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Abstract

Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we
report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was
conducted within an untargeted approach, employing a novel method for compound identification. From our discovery
cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant
(P,561028) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features.
Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly
diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously
identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two
SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9610244) and lysine (rs8101881, P = 1.2610233),
respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has
previously been associated with Crohn’s disease. This implicates fucose as a potential prognostic disease marker, for which
there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of
which have been linked to severe kidney damage. The replication of previous associations and our new discoveries
demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.
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Introduction

Genome-wide association studies (GWAS) search for associa-

tions between phenotypes and common variants within large

collections of samples [1]. These studies usually focus on

organismal phenotypes [2–6]. Recently however, molecular

phenotypes, including gene-expression [7,8] and metabotypes

[9–14], have also been investigated. Studying the effects of genetic

variations on molecular phenotypes is motivated by two charac-

teristics common to the vast majority of GWAS on organismal

phenotypes: first, the biological mechanisms underlying the

associations are often unknown; and second, the significantly

associated loci individually explain only a small fraction of

variability of the organismal phenotype, and even cumulatively

fall far from explaining the estimated heritability of the phenotype

[15]. Molecular phenotypes can be considered as far less removed
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from the primary causal variants. In agreement with this, GWAS

on these phenotypes uncover associations generally characterized

by larger effect sizes and higher explained variances. For example,

the study of gene expression data from different tissues revealed

hundreds of SNPs explaining a significant portion (.5%) of the

gene expression levels of (usually) neighboring genes. These

expression quantitative trait loci (eQTL) overlaid with GWAS hits for

organismal phenotypes reveal significant enrichment [16], hinting

at the underlying causal biological mechanisms. Large effect sizes

have also been observed for many metabolic quantitative trait loci

(mQTL) (see [17] for a recent review). Indeed, several metabolite

concentrations measured in urine or serum are genetically

determined in a close-to-monogenic manner [10,12,18]. More

recently, mQTLs have been studied in more depth in the context

of organismal phenotypes in order to develop potential prognostic

disease markers [11,19].

The technologies used to measure the metabolome (gen-

erally mass spectrometry or NMR spectroscopy) produce high-

dimensional raw data. Most GWAS for mQTLs employ estimates

of metabolite concentrations that have been derived from these

data after normalization. This data transformation is far from

trivial, and is performed only for a subset of at most a few

hundred metabolites of the much larger set of known human

metabolites. The non-transformed data are ignored in the

subsequent GWAS, so that this targeted approach to mQTL

GWAS discards potentially valuable raw data captured by the

analytical technique. In our study, we followed an untargeted

approach, similar to the one previously used in the analysis of

rodent [20,21] and human metabolism [22]. In this approach,

instead of seeking to transform normalized data into metabolite

concentrations as target traits for GWAS, we use the normalized

data themselves as phenotypes to be associated with the

genotypes, thereby pinpointing metabolome features from these

data that have a genetic association. The subsequent identifica-

tion of metabolites is attempted only using these features, and

thereby focused on compounds whose concentrations have a

significant genetic determinant.

Results

Our study concerns metabolites in urine samples, measured by
1H-NMR spectroscopy (details on sample preparation and

spectrum acquisition are provided in the Materials and Methods

section). We binned the 1H-NMR spectra into approximately

2,000 uniform bins, and defined the average intensity of the NMR

signal in a bin as a metabolome feature. In our untargeted approach,

we used these features—which, combined, contain the full

spectroscopic data—as molecular phenotypes. After quality

filtering (Materials and Methods), we maintained 1,276 of these

features for subsequent analysis. We then followed a two-stage

GWAS design, wherein we tested all possible SNP-feature pairs for

association in the Cohorte Lausannoise, or CoLaus (see figure 1A for

the Manhattan plot corresponding to a single feature, figure S1 for

a three-dimensional illustration of Manhattan plots for all features,

and figure 1B for the P-value heat map summarizing only the

significant associations). After pruning according to SNP linkage

and feature correlation, pairs indicating suggestively significant

association (P-value below 561028) in CoLaus (N = 835) were

tested for replication in the TasteSensomics cohort [23,24] (N = 601).

