.WqF2eOjwbIV

617 27. Doherty A, Jackson D, Hammerla N, Plötz T, Olivier P, Granat MH, et al. Large Scale Population
618 Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study.

619		Buchowski M, editor. PLoS One [Internet]. Public Library of Science; 2017 Feb 1 [cited 2017 Apr
620		17];12(2):e0169649.
621	28.	Hildebrand M, Van Hees VT, Hansen BH, Ekelund U. Age group comparability of raw
622		accelerometer output from wrist-and hip-worn monitors. Med Sci Sports Exerc. 2014;
623	29.	Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical
624		activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.
625	30.	Folsom AR, Arnett DK, Hutchinson RG, Liao F, Clegg LX, Cooper LS. Physical activity and
626		incidence of coronary heart disease in middle-aged women and men. Med Sci Sport Exerc.
627		1997;29(7):901–9.
628	31.	Richardson MT, Ainsworth BE, Wu HC, Jacobs DRJ, Leon AS. Ability of the Atherosclerosis
629		Risk in Communities (ARIC)/Baecke Questionnaire to assess leisure-time physical activity. Int J
630		Epidemiol. England; 1995 Aug;24(4):685–93.
631	32.	Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data
632		on ~500,000 UK Biobank participants. bioRxiv [Internet]. 2017 Jul 20;
633	33.	O'Connell J, Sharp K, Shrine N, Wain L, Hall I, Tobin M, et al. Haplotype estimation for biobank-
634		scale data sets. Nat Genet. 2016;
635	34.	Consortium GP, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An
636		integrated map of genetic variation from 1,092 human genomes. Nature [Internet]. Nature
637		Publishing Group; 2012;491(7422):56–65.
638	35.	McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel
639		of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;
640	36.	UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature.

641 2015.

642	37.	Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, et al. Fast Principal-
643		Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am J
644		Hum Genet. 2016;
645	38.	Howie B, Marchini J, Stephens M, Chakravarti A. Genotype Imputation with Thousands of
646		Genomes. G3 GenesGenomesGenetics [Internet]. Genetics Society of America; 2011;1(6):457-70.
647	39.	Townsend P. Deprivation. J Soc Policy [Internet]. 2009/01/01. Cambridge University Press;
648		1987;16(2):125–46.
649	40.	Smith GD, Whitley E, Dorling D, Gunnell D. Area based measures of social and economic
650		circumstances: cause specific mortality patterns depend on the choice of index. J Epidemiol
651		Community Health. 2001;
652	41.	Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, et al.
653		Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet.
654		United States; 2015 Mar;47(3):284–90.
655	42.	Loh P-R, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed model association for biobank-scale
656		data sets. bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2017;
657	43.	Klarin D, Zhu QM, Emdin CA, Chaffin M, Horner S, McMillan BJ, et al. Genetic analysis in UK
658		Biobank links insulin resistance and transendothelial migration pathways to coronary artery
659		disease. Nat Genet. United States; 2017 Sep;49(9):1392-7.
660	44.	Klarin D, Emdin CA, Natarajan P, Conrad MF, Kathiresan S. Genetic Analysis of Venous
661		Thromboembolism in UK Biobank Identifies the ZFPM2 Locus and Implicates Obesity as a
662		Causal Risk FactorCLINICAL PERSPECTIVE. Circ Cardiovasc Genet [Internet]. American Heart

663 Association, Inc.; 2017;10(2).

- 45. Fadista J, Manning AK, Florez JC, Groop L. The (in)famous GWAS P-value threshold revisited
 and updated for low-frequency variants. Eur J Hum Genet. 2016;24:1202–5.
- 46. Yaghootkar H, Bancks MP, Jones SE, McDaid A, Beaumont R, Donnelly L, et al. Quantifying the
 extent to which index event biases influence large genetic association studies. Hum Mol Genet.
 England; 2017 Mar;26(5):1018–30.
- 669 47. Saunders AM, Strittmatter WJ, Schmechel D, St. George-Hyslop PH, Pericak-Vance MA, Joo SH,

et al. Association of apolipoprotein E allele ε4 with late-onset familial and sporadic alzheimer's
disease. Neurology. 1993;

48. Lahoz C, Schaefer EJ, Cupples LA, Wilson PW, Levy D, Osgood D, et al. Apolipoprotein E
genotype and cardiovascular disease in the Framingham Heart Study. Atherosclerosis. Ireland;
2001 Feb;154(3):529–37.

49. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC. Apolipoprotein E
polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol. United States; 2002
Mar;155(6):487–95.

- 50. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R Package for Causal Mediation
 Analysis. J Stat Softw [Internet]. 2014;59(5):1–38.
- 51. Team RDC. R: A language and environment for statistical computing. 2011.
- 52. Chyou PH. A simple and robust way of concluding meta-analysis results using reported P values,
 standardized effect sizes, or other statistics. Clin. Med. Res. 2012. p. 219–23.
- 53. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. FUMA: Functional mapping and
 annotation of genetic associations. bioRxiv. 2017 Feb;

- 685 54. Consortium TGte. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 686 regulation in humans. Sci [Internet]. 2015 May 8;348(6235):648-60. 687 55. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. Tang H, editor. PLOS Comput Biol [Internet]. Public Library of Science; 2015 Apr 688 689 17 [cited 2018 Mar 5];11(4):e1004219. 690 56. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a 691 centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. 692 Bioinformatics [Internet]. 2017;33(2):272. 693 Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic 694 57.
- 695 correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41.
- 58. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Consortium SWG of the PG, et al.
- LD Score regression distinguishes confounding from polygenicity in genome-wide association
 studies. Nat Genet [Internet]. Nature Publishing Group, a division of Macmillan Publishers
 Limited. All Rights Reserved.; 2015 Mar;47(3):291–5.
- 59. Elliott L, Sharp K, Alfaro-Almagro F, Douaud G, Miller K, Marchini J, et al. The genetic basis of
 human brain structure and function: 1,262 genome-wide associations found from 3,144 GWAS of
 multimodal brain imaging phenotypes from 9,707 UK Biobank participants. bioRxiv [Internet].
 Cold Spring Harbor Laboratory; 2017;
- 60. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass
 index yield new insights for obesity biology. Nature [Internet]. Nature Publishing Group, a
 division of Macmillan Publishers Limited. All Rights Reserved.; 2015 Feb 12;518(7538):197–206.
- 61. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association

