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Asthma and lower airway disease
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Background: Genome-wide association studies have identified
determinants of chronic obstructive pulmonary disease, asthma,
and lung function level; however, none have addressed decline in
lung function.
Objective: We conducted the first genome-wide association
study on the age-related decrease in FEV1 and its ratio to forced
vital capacity (FVC) stratified a priori by asthma status.
Methods: Discovery cohorts included adults of European
ancestry (1,441 asthmatic and 2,677 nonasthmatic participants:
the Epidemiological Study on the Genetics and Environment of
Asthma, the Swiss Cohort Study on Air Pollution and Lung and
Heart Disease in Adults, and the European Community
Respiratory Health Survey). The associations of FEV1 and
FEV1/FVC ratio decrease with 2.5 million single nucleotide
polymorphisms (SNPs) were estimated. Thirty loci were
followed up by in silico replication (1,160 asthmatic and 10,858
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nonasthmatic participants: Atherosclerosis Risk in
Communities, the Framingham Heart Study, the British 1958
Birth Cohort, and the Dutch Asthma Study).
Results: Main signals identified differed between asthmatic and
nonasthmatic participants. None of the SNPs reached genome-
wide significance. The association between the height-related
gene DLEU7 and FEV1 decrease suggested for nonasthmatic
participants in the discovery phase was replicated (discovery,
P 5 4.8 3 1026; replication, P 5 .03), and additional sensitivity
analyses point to a relation to growth. The top ranking signal,
TUSC3, which is associated with FEV1/FVC ratio decrease in
asthmatic participants (P 5 5.3 3 1028), did not replicate. SNPs
previously associated with cross-sectional lung function were
not prominently associated with decline.
Conclusions: Genetic heterogeneity of lung function might be
extensive. Our results suggest that genetic determinants of
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Abbreviations used

ARIC: Atherosclerosis Risk in Communities Study

B58C: British 1958 Birth Cohort

COPD: Chronic obstructive pulmonary disease

ECRHS: European Community Respiratory Health Survey

EGEA: Genetics and Environment of Asthma

FHS: Framingham Heart Study

FVC: Forced vital capacity

GWAS: Genome-wide association study

SAPALDIA: Swiss Cohort Study on Air Pollution and Lung and

Heart Disease in Adults

SNP: Single nucleotide polymorphism
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longitudinal and cross-sectional lung function differ and vary by
asthma status. (J Allergy Clin Immunol 2012;129:1218-28.)

Key words: Asthma, cohort studies, genome-wide association, lung
function decline, heterogeneity

Low lung function is a feature of both asthma and chronic
obstructive pulmonary disease (COPD), with twin studies demon-
strating strong heritability (0.51-0.77) for FEV1.

1,2 The 2 respira-
tory diseases and lung function itself share predisposing and
phenotypic features, including increased airway responsiveness
and atopy, as well as exogenous risk factors.3,4 Genome-wide asso-
ciation studies (GWASs) have identified novel genetic loci for
asthma,5-10 COPD,11-14 and lung function15-18 and provide the op-
portunity to study agnostically their overlap in genetic back-
ground.19 Some of the implicated genes, such as PDE4D, support
a link between asthma and COPD, whichmight be rooted in shared
pathways during lung development.20 However, the majority of the
genes implicated in asthma or COPD GWAS analyses have not
been identified as top association signals in GWASs for lung func-
tion in the general population,15-18 with the exception ofHHIP and
FAM13A being associated with both lung function15-18 and
COPD.11-14 Several lines of evidence suggest that different genes
influence lung function in asthmatic andnonasthmatic subjects.Ge-
nome scans in family-based linkage studies identified some, but
overall limited, overlap between chromosomal regions linked to
lung function in asthmatic patients,21 patients with COPD,22 and
the general population,23 and it has been suggested that genetic var-
iation might be more important for lung function in asthmatic pa-
tients after adjusting for smoking and body size differences.21,24,25

Here we present results from the first lung function GWAS
conducted separately for asthmatic and nonasthmatic partici-
pants. This study also focuses on the rate of lung function decrease
in adults instead of cross-sectional lung function parameters
tested in previous GWASs.15-18 The discovery cohorts included 2
population-based studies (the Swiss Cohort Study on Air Pollu-
tion and Lung and Heart Disease in Adults [SAPALDIA] and
the European Community Respiratory Health Survey [ECRHS])
and 1 asthma family-based study (Genetics and Environment of
Asthma [EGEA]), with cohort participants of European ancestry
and with highly comparable and standardized assessment of res-
piratory health parameters, including spirometry from 2 time
points 10 years apart. These 3 studies had been included in the
GWAS for asthma conducted by theGABRIEL consortium.7 Rep-
lication cohorts included 3 population-based cohorts (the Fra-
mingham Heart Study [FHS], the Atherosclerosis Risk in
Communities [ARIC], the British 1958 Birth Cohort [B58C])
and 1 family-based asthma study (the Dutch Asthma Study).

METHODS

Discovery cohorts and study population
Three large multicentric cohorts, EGEA,26 SAPALDIA,27 and ECRHS,28

constitute the ESE consortium. Personal factors of relevance to lung function

decrease were assessed by means of interviews and anthropometric measure-

ments at baseline and follow-up. Participants included in the discovery phase

were derived from the nested asthma case-control samples (SAPALDIA and

ECRHS) or from the entire study population (EGEA) subjected to genome-

wide genotyping in the context of the GABRIEL asthma GWAS.7 Baseline

and follow-up examinations were roughly 10 years apart. The analysis was re-

stricted to adult participants (age >_18 years at the time of the baseline spirom-

etry) with complete information on age, height, and sex, as well as valid lung

function measures from both surveys. Cohort study protocols were in
agreement with the Declaration of Helsinki and obtained ethical approval

from the respective regional review boards, national review boards, or both.