Out of 139 discovered independent associations, 56 replicated (see

table S1 for detailed list).

For this manageable set of reproducible associations, we then

sought to identify the underlying metabolites. To this end, we

devised a method that we call metabomatching. Our method makes

use of the fact that the NMR spectrum of most metabolites

comprises multiple peaks, so that the genetic effect of a SNP on a

metabolite usually results in associations of that SNP with multiple

metabolome features. This concept is best visualized by way of the

pseudo-spectrum of a SNP (see figure 1C for an example), consisting

of the set of significance values (2log(P-values)) of its associations

with each of the 1,276 features. We observed that in cases where

the genetic effect is sufficiently strong, the pseudo-spectrum tends

to be similar to the NMR spectrum of the underlying metabolite,

allowing its identification.

Specifically, for a given SNP, metabomatching assigns scores to

all metabolites with known NMR spectrum. The scores are

computed using the significance values of the features that

correspond to peaks in the known spectra (see Materials and

Methods for details). The metabolites are then ranked, based on

these scores, to identify the candidate metabolites most likely to

underlie the association. As an example, for SNP rs37369, the top-

ranked candidate metabolite is 3-aminoisobutyrate, thereby

replicating the association found in previous metabolomics studies

[11,12,22]. Figure 2A shows how closely the NMR spectrum of 3-

aminoisobutyrate (upper half) matches the pseudo-spectrum of

rs37369 (lower half).

In order to evaluate the robustness of the metabomatching

method, we collected all known metabolites whose concentrations

in urine had previously been found to be associated with SNPs by

the two largest-to-date studies [12,22]. Among these established

SNP-metabolite pairs, we then considered only those for which

our association P-values are below 1026 and whose metabolites

have a known NMR spectrum (see table S2). For these controls,

metabomatching proved very efficient in selecting the reference

compounds, which ranked within the top 1% for 5 out of 7 testable

associations, and within the top 10% for the remaining two (see

figure 2A–C and figure S2). Encouraged by these findings, we

decided to use metabomatching to identify the metabolites (or

metabolite families) underlying some of our associations.

Grouping features by metabolites and SNPs by genetic loci, we

reduced our 56 SNP-feature associations to 11 locus-metabolite

associations, listed in table 1. We replicated the previously

Author Summary

The concentrations of small molecules known as metab-
olites, are subject to tight regulation in all organisms.
Collectively, the metabolite concentrations make up the
metabolome, which differs amongst individuals as a
function of their environment and genetic makeup. In
our study, we have further developed an untargeted
approach to identify genetic factors affecting human
metabolism. In this approach, we first identify all genetic
variants that correlate with any of the measured metabo-
lome features in a large set of individuals. For these
variants, we then compute a profile of significance for
association with all features, generating a signature that
facilitates the expert or computational identification of the
metabolite whose concentration is most likely affected by
the genetic variant at hand. Our study replicated many of
the previously reported genetically driven variations in
human metabolism and revealed two new striking
examples of genetic variations with a sizeable effect on
the urine metabolome. Interestingly, in these two gene-
metabolite pairs both the gene and the affected metab-
olite are related to human diseases – Crohn’s disease in the
first case, and kidney disease in the second. This highlights
the connection between genetic predispositions, affected
metabolites, and human health.
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published urine associations of ALMS1 with N-acetylated com-

pounds (figure S2A), AGXT2 with 3-aminoisobutyrate (figure 2A),

and PSMD9 with 2-hydroxyisobutyrate (figure S2D). For PYR-

OXD2, we replicated the association with trimethylamine

(figure 2B), but also found associations with several features not

part of the spectrum of trimethylamine, suggesting that one or

more additional metabolites could be implicated. Similarly, the

published association of NAT2 is with the formate-succinate ratio

[12], but neither of these compounds contains the features

implicated by our association (Figure S2C). For the associations

of SNPs in ACADL, ABO, and ACADS, linked SNPs have been

found to associate with metabolite concentrations in serum.