708		analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet
709		[Internet]. Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute,
710		Cambridge, Massachusetts, USA; 2010 Nov;42(1546–1718 (Electronic)):937–48.
711	62.	Boutwell B, Hinds D, Tielbeek J, Ong KK, Day FR, Perry JRB. Replication and characterization
712		of CADM2 and MSRA genes on human behavior. Heliyon. England; 2017 Jul;3(7):e00349.
713	63.	Day FR, Helgason H, Chasman DI, Rose LM, Loh P-R, Scott RA, et al. Physical and
714		neurobehavioral determinants of reproductive onset and success. Nat Genet [Internet]. Nature
715		Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2016
716		Jun;48(6):617–23.
717	64.	Strawbridge RJ, Ward J, Cullen B, Tunbridge EM, Hartz S, Bierut L, et al. Genome-wide analysis
718		of risk-taking behaviour and cross-disorder genetic correlations in 116,255 individuals from the
719		UK Biobank cohort. bioRxiv [Internet]. 2017 Aug 16;
720	65.	Clarke T-K, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, et al. Genome-wide
721		association study of alcohol consumption and genetic overlap with other health-related traits in
722		UK Biobank (N=112 117). Mol Psychiatry. England; 2017 Oct;22(10):1376-84.
723	66.	Ibrahim-Verbaas CA, Bressler J, Debette S, Schuur M, Smith A V, Bis JC, et al. GWAS for
724		executive function and processing speed suggests involvement of the CADM2 gene [Internet].
725		Mol Psychiatry. Macmillan Publishers Limited; 2016. p. 189–97.
726	67.	Yan X, Wang Z, Schmidt V, Gauert A, Willnow TE, Heinig M, et al. Cadm2 regulates body
727		weight and energy homeostasis in mice. Mol Metab [Internet]. Elsevier GmbH; 2017;1-9.
728	68.	Pericak-Vance MA, Bebout JL, Gaskell Jr. PC, Yamaoka LH, Hung WY, Alberts MJ, et al.
729		Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage.
730		AmJHumGenet. 1991;

731	69.	Thompson PD, Tsongalis GJ, Seip RL, Bilbie C, Miles M, Zoeller R, et al. Apolipoprotein e
732		genotype and changes in serum lipids and maximal oxygen uptake with exercise training.
733		Metabolism [Internet]. 2004 Feb [cited 2017 Aug 16];53(2):193-202.
734	70.	Dudbridge F, Fletcher O. Gene-environment dependence creates spurious gene-environment
735		interaction. Am J Hum Genet. United States; 2014 Sep;95(3):301-7.
736	71.	Lee H, Ash GI, Angelopoulos TJ, Gordon PM, Moyna NM, Visich PS, et al. Obesity-Related
737		Genetic Variants and their Associations with Physical Activity [Internet]. Sport. Med Open. 2015.
738		p. 34.
739	72.	Richmond RC, Davey Smith G, Ness AR, den Hoed M, McMahon G, Timpson NJ. Assessing
740		Causality in the Association between Child Adiposity and Physical Activity Levels: A Mendelian
741		Randomization Analysis. PLoS Med. 2014.
742	73.	Day FR, Loh P-R, Scott RA, Ong KK, Perry JR. A Robust Example of Collider Bias in a Genetic
743		Association Study. Am J Hum Genet [Internet]. Elsevier; 2016 Feb 4;98(2):392–3.
744	74.	Aschard H, Vilhjalmsson BJ, Joshi AD, Price AL, Kraft P. Adjusting for heritable covariates can
745		bias effect estimates in genome-wide association studies. Am J Hum Genet. United States; 2015
746		Feb;96(2):329–39.
747	75.	Vink JM, Boomsma DI, Medland SE, de Moor MHM, Stubbe JH, Cornes BK, et al. Variance
748		components models for physical activity with age as modifier: a comparative twin study in seven
749		countries. Twin Res Hum Genet. England; 2011 Feb;14(1):25-34.
750	76.	Shungin D, Winkler T, Croteau-Chonka D, Ferreira T, Mägi R, Lakka T, et al. New genetic loci
751		link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187-96.
752	77.	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility

753		locus near ODZ4. Nat Genet. United States; 2011 Sep;43(10):977-83.
754	78.	Biological insights from 108 schizophrenia-associated genetic loci. Nature. England; 2014
755		Jul;511(7510):421–7.
756	79.	Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, et al. Genome-wide
757		association meta-analysis of 78,308 individuals identifies new loci and genes influencing human
758		intelligence. Nat Genet. United States; 2017 Jul;49(7):1107–12.
759	80.	Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. Genome-Wide
760		Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration
761		Loci. PLoS Genet. United States; 2016 Aug;12(8):e1006125.

764 Figure Legends

Figure 1: Manhattan plot of GWAS for self-reported MVPA and VPA, strenuous sports or other exercises (abbreviated as SS or Other Exer.), and for accelerometer-based average accelerations and fraction of accelerations > 425 mg. Negative log10-transformed p-value for each SNP is plotted by chromosome and position (x-axis). The red horizontal line represents the threshold for genome-wide significant associations ($p < 5 \times 10^{-9}$).

770

771 Figure 2: Genetic correlation of self-reported PA variables with other traits and diseases across the three 772 statistical models employed. Traits/diseases shown are those that are in the top 10 of genetically 773 correlated traits/diseases (according to p-value) for at least one of the 3 models. Traits/diseases are 774 ordered from top to bottom in order of increasing p-value for Model 1. Horizontal position of bars 775 corresponds to the genetic correlation (r_g) between PA and the respective trait/disease. Error bars 776 represent 95% confidence intervals for rg estimates. Bright green bars represent traits that showed a correlation with p-value $<2.5 \times 10^{-4}$, and light green bars represent traits with genetic correlation p<0.05. 777 778 We excluded highly redundant traits (e.g. obesity, overweight) after leaving higher ranked one in.