Lung function assessments, asthma status, and

genotypes
At each visit, measurements of a minimum of 2 acceptable forced

expiratory flows, forced vital capacity (FVC) and FEV1, complying with

American Thoracic Society criteria were obtained.26-29 No bronchodilator

was administered. On the basis of questionnaire data, asthmatic participants

were defined by providing an asthma self-report at any of the completed sur-

veys, and family-based studies considered additional clinical asthma criteria

(see the Methods section in this article’s Online Repository at www.

jacionline.org). Genotyping for discovery cohorts was centrally performed

on the Illumina Human 610quad BeadChip at the Centre National de

G�enotypage (CNG, Evry, France).7 Imputation of genotypes based on the

Hapmap2 reference panel, investigation of population stratification, and qual-

ity control criteria are described in Fig E1 and Table E1 in this article’s Online

Repository at www.jacionline.org.

Replication cohorts
Four cohorts of European ancestry with available genome-wide data,

ARIC,30 FHS,15 B58C,31 and the Dutch asthma study,32 were used for replica-

tion. Subjects included in the current analysis were older than 24 years and had

complete information on covariates (age, height, and sex) and valid lung func-

tion measures from at least 2 time points. The lung function measurements

were conducted at least 10 years apart, except for ARIC, in which measure-

ments were conducted 3 years apart (Table I). Distinct genotype data platforms

and imputation software were used (see Table E2 in this article’s Online Re-

pository at www.jacionline.org).

Statistical analysis
The annual decrease in FEV1 and FEV1/FVC ratiowas calculated as the dif-

ference between follow-up and baseline spirometric measurements (milliliters

for FEV1 and percentages for FEV1/FVC ratio) divided by the duration of

follow-up in years. Standardized residualswere derived from sex-specific linear

regression models adjusted for age, height, and study center in asthmatic and

nonasthmatic participants separately. Comparability between studies of stan-

dardized residuals was tested by using the Wilcoxon-Mann-Whitney test

(P > .94). The standardized residuals were used as dependent variables and re-

gressed on genome-wide single nucleotide polymorphisms (SNPs) adjusted for

study-specific principal components capturing population ancestry (see the

Methods section in this article’s Online Repository). Study-specific SNP effect

estimates were combined through meta-analysis by using fixed and random ef-

fectsmodels.We used a thresholdP value of less than 53 1028 (the Bonferroni

adjustment for 1 million independent tests) to declare a pooled effect as

genome-wide significant. Selection criteria for replication loci are described

in theMethods section in this article’s OnlineRepository. SNPswith suggestive

evidenceof associationwith a decrease inFEV1orFEV1/FVCratiowerechosen

for in silico replication (see TableE3 in this article’sOnline Repository atwww.

jacionline.org). Study-specific regressionmodels andmeta-analyses across rep-

lication cohorts were as described for the discovery phase. Replication cohorts

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


TABLE I. Baseline characteristics of discovery and replication cohorts by asthma status

No.*

Men

(%)

Age,

mean 6 SD

Height,

mean 6 SD

FEV1,

mean 6 SD

(L)

FEV1/FVC

ratio,

mean 6 SD

Follow-up

length,y
mean 6 SD (y)

Annual

decrease in

FEV1, mean

6

SD (mL/y)

Annual

decrease in

FEV1/FVC,

mean 6 SD (%/y)

Never

smokers

(%)

Nonasthmatic participants

Discovery

(ESE cohorts)

EGEA 529 45.2 41.4 6 11.7 1.68 6 0.08 3.45 6 0.78 0.83 6 0.06 11.2 6 1.0 228.6 6 25.7 20.47 6 0.53 46.5

SAPALDIA 805 49.2 41.8 6 11.1 1.70 6 0.09 3.62 6 0.81 0.79 6 0.07 10.9 6 0.2 234.0 6 28.3 20.40 6 0.46 43.1

ECRHS 1343 49.7 34.1 6 7.1 1.70 6 0.10 3.81 6 0.83 0.83 6 0.06 8.9 6 0.9 226.3 6 30.7 20.30 6 0.50 40.7

Replication with

in silico data

ARIC 7156 46.3 54.5 6 5.6 1.69 6 0.09 3.01 6 0.75 0.75 6 0.07 2.9 6 0.2 252.0 6 57.4 20.19 6 0.98 40.8

FHS 3232 44.9 52.9 6 10.2 1.67 6 0.10 2.89 6 0.81 0.77 6 0.08 10.5 6 3.6 224.9 6 23.9 20.33 6 0.57 36.1

B58C 470 48.7 35.0 6 0.2 1.70 6 0.09 3.68 6 0.73 0.81 6 0.06 10.1 6 0.5 234.9 6 31.4 20.21 6 0.67 28.5

Asthmatic participants

Discovery

(ESE cohorts)