However, without conclusive identification of the metabolites

underlying the associated features we could not determine whether

our associations are the exact urine analogs of known serum

associations, or whether they involve novel or related metabolites.

In the traditionally applied SNP-pruning procedure, focus is

given only to the most significant SNP and the phenomenon of

(semi-)independent contribution of adjacent SNPs (termed as allelic

heterogeneity) is ignored. To overcome this limitation, we tested for

allelic heterogeneity for each of our 11 locus-feature pairs using

multivariate association [25,26]. We found evidence for secondary

signals for four of these pairs in the CoLaus sample, and for two of

them, both involving the AGXT2 locus, allelic heterogeneity was

replicated in the TasteSensomics cohort (table 2). For these

replicating cases, the variance explained by the multiple SNP

association was up to 50% greater than that of the single SNP

association, demonstrating the importance of allelic heterogeneity,

still often overlooked in GWAS [26].

For our first novel association, metabomatching allowed the

identification of the underlying metabolite. As illustrated in

figure 2D, the pseudo-spectrum of rs281408 (lower half) closely

resembles the NMR spectrum (upper half) of the top-ranked

candidate, fucose. We confirmed this in-silico identification using

NMR spectroscopy of fucose-spiked urine samples. In CoLaus, the

SNPs associated with fucose fall within a large LD block on

chromosome 19 encompassing the FUT2, RASIP1, and IZUMO1

genes. However, the TasteSensomics population has a different

genetic structure within this region (figure S3), such that the

combined association signal, led by rs492602 (r2 = 0.87 with

rs281408), could be narrowed down to FUT2 specifically

(Figure 3A). FUT2 encodes a fucosyltransferase enzyme that is

essential for the secretion and display of ABO blood group

antigens on mucosal surface cells. Mucosal ABO-antigens serve as

attachment points for both beneficial gut bacteria and harmful

viruses [27,28], which is thought to have driven the complex

evolution of FUT2 [29]. In addition, fucose, the substrate of the

fucosyltransferase enzyme, was shown to impact human gut

Figure 1. Genome- and metabolome-wide analysis results, first stage. (A) Manhattan plot for feature 1.2025. (B) Genome- and metabolome-
wide P-value heat map, showing associations with PC,561028 in CoLaus. (C) Pseudo-spectrum for SNP rs37369, obtained by plotting the association
P-values between rs37369 and all metabolic features.
doi:10.1371/journal.pgen.1004132.g001
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microbial composition [30,31], and thereby gut health [32,33].

The role of FUT2 in gut microbial ecology is further substantiated

by the association of its SNP rs281379 (r2 = 0.76 with rs492602)

with Crohn’s disease (CD), as found in a sample of over 50 K

individuals [34] (figure 4A). Several urinary metabolites (not

including fucose) were shown to distinguish between inflammatory

bowel disease patients (including those with CD) and healthy

subjects [35]. Moreover, significantly elevated fucose levels in

urine were found in mice with an interleukin-10 deficiency, the

mouse model of CD [36,37]. This FUT2-independent link

between urinary fucose levels and CD may be indicating that

the elevated urine fucose levels, also observed in human FUT2

non-secretors, do not simply result from the elimination of fucose

that was not secreted into the mucosal layers. Instead this elevation

may be a consequence of (and metabolic indicator for) early sub-

symptomatic changes from a healthy gut flora towards the

dysbiosis of CD. While its exact role is unclear, fucose is certainly

an interesting candidate for further exploration of the metabolic

causes and effects of CD, or inflammatory bowel disorders in

general.