779

780 Figure 3: Genetic correlation of accelerometry-based PA variables with other traits and diseases across 781 the three statistical models employed. Traits/diseases shown are those that are in the top 10 of genetically 782 correlated traits/diseases (according to p-value) for at least one of the 3 models. Traits/diseases are 783 ordered from top to bottom in order of increasing p-value for Model 1. Horizontal position of bars corresponds to the genetic correlation (r_g) between PA and the respective trait/disease. Error bars 784 785 represent 95% confidence intervals for rg estimates. Bright green bars represent traits that showed a correlation with p-value $<2.5 \times 10^{-4}$, and light green bars represent traits with genetic correlation p<0.05. 786 We excluded highly redundant traits (e.g. obesity, overweight) after leaving higher ranked one in. 787

- **Figure 4:** Results of gene-based enrichment analysis for 30 general tissue types for PA-associated loci.
- 790 Dashed line represents the Bonferroni-corrected significance threshold.

Supplementary Table 1: Association of covariates with five measures of physical activity. Other covariates included in the model (PCs, center, and genotyping chip) are not shown here. The beta coefficient units for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. Beta coefficients for VPA and Stren. Sports or other Exerc. are log-OR. The beta coefficient unit for acceleration average is milli-gravities. The beta coefficient for "Fraction Accel. > 425 mg" is fraction of time.

	MVPA		V	/PA	Stren. Sports	s or other Exerc.	Accel. Average		Fraction Accel. > 425 r	
	Beta	p-value	Beta	p-value	Beta	p-value	Beta	p-value	Beta	p-value
Age	0.012	<2E-16	-0.025	<2E-16	-0.04	<2E-16	-0.25	<2E-16	-0.035	<2E-16
Sex	0.055	<2E-16	0.47	<2E-16	0.21	<2E-16	-0.28	1.68E-8	0.30	<2E-16
BMI	-0.028	<2E-16	-0.068	<2E-16	-0.066	<2E-16	-0.47	<2E-16	-0.047	<2E-16
Season	0.047	<2E-16	0.078	<2E-16	0.066	<2E-16	0.67	<2E-16	0.033	<2E-16
Work - Walk/Stand	7.69E-03	0.0002	-0.048	<2E-16	-0.058	<2E-16	0.49	<2E-16	0.031	4.80E-15
Work - Physical activity	0.400	<2E-16	0.499	<2E-16	-0.17	<2E-16	0.98	<2E-16	0.031	2.74E-07
TDI	-5.35E-03	<2E-16	-0.046	<2E-16	-0.086	<2E-16	-0.12	<2E-16	-0.019	<2E-16

BMI: body mass index, TDI: Townsend deprivation index

Supplementary Table 2: Phenotypic correlation (Pearson's product-moment correlation/Spearman's rho are shown for continuous variable correlations, phi coefficient is shown for correlation between two dichotomous variables, and point-biserial correlations are shown for correlations between a continuous and a dichotomous variable) among the five different PA measures. All correlations were highly significant.

	MVPA	VPA	Stren. Sports or Other Ex.	Accel. Average	Fract. Accel.>425mg
MVPA		0.65	0.28	0.19/0.22	0.15/0.20
VPA			0.73	0.29	0.32
Stren. Sports or Other Ex.				0.23	0.27
Accel. Average					0.68/0.71

Supplementary Table 3: 'Chip Heritability' and inflation estimates from LD score regression analysis. Ratio is (intercept-1)/(mean(χ^2)-1), which measures the proportion of the inflation in the mean χ^2 that the LD Score regression intercept ascribes to causes other than polygenic heritability.

	h ²	Lambda GC	Mean γ^2	Ratio (s.d.)	Intercept
Self-reported measures					
MVPA	0.046 (0.0023)	1.31	1.35	0.040 (0.009)	1.014
VPA	0.054 (0.0029)	1.25	1.30	0.099 (0.030)	1.030
Stren. Sports or Other Exerc.	0.056 (0.0025)	1.31	1.41	0.058 (0.022)	1.024
Accelerometry					
Average Acceleration	0.143 (0.0083)	1.20	1.26	0.030 (0.032)	1.008
Fraction Accelerations > 425 mg	0.110 (0.0067)	1.15	1.19	0.010 (0.037)	1.002

h²: heritability; GC: genomic control.

Supplementary Table 4: Summary of polymorphisms identified in the UK Biobank using a model additionally adjusted for Townsend Deprivation index, walk or standing at work, and physical activity at work (Model 2). The beta coefficient units for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. The beta coefficient unit for acceleration average is milli-gravities. The beta coefficient unit for "Fraction Accel. > 425 mg" is fraction of time. The beta coefficient units for BMI correspond to residualized BMI after inverse normalization.