EGEA 330 50.6 38.5 6 12.5 1.70 6 0.09 3.26 6 0.91 0.77 6 0.11 11.6 6 1.0 227.6 6 39.4 20.44 6 0.68 44.6

SAPALDIA 540 46.5 40.2 6 11.3 1.69 6 0.09 3.36 6 0.89 0.76 6 0.95 10.9 6 0.3 235.5 6 33.9 20.45 6 0.54 42.4

ECRHS 571 42.7 33.9 6 7.3 1.69 6 0.10 3.43 6 0.81 0.78 6 0.09 8.8 6 0.7 226.7 6 42.6 20.20 6 0.60 42.5

Replication with

in silico data

ARIC 325 50.2 54.2 6 5.7 1.69 6 0.10 2.73 6 0.87 0.68 6 0.10 2.9 6 0.2 243.9 6 77.2 20.037 6 1.25 41.9

FHS 346 41.3 50.1 6 10.3 1.68 6 0.09 2.72 6 0.84 0.73 6 0.09 10.2 6 3.8 229.8 6 23.7 20.38 6 0.51 36.1

B58C 231 44.2 35.0 6 0.2 1.69 6 0.10 3.45 6 0.75 0.78 6 0.08 10.3 6 0.5 234.4 6 37.6 20.17 6 0.89 37.2

Dutch Asthma Study 258 60.9 35.1 6 7.6 1.75 6 0.09 3.03 6 0.95 0.65 6 0.13 14.6 6 7.2 222.8 6 47.0 20.14 6 0.89 40.7

*This column comprises the maximal number of subjects who contributed to at least 1 GWAS analysis (decrease in either FEV1 or FEV1/FVC ratio).

�Time spacing between the first and second spirometric assessment.
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with spirometric data from more than 2 different time points modeled the lung

function decrease phenotype byfitting a least-squares slope using available data

(FHS and theDutchAsthma Study). AP value of .05 or lesswas considered sta-

tistically significant at the replication level.

The results of themainmeta-analyses for the top 1000 SNPs are available in

the online repository (see Table E4, A-D, in this article’s Online Repository at

www.jacionline.org). We also conducted a meta-analysis by combining non-

asthmatic and asthmatic samples and tested for heterogeneity between these

samples (see Table E5 in this article’s Online Repository at www.jacionline.

org). Additional sensitivity analyses were done by (1) restricting the GWAS

sample to subjects aged 30 years and older for FEV1 decrease (see Table

E4, E and F); (2) conducting GWAS analyses on percentage change instead

of absolute annual decrease in lung function (see Table E4, G-J); (3) investi-

gating smoking-stratified joint effects for replications SNPs (see Table E6 in

this article’s Online Repository at www.jacionline.org); and (4) excluding

ARIC, a cohort with a substantially shorter follow-up time that the other co-

horts (3 years instead of 10 years), from replication analyses (see Table E7

in this article’sOnlineRepository at www.jacionline.org).Methods and results

of these additional analyses are described in this article’s Online Repository.
RESULTS

Characteristics of the study populations
The cohorts included in this study differed by age and type of

recruitment and accordingly in lung function and the proportion
of participants with FEV1/FVC ratios of less than 70% (Table I
and see Table E8 in this article’s Online Repository at www.
jacionline.org). Baseline lung function parameters, but not their
annual changes, were less in asthmatic participants when com-
pared with those in nonasthmatic participants in each study.
The proportion of never smokers was comparable among asth-
matic participants but varied among nonasthmatic participants
(range, 28.5% in B58C to 46.5% in EGEA). No substantial differ-
ences in the smoking prevalence between participants with and
without asthma were observed within each study. Comparing
the discovery cohorts in more detail (see Table E8), atopy (total
IgE, >_100 kU/mL) and hay fever were more prevalent in both
asthmatic and nonasthmatic participants from EGEAwhen com-
pared with those from ECRHS and SAPALDIA. Current asthma
was more prevalent (84.4%) in EGEA than in SAPALDIA
(25.5%) or ECRHS (43.3%), and the prevalence of a positive fam-
ily history for asthma was also highest in EGEA, which is in
agreement with the study design. Asthmatic participants from
EGEA had a younger age of disease onset because of the mode
of recruitment of the proband.

Main findings from meta-analyses of discovery and

replication phases
In the discovery phase GWAS meta-analysis of decrease in

FEV1 and FEV1/FVC ratio was conducted in 2,677 nonasthmatic
and 1,441 asthmatic participants. Genomic inflation factors were
low for both lung function parameters (l < 1.047, see Table E9
in this article’s Online Repository at www.jacionline.org),
suggesting minimal unaccounted population stratification. The
replication panel included a total of 10,858 nonasthmatic and
1,138 asthmatic participants. Thirty lead SNPs belonging to 30
loci (53 1028 <Pdiscovery < 63 1025) were chosen for replication.

The 4 lung function parameter- and asthma-specific meta-
analyses identified 1 association signal that almost reached the
genome-wide significance level (P 5 5.3 3 1028) at locus 8p22
containing the TUSC3 gene for FEV1/FVC ratio decrease in asth-
matic participants whereas all other signals had a P value of less

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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FIG 1. Manhattan plots of association results for lung function decline. A, FEV1 decrease in nonasthmatic

participants. B, FEV1 decrease in asthmatic participants. C, FEV1/FVC ratio decrease in nonasthmatic partic-

ipants. D, FEV1/FVC ratio decrease in asthmatic participants.
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than53 1027 (Fig 1), but this signalwas not associatedwithFEV1/
FVC ratio decrease in asthmatic participants in the replication sam-
ple. The only locus of the selected replication candidate loci that
formally replicated was 13q14.3, containing the DLEU7 gene,
which was associated with decrease in FEV1 in the nonasthmatic
participants (Pdiscovery 5 4.83 1026 and Preplication 5 .03).

In the global post hoc analysis combining both asthmatic and
nonasthmatic participants (n 5 4118), a striking finding was the
absence of any pronounced association signals (P > 13 1026) de-
spite increased statistical power. This was in agreement with the
minimal overlap of association signals observed in asthmatic and
nonasthmatic participants separately. Most signals at a P value of
less than 1025 from the asthma-stratified analysis in the discovery
phase exhibited statistically significant heterogeneity of effects
between the 2 groups (Table II). At the replication stage, none
of the replication SNPs were associated with lung function de-
crease in asthmatic and nonasthmatic participants combined.