Our second novel association links the SNP rs8101881 with a

metabolite identified as lysine by our metabomatching method

(figure 2C). This SNP falls within the SLC7A9 gene (in a different

region of chromosome 19, see Figure 3B). SNPs at this locus have

already been found to be significantly associated with the lysine/

valine ratio [12], but not lysine alone. SLC7A9 is linked to kidney

function: rare mutations in SLC7A9 cause severe kidney damage

[38], and a common variant (rs12460876, linked to rs8101881

with r2 = 0.996) is associated with the estimated glomerular

filtration rate (eGFR) [39], which is a key clinical measure of

kidney health. Interestingly, lysine concentration shows a strong

association with eGFR in the combined CoLaus and TasteSensomics

sample (xm = 0.038, SE = 0.008, Pm = 8.161027), regardless of the

rs8101881 genotype. To further explore these links (figure 4B) we

used Mendelian randomization (MR) [40,41] in order to assess

whether lysine levels may be causative for chronic kidney disease.

We employed rs8101881 as instrument (F-statistic = 46.22) and the

tests proposed by Glymour et al. [42] indicated no violation of the

assumptions of MR. We then computed the two-stage least-

squares (2SLS) estimate as done by Ehret et al. [2], where the

rs8101881-lysine effect was calculated combining the results from

the CoLaus and TasteSensomics cohorts, while the effect of rs8101881

on eGFR was estimated using CKDGen [39] summary statistics.

Although the 2SLS estimate was consistent (overlapping in

confidence interval) with the ordinary least-squares (OLS) estimate

of lysine on eGFR (xm = 0.038), it was non-significant (x = 0.02,

P = 0.54), hence we have no sufficient evidence to claim a causal

effect of lysine levels on eGFR.

Discussion

We conducted a genome- and metabolome-wide association

study of untargeted NMR data to reveal novel SNP-feature

associations. Using both manual and automated annotation, we

identified the metabolites underlying more than half of the

discovered associations.

The high number of associations found to replicate (56 out of

139) is indicative of the robustness of mQTL GWAS in general,

and our feature-based approach in particular. Our discovery and

replication cohorts have different population origins —European

for the Swiss cohort CoLaus, genetically admixed, from African,

European, and Asian founders, for the Brazilian cohort TasteSen-

somics—indicating that the genetic effects on the metabotypes are

likely to be both ethnicity-independent, and robust against

potential variations of diet and other environmental factors.

The two metabolomic data sets we used for discovery and

replication were collected independently, initially without the

intention of combining them. As a result, the respective

Figure 2. Metabomatching. Each subfigure compares the CoLaus pseudo-spectrum (bottom half) with the NMR spectrum (top half) of the most
likely candidate for the associated metabolite. (A) rs37369 vs. 3-aminoisobutyrate. (B) rs2147896 in PYROXD2 vs. trimethylamine (C) rs8101881 in
SLC7A9 vs. lysine (D) rs281408 in FUT2 vs. fucose.
doi:10.1371/journal.pgen.1004132.g002
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experimental conditions were not always well matched (see

Materials and Methods for details). Since differences in the

experimental setups can cause significant changes in the chemical

shifts of specific metabolite absorption bands, one could have

expected that this would cause a significant problem to our

feature-based approach. Yet in practice, this did not appear to be a

significant impediment, given the high rate of replication between

our two studies. This indicates that the feature-based approach is

rather robust against variations in experimental conditions. The

reliability of the feature-based approach is further evidenced by

the high overlap between our associations and previously

described results [11,12,22].

In comparison to previous targeted approaches, where metab-

olite identification is applied before GWAS, the feature-based

approach has two main advantages. The first, and most important

one, is that by moving the identification of metabolite concentra-

tions after the association phase, the complete metabolomic data

captured by spectroscopy are analyzed. As a consequence, the

feature-based approach can potentially provide additional associ-

ation signals that would have been missed by a targeted approach.