									BMI ass	ociation
SNP ID	Chr.	Gene/Nearest Gene	Position	EA	EAF	Beta/OR	p-value	n	Beta	p-value
MVPA									-	
rs429358	19	APOE	45,411,941	Т	0.85	-0.022	2.4E-14	376,789	2.5E-02	2.4E-21
rs169504	6	PBX2	32,153,406	С	0.81	0.018	4.9E-11	376,789	-1.1E-02	1.8E-05
rs4129572	7	EXOC4	133,636,888	Т	0.40	-0.14	2.9E-10	376,789	3.4E-03	8.0E-02
rs3094622	6	RPP21	30,327,952	А	0.86	0.019	3.1E-10	376,789	-9.9E-03	3.8E-04
rs181220614	3	ARHGEF26-AS1	153,806,914	С	0.99	-0.07	8.8E-10	376,789	-1.2E-02	2.6E-01
rs149943	6	ZNF165	28,002,388	G	0.85	0.018	9.9E-10	376,789	-1.2E-02	1.4E-05
rs2988004	9	PAX5	37,044,388	Т	0.55	-0.013	2.8E-09	376,789	-1.1E-02	5.2E-08
Vigorous PA: 2	≥ 3 vs. 0 a	days/week								
rs1248860	3	CADM2	85,015,779	G	0.48	0.96	1.1E-13	260,738	-9.5E-03	6.8E-07
rs2764261	6	FOXO3	108,927,842	А	0.37	1.04	9.3E-11	260,738	-1.8E-02	8.7E-20
rs3781411	10	CTBP2	126,715,436	С	0.88	1.06	2.3E-10	260,738	1.7E-03	5.6E-01
rs12707131	7	EXOC4	133,620,982	А	0.61	1.04	4.6E-10	260,738	-3.9E-03	4.7E-02
rs328919	7	DPY19L1	35,033,983	А	0.69	0.96	9.3E-10	260,738	-6.2E-03	2.7E-03
Strenuous	s sports o	or other exercises: $\geq 2-3$	vs. 0 days/week							
rs62253088	3	CADM2	85,400,801	Т	0.33	1.05	1.5E-20	350,492	1.1E-02	1.2E-07
rs166840	17	AKAP10	19,799,698	G	0.59	1.03	3.0E-10	350,492	5.4E-03	5.8E-03
rs10946808	6	HIST1H1D	26,233,387	А	0.73	0.96	5.5E-10	350,492	1.2E-02	3.6E-08
rs75930676	14	SIPA1L1	71,826,547	Т	0.95	0.93	8.5E-10	350,492	2.1E-03	6.4E-01
rs4865656	5	LOC642366	50,659,788	G	0.62	1.03	3.0E-09	350,492	-9.0E-03	4.6E-06
Accelerometry	– Averag	ge acceleration								
rs55657917	17	CRHR1	43,844,560	Т	0.78	-0.31	1.1E-12	90,986	-3.7E-03	1.1E-01
rs185829646	10	ANKRD22	90,583,705	А	0.998	-2.7	4.8E-09	90,986	-2.6E-02	3.0E-01
Accelerometry	– Fractio	on accelerations > 425 1	milli-gravities							
rs743580	15	PML	74,328,116	А	0.51	0.024	2.5E-09	90,569	-1.2E-02	1.4E-09
rs6433478	2	CIR1	175,241,482	Т	0.46	-0.024	4.9E-09	90,569	9.9E-03	2.8E-07

EA refers to effect allele that Beta/OR corresponds to. EAF: effect allele frequency

Supplementary Table 5: Summary of polymorphisms identified in the UK Biobank using a model additionally adjusted for Townsend Deprivation index, walk or standing at work, physical activity at work, and BMI. The beta coefficient units for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. The beta coefficient unit for acceleration average is milli-gravities. The beta coefficient for "Fraction Accel. > 425 mg" is fraction of time. The beta coefficient units for BMI correspond to residualized BMI after inverse normalization. The collider bias quantification columns refer to estimates for the respective SNP, with (corrected) and without correction (uncorrected) for collider bias resulting from adjustment for BMI. The uncorrected and corrected estimates are from a linear model (for all PA measures) without incorporating the other SNP effects as is implemented in the GWAS analysis by the BOLT-LMM software.

											Collic	ler Bias (Quantif	ication
									BMI ass	ociation	Unco	rrected	Cor	rected
SNP ID	Chr.	Gene/Nearest Gene	Position	EA	EAF	Beta/OR	р	n	Beta	р	Beta	р	Beta	р
MVPA														
rs2988004	9	PAX5	37,044,388	Т	0.56	-0.014	2.4E-11	375,862	-1.1E-02	5.2E-08	-0.013	1.1E-09	-0.012	2.6E-08
rs429358	19	APOE	45,411,941	Т	0.85	-0.019	7.3E-11	375,862	2.5E-02	2.4E-21	-0.019	1.2E-10	-0.022	7.1E-14
rs181220614	3	ARHGEF26-AS1	153,806,914	С	0.99	-0.072	2.3E-10	375,862	-1.2E-02	2.6E-01	-0.076	7.9E-09	-0.073	3.8E-08
rs7804463	7	EXOC4	133,447,651	Т	0.53	0.013	4.1E-10	375,862	-2.9E-04	8.8E-01	0.013	7.6E-10	0.013	1.2E-09
rs4576826	11	C11orf80	66,560,982	Т	0.74	0.015	5.5E-10	375,862	6.3E-03	3.7E-03	0.015	2.3E-10	0.014	4.0E-09
rs13081745	3	CADM2	85,063,983	G	0.33	-0.014	9.6E-10	375,862	-1.5E-02	1.0E-12	-0.014	8.9E-10	-0.012	4.3E-08
rs11913445	22	CCDC188	20,142,513	С	0.83	0.017	2.1E-09	375,862	5.4E-03	3.6E-02	0.017	5.5E-09	0.016	6.1E-08
rs169504	6	PBX2	32,153,406	С	0.81	0.017	1.4E-09	375,862	-1.1E-02	1.8E-05	0.016	2.2E-09	0.018	4.6E-11
Vigorous PA:	≥ 3 vs.	0 days/week												
rs653481	3	CADM2	85,005,685	А	0.33	0.95	1.9E-15	259,991	-1.4E-02	1.5E-12	-0.011	9.3E-16	-0.010	8.3E-14
rs3781411	10	CTBP2	126,715,436	С	0.88	1.06	1.0E-10	259,991	1.7E-03	5.6E-01	0.013	5.0E-11	0.013	5.6E-11
rs328902	7	DPY19L1	35,020,843	С	0.69	0.96	1.3E-10	259,991	-6.2E-03	2.7E-03	-0.009	8.7E-11	-0.009	4.2E-10
rs3101340	1	NEGR1	72,744,144	G	0.49	1.04	1.1E-09	259,991	1.7E-02	8.0E-20	0.008	1.7E-09	0.007	1.6E-07
rs12707131	7	EXOC4	133,620,982	А	0.61	1.04	2.0E-09	259,991	-3.9E-03	4.7E-02	0.008	1.9E-09	0.008	3.3E-10
rs6689056	1	МҮОМ3	24,364,531	G	0.67	1.04	4.9E-09	259,991	2.0E-03	3.3E-01	0.008	9.8E-09	0.008	8.2E-09
Strenuous spor	ts or o	ther exercises: ≥ 2	-3 vs. 0 days/v	veek										
rs1691471	3	CADM2	85,011,013	С	0.62	0.95	6.5E-23	349,082	-1.3E-02	8.0E-12	-0.013	1.7E-22	-0.011	7.0E-20
rs55872725	16	FTO	53,809,123	С	0.6	0.96	3.0E-13	349,082	-7.4E-02	3.4E-312	-0.008	7.0E-13	-0.003	3.0E-03
rs166840	17	AKAP10	19,799,698	G	0.59	1.03	7.3E-11	349,082	5.4E-03	5.8E-03	0.007	2.0E-10	0.007	8.5E-10
rs75930676	14	SIPA1L1	71,826,547	Т	0.95	0.93	8.5E-10	349,082	2.1E-03	6.4E-01	-0.016	1.3E-10	-0.016	1.2E-09
rs159544	5	CTC-436P18.1	60,489,247	А	0.61	0.97	2.7E-09	349,082	-5.5E-03	5.3E-03	-0.007	2.4E-09	-0.007	7.1E-09
Accelerometry	-Aver	rage acceleration												
rs55915917	17	CRHR1	43,892,784	Т	0.78	-0.28	1.5E-11	90,845	-4.0E-03	8.4E-02	-0.28	5.0E-11	-0.31	6.7E-13
rs62398709	5	LINC01470	152,055,235	А	0.65	0.24	7.1E-11	90,845	8.9E-03	1.1E-05	0.23	3.0E-10	0.21	1.6E-08
rs185829646	10	ANKRD22	90,583,705	А	1	-2.69	1.5E-09	90,845	-2.6E-02	3.0E-01	-2.94	2.0E-09	2.97	1.4E-09
rs17551090	5	MEF2C	88,037,209	Т	0.89	0.34	3.0E-09	90,845	1.3E-02	2.0E-05	0.34	3.2E-09	0.32	2.6E-08