Association signals for annual decrease in FEV1 in

nonasthmatic participants
Of 15 SNPs associated at a P value of less than 1025 with a de-

crease in FEV1 in nonasthmatic participants, 10 were clustered at
position 112.3 Mb on chromosome 9 containing the genes TXN,
MUSK, and SVEP1. Two of the 15 SNPs were located at
13q14.3 in a locus containing the DLEU7 gene; 3 SNPs belonged
to 3 distinct loci. The association of lead and proxy SNPs in
DLEU7 (Fig 2) but not TXN/MUSK/SVEP1 (see Fig E2 in this ar-
ticle’s Online Repository at www.jacionline.org) or the other
SNPs (Table II) was replicated. The G allele of SNP rs9316500
near the DLEU7 gene was positively associated with annual
FEV1 decrease in both the discovery (P 5 4.8 3 1026) and rep-
lication (P 5 .026) cohorts. Although heterogeneity between
studies was not significant (P 5 .61), the combined P value did
not reach the genome-wide level (P 5 5.7 3 1025).

Association signals for annual decrease in FEV1 in

asthmatic participants
Eighteen SNPs in 9 distinct chromosomal locations were

associated with a decrease in FEV1 in asthmatic participants at
a P value of less than 1025. None of the loci selected for in silico
replication were confirmed (Table II).

Association signals for annual decrease in

FEV1/FVC ratio in nonasthmatic participants
Seven loci showed association with FEV1/FVC ratio decrease

in nonasthmatic participants (1026 < P < 1025), but no locus se-
lected for replication was confirmed (Table II).

http://www.jacionline.org


TABLE II. Association of (lead) SNPs subjected to replication with decrease in FEV1 and decrease in FEV1/FVC ratio stratified by asthma

status

dbSNP ID Chromosome

Position

(build 36.3)

Gene

nearby

Maximal

frequency

of coding

allele

Discovery phase Replication phase

Estimate

of joint

analysis

P value

for joint

analysis

P value for

heterogeneity

between

studies

P value for

heterogeneity

between

asthmatic and

nonasthmatic

participants

Estimate

of joint

analysis in

replication

cohorts

P value

for joint

analysis

P value for

heterogeneity

between

studies

P value for

heterogeneity

between

asthmatic and

nonasthmatic

participants

Decrease in FEV1

Nonasthmatic participants

rs1889321 9 112340656 MUSK* 0.287 20.150 6.95E-07 .814 .0187 20.011 .480 .713 .053

rs9316500 13 49992115 DLEU7 0.336 0.135 4.81E-06 .613 .0255 0.033 .026 .124 .075

rs6785065 3 149016533 ZIC1 0.274 20.136 .00001 .234 .1700 20.006 .686 .525 .55

rs278037 13 29322627 UBL3 0.178 20.151 .00002 .364 .0058 20.006 .734 .231 .50

rs7641198 3 117396577 LSAMP 0.147 0.164 .00003 .669 .1997 20.002 .939 .690 .15

rs421847 21 19269950 PRSS7 0.281 0.128 .00003 .831 .0350 20.016 .310 .247 .86

rs496809 18 74857661 SALL3 0.078 20.236 .00004 .412 .0041 0.022 .443 .373 .60

rs10933964 3 110021881 TRAT1 0.499 20.117 .00006 .345 .0022 20.015 .265 .869 .041

Asthmatic participants

rs10808265 7 131840229 PLXNA4B 0.484 20.175 1.66E-06 .844 .0020 0.069 .105 .258 .16

rs1902618 15 58951491 RORA 0.234 20.220 1.72E-06 .449 .0043 0.029 .590 .777 .58

rs3843306 1 91060718 BARHL2 0.460 0.176 5.11E-06 .042 8.33E-06 0.047 .270 .883 .24

rs7006290 8 41734295 ANK1 0.319 0.185 5.19E-06 .058 .0003 0.038 .456 .574 .45

rs12436689 14 84723772 FLRT2 0.244 20.212 6.87E-06 .420 .0010 20.017 .759 .051 .95

rs12615721 2 81710037 CTNNA2 0.104 20.303 7.65E-06 .853 .0020 20.127 .129 .824 .08

rs10516809 4 89640109 HERC5 0.101 0.306 8.67E-06 .790 3.60E-05 20.060 .446 .200 .41

rs16856186 1 203944749 SLC45A3 0.098 0.268 8.92E-06 .510 .0034 20.079 .350 .094 .46

rs158536 20 52148709 BCAS1 0.408 0.162 .00002 .948 .0001 0.075 .100 .917 .09

rs477725 19 42066106 ZNF345 0.158 0.223 .00003 .821 .0031 20.069 .273 .255 .14

rs9662589 1 230344234 DISC1 0.221 0.188 .00005 .868 .0002 20.020 .706 .153 .76

rs777433 2 128084705 LIMS2 0.407 0.151 .00010 .811 .1223 20.018 .691 .564 .52

Decrease in FEV1/FVC ratio

Nonasthmatic participants

rs2658782 11 92806379 FLJ25393 0.166 0.186 4.33E-06 .362 .0041 0.031 .135 .242 .91

rs1867982 10 73197053 C10orf54 0.109 0.202 5.56E-06 .839 .0034 20.008 .745 .412 .24