The second advantage, which is of a more pragmatic nature, is

that the burden associated with metabolic identification is

considerably reduced. Indeed only the metabolites of interest,

namely those found to have a genetic component, need

identification. Even so, identification of all metabolites of interest

can prove difficult, and cases may exist where identification will

require further experimental work (like the collection of two-

dimensional homo- and heteronuclear NMR spectra, for exam-

ple). Such additional analysis was precluded in our study due to

the destruction of samples after 1H-NMR analysis in accordance

with study protocols and informed consent.

A key message of our study is that our metabomatching method

may be useful for other cohort-based metabolomics projects when

resources for compound identification in terms of material or

expert time are limited. Essentially, the information inherent in the

GWAS signals can complement (and sometimes even replace)

traditional sample-based metabolite identification. As the infor-

mation in databases of NMR spectra of individual metabolites

increases, the method may become a powerful strategy for

metabolite identification in GWAS involving untargeted metabo-

lomics.

In summary, the replication of locus-metabolite associations

with previous studies [9–13] and the unequivocal identification of

two new gene-metabolite associations indicate that the feature-

based approach, combined with pseudo-spectrum based identifi-

cation, is a reliable approach for metabolome- and genome-wide

Table 2. Allelic heterogeneity at the AGXT2 locus.

Locus CoLaus TasteSensomics

Chr Position Feature SNP PC xC R2 R2
diff model P Feature SNP PT xT R2 R2

diff model P

5 34,537,671–
35,578,717

1.2025 rs37370 2.1610237 0.95 0.278 0.079 2.061024 1.204 rs37370 2.2610221 0.92 0.130 0.047 2.061024

rs7717823 1.1610220 20.47 rs455423 5.961028 20.41

rs6880595 5.161024 0.18

5 34,537,671–
35,578,717

3.0975 rs37369 3.6610216 0.78 0.115 0.023 2.261023 3.096 rs37370 6.6610212 0.68 0.097 0.026 6.261023

rs7717823 3.561026 20.25 rs455423 1.061024 20.31

Abbreviations: PC, PT – P-values, xC, xT – multivariate effect sizes, R2 – explained variance of full model, R2
diff – additional explained variance of full model compared to

best single SNP association, model P – probability of observing same or equal R2
diff increase with the same stepwise model selection for 2,500 permuted phenotypes.

doi:10.1371/journal.pgen.1004132.t002

Figure 3. Local Manhattan plots. The Manhattan plots show combined 2log(P-values) in the neighborhood of the most strongly associated SNP
for (A) the FUT2 with fucose association, and (B) the SLC7A9 with lysine association.
doi:10.1371/journal.pgen.1004132.g003
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association studies. In cases where newly identified association

signals are of marginal strength, metabolite identification may be

followed-up by model-based quantification of the metabolite

[43,44] to potentially improve the association signal, and provide

a more accurate effect size estimate. While the assignment to

metabolites of all associated features can require substantial

follow-up work, this may not be necessary if the primary objective

of a study was to elucidate novel genetic loci relevant for general

metabolomic variability. Specifically, while associations with

unidentified metabolites may lack a direct mechanistic interpre-

tation, they can still prove to be valuable biomarkers of certain

clinical phenotypes [45,46]. Finally, the unidentified metabolite

underlying an association may correspond to an unknown metabolite

in the sense, used in Krumsiek et al. [47], of ‘‘a molecule which can

reproducibly be detected and quantified […] but whose chemical

identity has not been elucidated’’, in which case the genetic

association itself may provide identifying information.

Our GWAS revealed two new SNP-metabolite associations of

potential clinical relevance. We found urine fucose concentration

to be associated with variants in the FUT2 gene, which is linked to

gut microbial ecology in general, and to Crohn’s disease in

particular. Furthermore, we found urine lysine concentration to be

associated with SNPs in the SLC7A9 gene, which is linked to

kidney function and to kidney failure specifically. We confirmed

the link to kidney function with a significant lysine-eGFR

association. Our Mendelian randomization was inconclusive for

a causal link between urine lysine levels and eGFR (as a measure

of kidney filtering capacity). Yet, we only had about 12% power

and a sample size of at least 11,400 would be required for

providing a conclusive answer (i.e. having over 80% power).