Accelerometry – Fraction accelerations > 425 milli-gravities

No significant associations

EA refers to effect allele that Beta/OR corresponds to. EAF: effect allele frequency

Supplementary Table 6: Meta-analysis of UK Biobank MVPA top hits with ARIC PA. Beta coefficient units are standard deviations of MVPA MET-minutes/week, after inverse normalization.

					AR (n=8,	IC 556)	Meta- (n=3	analysis 85,790)
SNP	Chr.	Gene/Nearest Gene	Position	EA	Beta	р	Beta	р
rs429358	19	APOE	45,411,941	Т	-0.035	0.22	-0.002	2.80E-13
rs7804463	7	EXOC4	133,447,651	Т	0.003	0.87	0.015	1.30E-11
rs2854277	6	HLA-DQB1	32,628,084	С	0.009	0.72	0.031	5.00E-10
rs7791992	7	C7orf72/SPATA48	50,237,784	С	-0.005	0.73	-0.014	2.20E-10
rs3094622	6	RPP21	30,327,952	А	0.035*	0.17	0.020	1.84E-10
rs149943	6	ZNF165	28,002,388	G	0.031	0.20	0.019	4.25E-10
rs2035562	3	CADM2	85,056,521	А	-0.014	0.38	-0.014	3.68E-10
rs2988004	9	PAX5	37,044,388	Т	-0.033	0.03	-0.013	1.46E-09
rs1043595	7	CALU	128,410,012	G	0.015	0.37	0.014	7.27E-09

*rs3094034-A allele used as a proxy for rs3094622-A

Supplementary Table 7: Association with PA in ARIC of SNPs identified in Model 1 of UK Biobank for PA phenotypes other than MVPA. Beta coefficients for ARIC correspond to standardized residualized units of the sport/exercise index. Meta-analysis using only p-values is only reported for SNPs that have consistent directions of effect in UK Biobank and ARIC.

						UK Bie	obank	ARIC (n=8,556)		Meta-analysis
SNP	Chr.	Gene/Nearest Gene	Position	EA	EAF	Beta/OR	р	Beta	р	р
Vigorous $PA: \geq 3$	vs. 0 days/v	veek								
rs1248860	3	CADM2	85,015,779	G	0.48	0.96	1.10E-13	0.008	0.614	NA
rs2764261	6	FOXO3	108,927,842	А	0.37	1.04	2.00E-11	0.010	0.500	0.16
rs3781411	10	CTBP2	126,715,436	С	0.88	1.06	3.00E-10	0.029	0.193	0.09
rs12707131	7	EXOC4	133,620,982	А	0.61	1.04	9.00E-11	-0.002	0.917	NA
rs328919	7	DPY19L1	35,033,983	А	0.69	0.96	5.50E-10	-0.011	0.503	0.16
Strenuous sports o	or other exe	$rcises: \ge 2-3 vs. 0 day$	vs/week							
rs62253088	3	CADM2	85,400,801	Т	0.33	1.05	1.00E-19	-0.007	0.660	NA
rs166840	17	AKAP10	19,799,698	G	0.59	1.03	3.10E-11	-0.011	0.500	NA
rs10946808	6	<i>HIST1H1D</i>	26,233,387	А	0.73	0.97	9.90E-10	-0.006	0.727	0.21
rs159544	5	CTC-436P18.1	60,489,247	А	0.61	0.97	1.30E-09	0.010	0.536	NA
rs75930676	14	SIPA1L1	71,826,547	Т	0.95	0.93	2.00E-09	-0.077	0.059	0.04
rs111901094	19	GATAD2A	19,513,570	G	0.82	1.04	3.00E-09	0.001	0.972	0.31
Accelerometry – A	verage acc	eleration								
rs55657917	17	CRHR1	43,844,560	Т	0.78	-0.3	5.00E-12	0.020	0.296	NA
rs59499656	18	RIT2/SYT4	40,768,309	А	0.66	-0.23	2.40E-09	0.015	0.343	NA
Accelerometry – F	Fraction acc	celerations > 425 mill	li-gravities							
rs743580	15	PML	74,328,116	А	0.51	0.025	1.30E-09	0.019	0.208	0.09

NA indicates not applicable since direction of effect is not consistent.

Supplementary Table 8: Loci consistently associated with PA across self-report and accelerometry measures (each $p < 5 \times 10^{-5}$ and in consistent direction) using Model 1. The beta coefficient units for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. The beta coefficient unit for acceleration average is milli-gravities. The beta coefficient for "Fraction Accel. > 425 mg" is fraction of time.