rs12712969 2 46185673 PRKCE 0.268 20.147 7.08E-06 .687 .0116 0.012 .448 .916 .76

rs10187654 2 234478798 TRPM8 0.205 0.151 8.87E-06 .797 .0049 20.015 .382 .676 .15

rs356642 2 100903870 NPAS2 0.189 0.158 9.79E-06 .162 .0014 20.010 .565 .282 .28

rs890515 8 67534388 ADHFE1 0.497 0.119 .00001 .580 .0257 0.003 .847 .443 .58

rs10738890 9 32448081 DDX58 0.391 20.118 .00003 .832 .5847 20.009 .567 .032 .73

Asthmatic participants

rs4831760 8 15576956 TUSC3 0.326 0.222 5.27E-08 .066 7.74E-08 0.011 .799 .541 .73

rs7144584 14 63345565 SYNE2 0.116 20.318 5.62E-07 .616 .0010 0.089 .272 .752 .43

rs1148186 10 28657641 MPP7 0.194 0.219 7.28E-06 .760 .0035 20.033 .602 .967 .60

*MUSK refers to the TXN/MUSK/SVEP1 locus.
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Association signals for annual decrease in

FEV1/FVC ratio in asthmatic participants
Twelve SNPs at locus 8p22 containing the gene TUSC3 at

15.68 Mb were associated with FEV1/FVC ratio decrease at a
P value of less than 1027 in asthmatic participants (Fig 1). Re-
gional locus and forest plots are presented in Fig E3 in this ar-
ticle’s Online Repository at www.jacionline.org. The top
association signals in this locus were conferred by distinct
SNPs in each cohort, although apparently they were located in
the same putative haplotype segment in SAPALDIA and in
EGEA (see Fig E4 in this article’s Online Repository at www.
jacionline.org). There was no statistically significant association
in ECRHS. Meta-analysis of the discovery samples identified
SNP rs4831760 as the top signal in TUSC3 gene, but heteroge-
neity between discovery studies was borderline significant (P 5
.07). The C allele (P 5 5.3 3 1028) was positively associated
with annual decrease in FEV1/FVC ratio in asthmatic partici-
pants (b 5 0.22 6 0.04 [SE], Table II). However, this
association was not replicated (P 5 .80). In the meta-analysis
combining discovery and replication samples, the resulting P
value for rs4831760 was 2.8 3 1025. All but the Dutch Asthma
Study exhibited effect estimates in the same direction as the dis-
covery panel. Two other candidate loci (MPP7 and SYNE2) also
failed replication testing.
SNPs previously associated in GWAS

meta-analyses on cross-sectional lung function
The associations of top-hit SNPs from previous GWAS meta-

analyses on cross-sectional lung function11,15-18 and a replication
study in asthmatic patients33 were assessed separately for asth-
matic and nonasthmatic participants in the discovery cohorts. As-
sociations were assessed for both lung function parameters of
decrease (annual decrease and percentage change) and cross-
sectional lung function levels. Overall, a subset of variants and
loci showed replication of association with cross-sectional lung

http://www.jacionline.org
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FIG 2. Association of the DLEU7 locus with decrease in FEV1 in nonasthmatic participants. A, Regional as-

sociation plot, discovery phase. B, Forest plot for rs9316500. A, Chromosome position (National Center for

Biotechnology Information build 36.3) and recombination rate (hg18 build). The sentinel SNP is represented

as a diamond and r2 value for SNPs to the sentinel SNP (HapMap CEU phase II). B, The size of the square of

each study reflects the contributing weight to the meta-analysis. Details are shown in Table E11 in this ar-

ticle’s Online Repository at www.jacionline.org.
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function in either nonasthmatic or asthmatic participants. Few of
the loci showed strong association with decrease in lung function.
We present associations at a P value of less than .05 in
Table III15-18,33,34 and those at a P value of .05 or greater in
Table E10 in this article’s Online Repository at www.jacionline.
org.
For baseline FEV1, we observed associations for SNPs belong-

ing to 4q24 (GSTCD, rs11731417, P 5 1.3 3 1024) and 15q23
(THSD4, rs1913768, P 5 .003). Associations with baseline
FEV1 were mainly restricted to nonasthmatic participants. For
baseline FEV1/FVC ratios, associations of SNPs of THSD4
were prominent (eg, rs12899618, P5 3.33 1024) and again re-
stricted to nonasthmatic participants.
For decrease in phenotypes of FEV1, we observed associations

for SNPs in regions 6p21 (DAAM2, .003 < P < .02) and 4q28
(HHIP, .02 < P < .05) among asthmatic participants and in
THSD4 (.003 < P < .04) among nonasthmatic participants. The
strongest associations observed for decrease in phenotypes
of FEV1/FVC ratio were 2 SNPs in MMP15 (16q13, .003 <
P < .002) in nonasthmatic participants only. Association in the
combined sample of asthmatic and nonasthmatic participants
did not substantially alter the results.
Summary of findings from sensitivity analyses
We observed in nonasthmatic participants aged 30 years and

older thatMUSK andDLEU7were no longer prominently associ-
ated with FEV1 decrease, but SNPs in other genes remained
strongly associated (ZIC1, rs6785065, P 5 2.3 3 1025; UBL3,
rs278037, P 5 4.8 3 1025).
Results of the GWASs on percentage change in lung function

showed that the FEV1 association signal for DLEU7 in the
nonasthmatic participants was no longer significant; however,
the signals for MUSK (rs1889321, P 5 2.92 3 1027) and other
loci remained unaltered (ZIC1, rs6785065, P5 2.03 1025; KIR-
REL3, rs11604082, P 5 4.1 3 1026; KIAA2117, rs10082549,
P 5 2.7 3 1026). Top signals associated with decrease in
FEV1/FVC ratio in asthmatic participants remained unaltered
for TUSC3 (rs4831760, P 5 5.2 3 1028) and SYNE2
(rs7144584, P5 6.43 1027) after taking baseline lung function
into account.
Smoking-stratified analyses of the replication SNPs revealed