Molecular trait association can not only help us to better

understand the underlying biological processes, but also shed light

on the interplay between genetic predisposition and environmental

factors. In our case, figuring out how lysine levels are influenced by

diet may thus help to develop nutritional intervention programs to

counter kidney problems before they manifest themselves in a

clinical phenotype. In summary, this study provided specific

evidence that genetically influenced metabolite concentrations can

play a crucial role in disease progression, and that these

metabolites may provide an avenue for better diagnosis and

prevention of diseases.

Materials and Methods

For the Cohorte Lausannoise (CoLaus) study, genotyping was

performed using the Affymetrix GeneChip Human Mapping

500 K array set. Genotypes were called using BRLMM [48].

Duplicate individuals, and first and second degree relatives, were

identified by computing genomic identity-by-descent coefficients,

using PLINK [49]. The younger individual from each duplicate or

relative pair was removed. Individuals with call rate below 90%

were excluded from further analysis. The full set of unmeasured

HapMap II SNPs (release 21) was imputed using 390,631

measured SNPs (with Hardy-Weinberg P-value above 1027 and

MAF above 1%). Imputation was performed using IMPUTE [50]

version 0.2.0. Expected allele dosages were computed for

2,557,249 SNPs.

For the TasteSensomics study, genotyping was performed on the

Illumina Human Omni-Quad1 platform. Genotype calling was

performed with Beadstudio software (Illumina). Calls with a

genotyping score below 0.2 were excluded from further analysis.

SNPs with a call rate below 90% and individuals with a call rate

below 95% were also excluded, leaving 989,972 available SNPs,

with an overlap of 713,870 SNPs with the CoLaus cohort. No

imputation was performed in this cohort, since none of the

available HapMap panels were considered as sufficiently repre-

sentative for the admixed population investigated in this study.

In the CoLaus cohort, 974 individuals each provided 1 urine

sample for metabolic analysis. The CoLaus study was approved by

the Institutional Ethics Committee of the University of Lausanne.

All study participants gave written consent including for genetic

studies. Prior to urinalysis, samples were stored at 280uC. Each

sample was comprised of 400 mL urine and 200 mL of a 0.2M

deuterated phosphate buffer solution (pH 7.4). Samples were

centrifuged to remove precipitates, and to 500 mL aliquots of the

resulting supernatant, 100 mL of a solution of 0.1% (w/v) sodium

trimethylsilyl propionate (TSP) and 1% (w/v) sodium azide in

D2O was added. The TSP provided a chemical shift reference

(d0.0), the sodium azide acted as a bactericide, and the D2O

provided a deuterium field-frequency lock signal for the NMR

spectrometer. 1H NMR spectra were acquired at 300 K on a

Bruker Avance II 700 MHz spectrometer (Bruker Biospin,

Rheinstetten, Germany) using a standard 1H detection pulse

sequence with water suppression.

In the TasteSensomics cohort, 601 individuals donated 3 samples

each over a period of 2 weeks. 3 mM sodium azide was added to

the samples to prevent microbial growth. Samples were then

frozen and stored at 280uC prior to urinalysis. Urine aliquots of

400 mL were adjusted to pH 6.8 using 200 mL of deuterated

phosphate buffer solution (final concentration of 0.2M) containing

1 mM of sodium TSP. 1H NMR spectra were recorded at 300 K

on a Bruker Avance II 600 MHz spectrometer, using a standard
1H detection pulse sequence with water suppression.

CoLaus 1H spectra were binned in chemical shift increments of

0.005 ppm, resulting in metabolic profiles of 2,200 metabolome

features. Filtering out features then samples with more than 5% of

missing values, a dataset composed of 1,276 features for 835

individuals was obtained. TasteSensomics 1H spectra were binned in

increments of 0.0032 ppm, resulting in profiles of 2,400 features.