					М	VPA	V	/PA	S	SOE	A	AA	AF	>425
SNP	Chr.	Nearest Gene	Position	Effect Allele	Beta	р	OR	р	OR	р	Beta	р	Beta	р
MVPA and AA	1													
rs447801	5	MEF2C	88002653	Т	-0.010	7.5E-06	0.98	5.0E-01	1.02	1.2E-01	-0.164	8.5E-06	-0.014	7.2E-04
rs8013957*	14	RCOR1	103140254	С	0.010	1.4E-05	1.03	2.0E-04	1.02	2.4E-04	0.155	4.8E-05	0.015	5.6E-04
rs7174985	15	STOML1	74274948	Т	0.011	2.5E-06	1.03	7.0E-06	1.02	1.0E-05	0.175	6.4E-06	0.021	1.0E-06
rs55915917*	17	CRHR1	43892784	Т	-0.012	8.7E-06	0.98	1.2E-02	0.98	1.7E-04	-0.303	5.5E-12	-0.025	7.9E-07
VPA, SSOE, a	and AF	>425												
rs1248860*	3	CADM2	85015779	G	-0.011	2.0E-07	0.96	1.1E-13	0.96	7.8E-17	-0.113	1.8E-03	-0.018	8.9E-06
rs5742915	15	PML	74336633	Т	-0.011	6.2E-07	0.96	5.2E-07	0.97	3.4E-05	-0.191	1.7E-07	-0.024	2.9E-09
rs17599450	19	CCNE1	30328753	С	0.008	1.0E-03	1.03	1.5E-05	1.02	1.4E-06	0.185	1.9E-06	0.019	1.5E-05

SSOE: Strenuous sports or other exercises; AA: Average acceleration, AF>425: acceleration fraction greater than 425mg. * indicates SNPs or loci that remain significant in Model 3. **Supplementary Table 9:** Loci consistently associated with PA across self-report and accelerometry measures (each p<5 x 10^{-5} and in consistent direction) using Models 2 and 3. The beta coefficient units for MVPA are standard deviations of MVPA (MET-minutes/week), after inverse normalization. The beta coefficient unit for acceleration average is milligravities. The beta coefficient for "Fraction Accel. > 425 mg" is fraction of time.

					М	VPA	V	VPA	S	SOE	I	AА	AF	>425
SNP	Chr.	Nearest Gene	Position	Effect Allele	Beta	р	OR	р	OR	р	Beta	р	Beta	р
Model 2														
MVPA and av	verage	acceleration												
rs55915917	17	CRHR1	43892784	Т	-0.011	3.8E-05	0.97	8.9E-03	0.97	1.8E-05	-0.310	1.2E-12	-0.025	4.2E-07
rs5742915	15	PML	74336633	Т	-0.010	2.5E-06	0.96	3.5E-06	0.97	6.1E-05	-0.187	2.2E-07	-0.024	4.4E-09
rs580241	11	TMEM151A	66066349	G	-0.013	3.9E-07	0.96	9.3E-05	0.98	9.3E-03	-0.189	1.3E-05	-0.014	5.4E-03
rs8013957	14	RCOR1	103140254	С	0.010	1.6E-05	1.02	2.9E-04	1.02	1.4E-04	0.162	1.8E-05	0.015	4.7E-04
VPA, SSOE, d	and fre	action accelera	ation > 425 n	ıg										
rs1248860	3	CADM2	85015779	G	-0.010	1.8E-06	0.96	1.1E-13	0.96	1.8E-17	-0.112	1.9E-03	-0.018	7.1E-06
rs7174985	15	STOML1	74274948	Т	0.011	1.5E-06	1.02	2.3E-05	1.02	1.7E-05	0.172	7.0E-06	0.021	1.6E-06
rs17599450	19	CCNE1	30328753	С	0.008	7.4E-04	1.03	2.8E-05	1.03	1.8E-06	0.179	3.4E-06	0.019	2.4E-05
Model 3														
MVPA and av	verage	acceleration												
rs7559547	2	TMEM18	615627	С	-0.014	5.2E-07	0.96	9.5E-06	0.97	6.0E-07	-0.232	3.6E-07	-0.021	6.3E-05
rs580241	11	TMEM151A	66066349	G	-0.013	3.9E-07	0.97	9.8E-05	0.98	1.0E-02	-0.176	2.4E-05	-0.012	1.0E-02
rs8013957	14	RCOR1	103140254	С	0.010	1.3E-05	1.02	2.4E-04	1.02	9.7E-05	0.150	3.9E-05	0.014	9.0E-04
rs8044769	16	FTO	53839135	Т	-0.009	6.6E-06	0.97	1.3E-06	0.96	1.1E-08	-0.187	4.5E-08	-0.015	1.8E-04
rs55915917	17	CRHR1	43892784	Т	-0.011	1.1E-05	0.97	4.0E-03	0.97	6.1E-06	-0.284	1.5E-11	-0.022	3.2E-06
VPA, SSOE, d	and fre	action accelera	ation > 425 n	ıg										
rs7567570	2	TMEM18	615140	Т	-0.014	1.0E-06	0.98	1.4E-05	0.97	1.0E-06	-0.236	2.5E-07	-0.021	4.2E-05
rs4856584	3	CADM2	85580328	А	0.012	3.1E-08	1.05	1.4E-14	1.06	6.0E-21	0.110	2.4E-03	0.021	5.3E-07

Supplementary Table 10: Top ten significant gene sets from MAGMA-based gene-set analysis using Model 1 for each of 5 PA phenotypes.