no substantial difference in association between ever and never
smokers except for a few SNPs belonging to loci containing the
genes SYNE2, RORA, BCAS1, or PLXNA4.
Replication meta-analysis excluding the ARIC data substan-

tially reduced sample size in nonasthmatic participants, and the
association of DLEU7 with decrease in FEV1 was no longer sig-
nificant. Instead, 2 loci for association with decrease in FEV1 in
asthmatic participants (PLXNA4, rs10808265, Pdiscovery 5 1.7
3 1026, Preplication 5 .02 and SLC45A3, rs16856186,
Pdiscovery 5 8.9 3 1026, Preplication 5 .04) and 1 locus,
FLJ25393, for a decrease in FEV1/FVC ratio in nonasthmatic par-
ticipants (rs2658782, Pdiscovery 5 4.3 3 1026, Preplication 5 .03)
gained statistical significance.
DISCUSSION
A main result of this study is the observed genetic heteroge-

neity of lung function decrease between asthmatic and non-
asthmatic subjects. When we combined the 2 groups in the
discovery phase, we observed no genome-wide significant asso-
ciation signal despite larger sample size. All top-hit association
signals detected by the asthma-stratified analysis showed
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TABLE III. Association* of SNPs previously identified in GWASs on cross-sectional lung function with percent predictedy lung function

at baseline, as well as percentage change and annual decrease in lung function for FEV1 and FEV1/FVC ratio in ESE discovery cohorts

by asthma status

dbSNP ID Chromosome

Position

(build

36.3) References

Gene

nearby

Maximal

frequency of

coding allele

Nonasthmatic participants Asthmatic participants

FEV1 %

predicted

FEV1 %

change

FEV1 decrease

(%/y)

FEV1 %

predicted

FEV1 %

change

FEV1 decrease

(%/y)