Figure 4. Genotype-Metabotype-Phenotype associations. The
two novel gene-metabolite associations of this study implicate SNPs
that had previously been associated with disease-related phenotypes
by the indicated publications: (A) Fucose–Crohn’s disease–FUT2
(rs492602), (B) Lysine–eGFR–SLC7A9 (rs8101881). A link between the
metabolite and the phenotype has been established for (A) based on a
mouse model and for (B) by a direct correlation with the indicated
significance and effect size. Abbreviations: OR refers to the odds ratio, x
to the linear regression effect size, P to the corresponding P-value, and
the m-index indicates values obtained in the combined CoLaus and
TasteSensomics sample.
doi:10.1371/journal.pgen.1004132.g004
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More sophisticated binning procedures, such as adaptive binning

[51,52], could have been applied, but standard uniform binning

has been shown to be successful by us [53,54] and others [55,56].

Bin intensities were log-averaged across replicate samples for each

individual, and spectral qualities were such that all features and

subjects were included in the analysis. For each individual, we

applied a Z-score transformation in order to achieve zero mean

and unit variance. This statistical normalization yields metabolic

profiles similar to those resulting from common biological

normalizations, such as normalization by total metabolite content

(median correlation r = 0.92), or normalization by urinary

creatinine measured before freezing and thawing (resulting in

lower median correlation r = 0.45).

In addition to the standard confounding factors that are age,

sex, post-menopausal status, and the principal components of the

genotype, metabolic profiles are sensitive to lifestyle factors, dietary

behavior, and creatinine levels. Among the 36 such factors

available for the CoLaus sample, we select those which associated

with at least 2% of the features, resulting in the 12 factor subset

comprising age, sex, post-menopausal status, the 1st principal

component of the genotype, the 2nd and 4th principal components

of the dietary profile, smoking behavior, caffeine intake, alcohol

intake, physical activity, urinary creatinine, and serum creatinine.

For every feature, we use as covariates those factors which, in a

stepwise method, significantly associate (P,0.05/12) with the

feature. For the TasteSensomics feature, covariates were similarly

selected (P,0.05/5) among the factors age, sex, BMI, and the first

two principal components of the genotype.

We tested the 1,276 features for association in the CoLaus cohort

with the 713,870 SNPs also measured in the TasteSensomics cohort.

We pruned the suggestively significant (P,561028) SNP-feature

association pairs by considering two pairs equivalent if their SNPs

were in LD (r2.0.3) and their features were correlated (r2.0.4).

This procedure is an extension of the clumping method

implemented in PLINK [49]. We then sought replication in the

TasteSensomics cohort [23,24]. Replication was declared if the

discovery and replication effect directions were concordant, the

replication P-value was below 0.05/#hits, and the combined

association P-value below 5.7610210. The latter P-value threshold

corresponds to the Bonferroni multiple testing correction for both

features, where the effective number of tests was estimated [57] to

be 125, and SNPs.

To use the admixed genetic background of the TasteSensomics

cohort for narrowing down the genetic loci giving rise to the

association signals, we grouped the replicating SNP-feature

associations by genetic loci (1 Mb neighborhood), and ran

associations between the implicated feature(s) with all available

SNPs in both (discovery and replication) cohorts at the locus. We

then meta-analyzed the local association summary statistics (see

table S3). The combined results for the strongest association at

each locus are reported in table 1.

Features do not directly correspond to the concentration of a

single metabolite, so that feature ratios are difficult to interpret.

Therefore, in contrast to previous metabolomics association

studies, we do not include feature ratios in the first association

phase, which substantially reduced the multiple testing burden.