Gene Set	N genes	Beta	Beta STD	SE	Р	Phon
MVPA						
GO_bp:go_positive_regulation_of_histone_methylation	32	0.694	0.029	0.176	4.10E-05	0.4461
GO_cc:go_mhc_class_ii_protein_complex	14	1.33	0.0369	0.339	4.36E-05	0.4753
GO_mf:go_mhc_class_ii_receptor_activity	10	1.43	0.0335	0.368	4.99E-05	0.5430
GO_bp:go_neuron_migration	105	0.362	0.0274	0.1	1.42E-04	1
GO_bp:go_adaptive_immune_response_based_on_somatic_recombination_of_immune_receptors_built_from_immunoglobulin_superfamily_domains	113	0.326	0.0255	0.09	1.47E-04	1
GO_mf:go_pdz_domain_binding	88	0.377	0.0261	0.106	1.81E-04	1
GO_bp:go_cell_morphogenesis_involved_in_neuron_differentiation	354	0.185	0.0254	0.052	1.99E-04	1
GO_mf:go_nucleic_acid_binding_transcription_factor_activity	1134	0.107	0.0259	0.03	2.09E-04	1
GO_bp:go_neuron_projection_guidance	198	0.246	0.0255	0.07	2.10E-04	1
GO cc:go voltage gated calcium channel complex	39	0.569	0.0263	0.161	2.10E-04	1
VPA						
GO_bp:go_dendrite_development	72	0.473	0.0296	0.115	2.13E-05	0.2314
GO_bp:go_neurogenesis	1355	0.107	0.0281	0.027	2.92E-05	0.3182
GO_bp:go_neuron_projection_development	522	0.157	0.0262	0.042	7.83E-05	0.8523
GO_bp:go_dendrite_morphogenesis	39	0.601	0.0277	0.159	7.99E-05	0.8701
GO br:go regulation of nervous system development	722	0.127	0.0248	0.036	1.76E-04	1
GO br:go cell morphogenesis involved in neuron differentiation	354	0.178	0.0245	0.05	1.91E-04	1
G0 brog negative resultation of neuron differentiation	183	0.232	0.0231	0.066	2.07E-04	1
Construction of the second sec	386	0.160	0.0243	0.048	2.11E-04	1
CO_brigo_negative_regulation_of_nitric_oxide_matcholic_process	10	1.11	0.0245	0.323	2.11L-04	1
OO_pp.go_negative_regulation_o_minitowde_instability_foress	10	1.11	0.020	0.323	2.921-04	1
OC_0P.go_negative_regulation_of_initic_oxide_biosynthetic_process	10	1.11	0.020	0.323	2.92E=04	1
SSOE						
GO_cc:go_synapse	718	0.188	0.0364	0.039	5.90E-07	0.0064
GO_cc:go_synapse_part	580	0.181	0.0318	0.043	1.13E-05	0.1227
Curated gene_sets:myllykangas_amplification_hot_spot_3	4	1.84	0.0272	0.504	1.30E-04	1
GO_bp:go_t_cell_mediated_immunity	26	0.675	0.0255	0.186	1.45E-04	1
GO cc:go postsynapse	355	0.195	0.027	0.054	1.60E-04	1
Curated gene sets:cheok response to mercaptopurine and ld mtx up	8	1.26	0.0263	0.349	1.63E-04	1
GO bizo presvnaptie process involved in svnaptic transmission	109	0.335	0.0258	0.096	2.51E-04	1
GO cc:go protein phosphatase type 2a complex	19	0.821	0.0264	0.236	2.55E-04	1
Curated gene sets dacosta uv response via ercc3 dn	834	0.128	0.0268	0.037	2.77E-04	1
GO br:go glutamate recentor signaling nathway	40	0.527	0.0246	0.153	2.84E-04	1
AA						
GO_bp:go_regulation_of_transporter_activity	191	0.303	0.0308	0.071	9.85E-06	0.1073
GO_cc:go_synapse	718	0.15	0.0292	0.036	1.31E-05	0.1426
Curated_gene_sets:basso_hairy_cell_leukemia_dn	77	0.421	0.0273	0.11	6.46E-05	0.7031
GO_bp:go_sterol_catabolic_process	11	1.15	0.0283	0.303	6.76E-05	0.7356
GO_bp:go_cholesterol_catabolic_process	11	1.15	0.0283	0.303	6.76E-05	0.7356
GO_cc:go_synapse_part	580	0.15	0.0262	0.04	8.13E-05	0.8847
Curated_gene_sets:schaeffer_sox9_targets_in_prostate_development_dn	44	0.545	0.0267	0.145	8.26E-05	0.8986
GO_mf:go_transition_metal_ion_binding	1313	0.097	0.025	0.026	1.15E-04	1
Curated_gene_sets:sesto_response_to_uv_c7	66	0.413	0.0247	0.113	1.39E-04	1
GO_bp:go_phenol_containing_compound_biosynthetic_process	31	0.596	0.0245	0.166	1.63E-04	1
AF						
GO_mf:go_transcriptional_activator_activity_ma_polymerase_ii_core_promoter_proximal_region_sequence_specific_binding	218	0.258	0.028	0.065	3.13E-05	0.3406
Curated_gene_sets:nikolsky_breast_cancer_20q11_amplicon	31	1.31	0.0541	0.331	3.68E-05	0.4009
GO_bp:go_cell_fate_determination	43	0.532	0.0258	0.137	5.47E-05	0.5961
GO_mf:go_transcription_factor_activity_ma_polymerase_ii_core_promoter_proximal_region_sequence_specific_binding	320	0.197	0.0258	0.052	7.45E-05	0.8110
Curated_gene_sets:cui_tcf21_targets_2_dn	789	0.125	0.0253	0.034	1.14E-04	1
$GO_bp:go_homophilic_cell_adhesion_via_plasma_membrane_adhesion_molecules$	145	0.342	0.0303	0.093	1.24E-04	1
GO_bp:go_zinc_ii_ion_transport	26	0.645	0.0243	0.176	1.25E-04	1
Curated_gene_sets:reactome_adherens_junctions_interactions	27	0.665	0.0255	0.182	1.30E-04	1
GO_bp:go_neuron_projection_morphogenesis	386	0.165	0.0237	0.046	1.75E-04	1
GO_bp:go_cell_junction_organization	179	0.234	0.023	0.065	1.79E-04	1

Supplementary Table 11: Gene expression and previous GWAS associations for each of the genes (nearest genes) confirmed across Models 1 & 3.