P

value

P

value

P

value

P

value

P

value

P

value

FEV1

rs1435867 2 229219173 2 PID1 0.065 .021 .845 .418 .824 .321 .377

rs17035917 4 106740191 2, 3 INTS12-GSTCD-NPNT 0.071 .006 .135 .077 .073 .056 .061

rs17035960 4 106751295 2, 3 INTS12-GSTCD-NPNT 0.071 .004 .093 .054 .067 .056 .063

rs11727735 4 106851319 2, 3 INTS12-GSTCD-NPNT 0.076 2.14E-04 .361 .198 .057 .114 .074

rs10516526 4 106908353 2, 3 INTS12-GSTCD-NPNT 0.072 1.96E-04 .327 .177 .062 .120 .078

rs11731417 4 106965461 2, 3 INTS12-GSTCD-NPNT 0.073 1.32E-04 .335 .177 .048 .146 .090

rs1032295 4 145654034 2 HHIP 0.397 .173 .096 .306 .274 .042 .033

rs1512285 4 145670409 HHIP 0.462 .032 .029 .141 .152 .033 .024

rs720485 4 145682038 2, 3 HHIP 0.391 .159 .510 .786 .943 .044 .058

rs1512288 4 145710731 2, 3 HHIP 0.401 .188 .533 .813 .781 .046 .057

rs6817273 4 145711453 2, 3 HHIP 0.400 .179 .535 .816 .866 .046 .057

rs3008798 6 39887840 3 DAAM2 0.464 .326 .960 .850 .755 .009 .017

rs1318002 6 39892112 3 DAAM2 0.480 .649 .725 .902 .782 .015 .023

rs2395730 6 39892343 3 DAAM2 0.442 .522 .716 .513 .619 .003 .007

rs12899618 15 69432174 3 THSD4 0.158 .003 .003 .014 .424 .137 .131

rs1913768 15 69436598 3 THSD4 0.159 .003 .002 .011 .393 .162 .152

rs1568010 15 69455566 4 THSD4 0.372 .535 .042 .067 .413 .241 .111

rs2304488 16 56631711 1 MMP15 0.186 .033 .101 .147 .112 .344 .506

rs12447804� 16 56632783 5 MMP15 0.179 .033 .111 .161 .112 .382 .482

FEV1/FVC ratio

rs918949 2 218382942 2, 3 TNS1 0.384 .010 .133 .089 .076 .241 .256

rs1035672 2 218383444 2, 3 TNS1 0.384 .010 .133 .089 .093 .243 .258

rs929937 2 218417460 2, 4 TNS1 0.386 .623 .017 .016 .004 .915 .888

rs3845823 2 229611365 4 PID1 0.432 .039 .963 .852 .393 .997 .987

rs12477314� 2 239542085 5 HDAC4 0.215 .023 .727 .655 .125 .361 .278

rs1529672 3 25495586 5 RARB 0.159 .012 .329 .337 .605 .716 .860

rs1828591 4 145700230 2, 3 HHIP 0.394 .031 .470 .345 .254 .138 .139

rs13118928 4 145705839 2, 3 HHIP 0.393 .043 .500 .371 .271 .132 .132

rs3995090 5 147826008 2, 3 HTR4 0.394 .011 .785 .699 .029 .649 .456

rs2395730 6 39892343 3 DAAM2 0.442 .277 .554 .685 .979 .036 .039

rs2798641 6 109374743 5 ARMC2 0.209 .315 .444 .530 .006 .188 .158

rs9496346 6 142711031 2 GPR126 0.316 .053 .378 .368 .098 .777 .788

rs6570507 6 142721265 2 GPR126 0.314 .035 .356 .342 .080 .804 .821

rs11155242 6 142733242 2 GPR126 0.210 .008 .785 .670 .268 .857 .807

rs7753012 6 142787576 2 GPR126 0.337 .051 .477 .487 .065 .566 .637

rs3748069 6 142809326 2 GPR126 0.319 .043 .407 .401 .134 .604 .628

rs171891 6 142892305 2, 4 GPR126 0.198 .013 .884 .741 .129 .830 .815

rs10512249 9 97296130 2 PTCH1 0.089 .435 .922 .999 .807 .032 .028

rs11172113 12 55813550 5 LRP1 0.384 .005 .602 .530 .809 .114 .125

rs1036429 12 94795559 5 CCDC38 0.217 .765 .322 .356 .295 .047 .031

rs2456526 15 50876734 1 ONECUT1 0.136 .011 .524 .500 .451 .230 .250

rs12899618 15 69432174 3 THSD4 0.158 3.25E-04 .253 .390 .328 .596 .668

rs1913768 15 69436598 3, 4 THSD4 0.159 4.78E-04 .221 .344 .365 .617 .695

rs2304488 16 56631711 1 MMP15 0.186 .121 .002 .002 .085 .760 .515

rs12447804� 16 56632783 5 MMP15 0.179 .121 .003 .003 .085 .719 .487

rs2865531� 16 73947817 5 CFDP1 0.428 .035 .621 .736 .377 .840 .603

*Associations of SNPs previously associated in cross-sectional lung function in GWASs, (1) Framingham,15 (2) CHARGE,17 (3) Spirometa,16 (4) Asthmatics,33 and (5) CHARGE-

Spirometa,18 were assessed in the discovery cohorts only if minor allele frequency was at least 5%. SNPs tested for associations—ADAM19: rs2277027, rs1422795, rs6890282;

ADCY2: rs7710510, rs6555465; ARMC2: rs2798641; C10orf11: rs11001819; CCDC38: rs1036429; CDC123: rs7068966; CFDP1: rs2865531; DAAM2: rs3008798, rs1318002,

rs2395730; FAM13A1: rs6830970, rs2869967; GPR126: rs9496346, rs6570507, rs11155242, rs7753012, rs3748069, rs171891, rs263178; HDAC4: rs12477314; HHIP: rs1032295,

rs1512285, rs720485, rs1828591, rs13118928, rs1512288, rs6817273; HTR4: rs3995090, rs1833710; INTS12-GSTCD-NPNT: rs3960769, rs17035917, rs17035960, rs11727735,

rs10516526, rs11731417; KCEN2: rs9978142; LRP1: rs11172113; MECOM: rs1344555; MFAP2: rs2284746; MMP15: rs2304488, rs12447804; MTMR3: rs17646919; NCR3:

rs2857595; NOTCH4: rs206015; ONECUT1: rs2456526; PID1: rs1435867, rs1358443, rs3845823; PTCH1: rs10512249, rs576594; RARB: rs1529672; SPATA9: rs153916; TGFB2:

rs993925; THSD4: rs12899618; THSD4: rs1568010, rs1913768; TNS1: rs918949, rs1035672, rs929937; ZKSCAN3: rs6903823. Nonsignificant associations are reported in this

article’s Online Repository.

�Baseline cross-sectional lung function was calculated by using the Quanjer formula.34

�Proxies tested for cross-sectional association: for rs12447804-rs2304488 (r2, 0.87; D9, 1); for rs12477314-rs4521068 (r2, 1; D9, 1); and for rs2865531-rs12917651 (r2, 1; D9 1).
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significant heterogeneity according to disease status. In the
replication phase this heterogeneity was also confirmed for the
DLEU7 locus that was associated with FEV1 decrease in nonasth-
matic participants only. Finally, many of the SNPs identified by
previous GWASs on lung function exhibited associations specific
to asthma status.
The finding of genetic heterogeneity in lung function reported

here is consistent with available evidence. Differences in familial
segregation of FEV1 in asthmatic and nonasthmatic families pre-
viously suggested genetic heterogeneity between these 2
groups.24 Agnostic studies investigating genetic determinants of
lung function in both family-based21,22,35-38 and population-
based15-18,23,25 samples produced little overlap in chromosomal
regions. Genome-wide scans on lung function in families with
asthma21,39 or COPD22 also suggested a heterogeneous genetic
architecture of lung function.
Nevertheless, some previously reported overlapping linkage

regions for the ratio of FEV1 over vital capacity (FEV1/VC) and
FEV1 over FVC (FEV1/FVC) in families with asthma and
COPD21,22 suggest that at least some gene or genes could be
important in the development of airway obstruction in both
diseases. Furthermore, genetic polymorphisms in glutathione
S-transferases,40-43 as well as ADAM33,44-47 were associated with
lower lung functionat all ages and indifferent subgroups of thepop-
ulation (general population, patients with COPD, and asthma pa-
tients). Gene-lung function associations that are of relevance to
several population and patient strata might be determined specifi-
cally by complex gene-gene and gene-environment interactions,
as suggested for lung function decrease and its complex association
with estrogen receptor 1 polymorphisms, smoking, steroid use, and
sex.32,48 Although ignored in both ours and previous GWASs, such
effect modifications should be considered in the future.49