Gene	Tissue with highest median expression (from GTeX v6)	Previous GWAS associations (from NHGRI-EBI GWAS catalog)
APOE	adrenal gland	Alzheimer's disease; cognitive decline; longevity; coronary artery disease; lipid levels
EXOC4	transformed fibroblasts	educational attainment; intelligence; cognitive decline; blood pressure; schizophrenia
PAX5	EBV-transformed lymphocytes	HIV-1 susceptility; response to tocilizumab; intelligence; obesity related traits
CADM2	brain	obesity; alcohol consumption; risk taking; rubella; longevity; information processing speed; temperament; educational attainment; executive function; Alzheimer's disease; cognitive function; blood toxins; age at menarche; photic sneeze reflex; FEV1
CTBP2	cervix	prostate cancer; height; body mass index
DPY19L1	testis	FEV1
AKAP10	spleen	schizophrenia; blood cell traits
CTC-436P18.1	EBV-transformed lymphocytes	schizophrenia
SIPA1L1	brain	response to alcohol consumption; obesity; heart rate variability traits; FEV1
CRHR1	brain	Parkinson's disease; blood cell traits; bone mineral density; neuroticism; Alzheimer's disease; neurodegeneration
RCOR1	esophagus-mucosa	allergic disease; blood cell traits

FEV1: forced expiratory volume in first second of forced breath

Supplementary Table 12: Expression quantitative trait locus analysis using GTEx v7 data and GTEx Portal online
server, for each of the top 10 PA-associated SNPs identified across the five PA phenotypes. Only top five eQTLs are
listed here in cases where there are more than five.

SNP	Nearest gene	Expressed Gene	Tissue	P-value
rs429358	APOE	No significant eQTLs found		
rs7804463	EXOC4	No significant eQTLs found		
rs62253088	CADM2	CADM2	Lung	7.40E-07
		CADM2	Adipose-Subcutaneous	4.20E-06
		CADM2	Adipose-Visceral	6.50E-05
rs2988004	PAX5	RP11-220I1.1	Muscle - Skeletal	3.90E-10
		RP11-220I1.1	Adrenal gland	1.80E-08
		RP11-220I1.1	Testis	1.30E-06
rs3781411	CTBP2	No significant eQTLs found		
rs328902	DPY19L1	DPY19L1	Brain - Frontal cortex (BA9)	4.80E-08
		DPY19L1	Brain - Cortex	1.60E-07
		DPY19L1	Muscle - Skeletal	7.60E-07
		DPY19L1P1	Brain - Cerebellum	1.60E-06
		DPY19L1P1	Thyroid	8.80E-06
rs166840	AKAP10	AKAP10	Whole Blood	3.30E-17
		RP11-209D14.2	Testis	6.00E-14
		KRT16P3	Esophagus - Mucosa	4.50E-13
		LGALS9B	Esophagus - Mucosa	3.50E-10
		RP11-7807.2	Esophagus - Muscularis	2.60E-09
rs159544	CTC-436P18.1	ERCC8	Cells - Transformed fibroblasts	4.00E-06
		NDUFAF2	Brain - Nucleus Accumbens	4.10E+06
		ERCC8	Muscle - Skeletal	6.50E-06
		ELOVL7	Stomach	7.40E-06
		CTC-436P18.1	Testis	9.50E-06
rs75930676	SIPA1L1	No significant eQTLs found		
rs55657917	CRHR1	CRHR1-IT1	Skin - Sun Exposed	2.30E-137
		CRHR1-IT1	Adipose - Subcutaneous	3.80E-130
		CRHR1-IT1	Artery - Tibial	6.20E-122
		CRHR1-IT1	Nerve - Tibial	1.00E-121
		LRRC37A4P	Thyroid	1.10E-120

Supplementary Figure 1: Q-Q plots of Model 1 GWAS of all 5 PA phenotypes in the UK Biobank. Plots were drawn after uploading summary statistics into the FUMA GWAS online tool. Overlapping data points are not drawn (filtering was performed only for SNPs with P-value \geq 1e-5)

Supplementary Figure 2: Manhattan plot for PA phenotypes using a model additionally adjusted for Townsend Deprivation index, walk or standing at work, and physical activity at work.

Supplementary Figure 3: Manhattan plot for PA phenotypes using a model additionally adjusted for Townsend Deprivation index, walk or standing at work, physical activity at work, and BMI.

Supplementary Figure 4: Linkage Disequilibrium of PA-associated SNPs at the *CADM2* locus (from data on CEU and GBR from 1,000 Genomes data, phase 3. rs2035562, rs1248860, and rs62253088 were associated with MVPA, VPA and SSOE, respectively in Model 1 and/or Model 2. rs1308175, rs653481, and rs1691471 were associated with MVPA, VPA, and SSOE, respectively, in Model 3.

Supplementary Figure 5 (next page): Linkage disequilibrium among PA-associated SNPs and previously identified *CADM2* SNPs for BMI, and behavioral traits (from 1,000 Genomes data, phase 3 data on CEU and GBR). rs2035562, rs1248860, rs62253088, rs1308175, rs653481, and rs1691471 were associated with PA measures in the present study. rs13078960 was previously associated with BMI (Locke et al., 2015). rs12714592 and rs57401290 were previously associated with age at first sexual intercourse (Day et al. 2016), rs1865251 was associated with risk-taking behavior (Boutwell et al., 2017), rs9841829 with alcohol consumption (Clarke et al., 2017). rs17518584 was associated with cognitive processing speed (Ibrahim-Verbaas et al, 2016). Rs4856591 was associated with risk taking propensity (Day et al., 2016).

Supplementary Figure 6: Manhattan plot for VPA phenotype, using Model 1, not excluding individuals with intermediate levels of VPA.

Supplementary Figure 7: Results of gene-based tissue enrichment analysis for 53 tissue types, using Model 1 for self-reported PA phenotypes.

Acceleration Average 5.5 5.0 4.5 4.0 -log 10 P-value 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Fraction Acceleration > 425 mg 2.5 2.0 -log 10 P-value 1.5 1.0 0.5 0.0

Supplementary Figure 8: Results of gene-based tissue enrichment analysis for 53 tissue types, using Model 1 for accelerometry-based PA phenotypes.

Supplementary Figure 9: Association of top PA-associated SNPs with other phenotypes in the UK Biobank (Images from the Oxford Brain Imaging Genetics (BIG) Server - version 2.0; http://big.stats.ox.ac.uk/)

rs429358-C (APOE)

rs7804463-C (EXOC4)

rs2988004-G (PAX5)

rs3781411-T (CTBP2)

rs328902-T (DPY19L1)

rs62253088-C (CADM2)

rs159544-G (CTC-436P18.1)

rs75930676-C (SIPA1L1)