Results from the Busselton Health Study on familial aggrega-
tion and heritability of adult lung function previously suggested
the existence of genetic determinants of adult lung function
independent of asthma, atopy, cigarette smoking, height, age, or
sex.25 Consistent with these results, neither asthma, atopy, and
COPD genes previously identified in large GWASs5-9,11 nor genes
related to smoking behavior50 were associated with lung function
decrease in our study. The association of FEV1 decrease with a
gene related to height, DLEU7, ranked high but only in
subjects without asthma (rs9316500, Pdiscovery 5 4.8 3 1026;
Preplication 5 .03). DLEU7 gene product and expression remain
poorly characterized, but its mRNA has been detected in the
lung. The DLEU7 locus was identified as a determinant of adult
height in previous GWAS meta-analyses.51-53 Three other height
genes, HHIP, GPR126, and PTCH, were associated with cross-
sectional lung function.15-17 All of these lung function models,
including ours, were adjusted for adult height. The observed asso-
ciation, related to both HHIP and DLEU7 being associated with
peak height velocity in infancy,52 suggests that aspects beyond
adult height influence lung function and possibly its response to
nongenetic determinants. Several genes implicated in respiratory
diseases indicate that early lung development affects respiratory
health later in life.20 Sensitivity analyses are supportive for a
growth-specific role of DLEU7. The association of genetic vari-
ants in DLEU7 with decrease in FEV1 disappeared in analyses
considering baseline lung function or restricted to subjects older
than 30 years with no remaining physiologic lung growth. There
might be a link between physiologic growth and unregulated cell
differentiation because the DLEU7 gene is also a proposed tumor
suppressor gene in patients with chronic lymphocytic leuke-
mia.54-56 Evidence emerges for a role of DLEU7 in counterbal-
ancing the proliferative effect of nuclear factor kB on various
cell types.57 The potential role of the gene product of TUSC3, a
proposed tumor suppressor gene,58 in lung physiology is dis-
cussed in this article’s Online Repository.
None of the SNPs identified in GWASs of cross-sectional lung

function15-18 ranked high in this current GWAS on lung function
decline. A strong risk factor for accelerated lung function de-
crease in adulthood is cigarette smoking, but our study was too
small to assess gene-smoking interaction at the GWAS level.
We had decided a priori against smoking adjustment because it
is not a confounder, and any link between genotype and smoking
is likely to be, at least in part, in the same causal pathway (eg, gene
products metabolizing tobacco constituents or influencing smok-
ing behavior). Their identification as determinants of lung func-
tion decrease is of public health importance. Consistent with
previous GWASs on cross-sectional lung function,15-18 neither
the TUSC3 (heterogeneity between ever/never smokers, P 5
.98) nor other top-hit signals were modified by smoking except
for SNPs in SYNE2, RORA, BCAS1, and PLXN4.
Arguments for biological plausibility are mentioned in this

article’s Online Repository.
The strength of the present study is the longitudinal design of all

cohorts included. Repeated spirometric assessments within the
same subject are thought to capture more precisely exogenous
factors and genes leading to accelerated loss of lung function in
adulthood.59 The discovery cohorts shared comparable question-
naire and spirometric protocols, and they were specifically de-
signed to investigate environmental and genetic causes of lung
function decrease and asthma in a standardized way. Each study
has 2 measures of prebronchodilator lung function about 10 years
apart, but clearly, our findingswould bemore robust if further lung
function measures were available over an even longer period of
follow-up. All discovery cohorts have used the same genotyping
platform, and stringent quality control criteria have been applied.
Sample size is a limitation of this study and remains a general

challenge in lung function studies with a need for high phenotypic
comparability because spirometric results are sensitive to tech-
nicians and devices used.60 The prebronchodilation lung function
measurements in our and previous lung function GWASs do not
allow one to differentiate reversible from nonreversible obstruc-
tion to airflow. Populations included in this study differed by
age, which is also reflected by the diverging proportion of subjects
with FEV1/FVC ratios of less than 0.7 at follow-up between the
discovery cohorts. Discovery and replication populations also dif-
fer by time spacing between the spirometric assessments. We can
only speculate on the overall effect of such differences. We do
note that replication results were sensitive to the exclusion of
ARIC data (the study with highest mean age, largest annual de-
crease, and shortest follow-up time).
Other limitations are shared with any GWAS meta-analyses

investigating complex phenotypes, such as lack in power for
investigating gene-environment interactions or studying sub-
groups of diseases. Because the sample size of our study was
comparatively small, especially for the asthmatic sample in the
replication phase, we had limited ability to address differences in
asthma subphenotypes or the effect of asthma medication intake.
It is also likely that a substantial part of complex disease might be
explained by rare mutations not considered by current GWASs.
Finally, assessing the joint effect of SNPs having small effects
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individually and potentially interacting with each other remains
another challenge.
In conclusion, this first GWAS meta-analysis on lung function

decline provides suggestive evidence for genetic heterogeneity
between persons with and without asthma and between cross-
sectionally and longitudinallymeasured lung function. Consistent
with cross-sectional GWASs, our results are also suggestive of
height-related genes playing a role. Further studies in this area
would be enhanced by greater comparability of age range,
spacing of lung function assessments, and asthma subphenotypes
(including treatment) to decrease phenotypic heterogeneity and
therefore increase statistical power to detect true association
candidate loci.61
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Key messages

d Knowledge regarding genes with pleiotropic effects on
asthma, COPD, and lung function level and longitudinal
course is limited.

d This first GWAS meta-analysis on lung function decline
conducted separately in nonasthmatic and asthmatic co-
hort participants suggests that genetic determinants of
lung function decline are different in the 2 groups.

d The results further suggest that previously identified ge-
netic determinants of cross-sectional lung function are
not major determinants of the decline.
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