The features involved in replicated associations were subjected

to both manual and automated metabolite annotation. Manual

annotation was performed using in-house libraries, reference

spectra from public databases (HMDB http://www.hmdb.ca,

BMRB http://www.bmrb.wisc.edu, Prime http://prime.psc.

riken.jp), and the Chenomx NMR Suite software, version 7.1

(Chenomx Inc, Alberta, Canada). Automated annotation was

performed by our metabomatching method (http://www.unil.ch/

cbg), which compares the pseudo-spectrum (see main text) to the

spectrum of all metabolites for which a reference spectrum is

available in HMDB (to date around 850 metabolites). After

pruning correlated spectral bins (to ensure independence) we

quantified the similarity between the pseudo-spectrum and the

spectrum of a given metabolite by summing up the squared

association test statistics

X
i~1

k xi

SEi

� �2

corresponding to the k (independent) peaks present in the spectrum

of the metabolite. The resulting test-statistic is x2-distributed with k

degrees of freedom. This allows for obtaining a P-value for having

observed as good a match between the pseudo-spectrum and the

NMR spectrum as by chance. The procedure is repeated for all

metabolites in HMDB, which are then ranked according to their

P-values.

For each SNP with confirmed metabolite association, we

examined the surrounding 1 Mb window searching for evidence

of allelic heterogeneity or imperfect tagging. Within each 1 Mb

region, we looked for the best multivariate model (in the sense of

AIC) to explain the corresponding metabolic feature in the CoLaus

sample. If this model provides a significantly better fit to the data

than the lead SNP, we attempted to replicate in the TasteSensomics

cohort. Note that due to the different LD structure in the CoLaus

and TasteSensomics cohorts we did not attempt to replicate the exact

same SNPs, but the locus. In case of successful replication we

declare the locus to exhibit multiple independent signals. We also

attempted fine-mapping of association signals in these regions,

using 1000 Genomes imputed genotype association, but no

stronger association was revealed.

Mendelian randomization (MR) was carried out by calculating

two-stage least squares estimates and comparing them to the direct

one stage effect size. We used an SLC7A9 SNP (rs8101881) as

instrument to infer causality between lysine concentration and log

transformed age- and sex-corrected eGFR. To verify the

assumptions of MR, we noted that the instrument was strongly

associated with lysine and, since it is a genotype, is very unlikely to

have a common cause with eGFR. The final assumption of MR,

namely that all causal effect of the SNP on eGFR is acting through

lysine, was examined by verifying that our variables satisfied all of

the tests of positive unmeasured confounding (leveraging prior

casual assumptions) proposed by Glymour et al. [42]. The selected

SNP was not found to be associated with any known confounding

factors of eGFR. We used the Durbin-Hausman test [58] to

compare the OLS and the 2SLS estimates.

Supporting Information

Figure S1 Metabolome- and genome-wide association P-values

in CoLaus. Significant associations (PC,1028/125) involving

features deriving from identified metabolites are shown in color.

The carbon-atoms carrying the protons corresponding to the

significantly associated features are labeled in the chemical

structures.

(PDF)

Figure S2 Additional metabomatching results. Each subfigure

shows: (upper half) the NMR spectrum of the control metabolite,

and (lower half) the pseudo-spectrum of the CoLaus SNPs (linked to

the control SNP) with the strongest association to a feature

corresponding to one of the peaks of the control metabolite NMR

spectrum. (A) N-acetyl-L-lysine: top ranked member of the N-
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acetylated compound family, vs. rs6546847 in ALMS1; (B)

Dimethylglycine vs. rs17279437 in SLC6A20: while the association

of rs17279437 with feature 2.9325 satisfies the threshold for

significance in CoLaus, the association does not replicate in

TasteSensomics; (C) Top-ranked compound pair in two-compound

metabomatching involving formate, vs. rs4921914 in NAT2:

rs4921914 is only associated significantly with features which do

not correspond to the single peak in the NMR spectrum of

formate; (D) 2-hydroxyisobutyrate vs. rs7314056 in PSMD9. The

metabomatching results for 3-aminoisobutyrate, trimethylamine,

lysine, and fucose are shown in the main text.

(PDF)

Figure S3 LD structure in the FUT2, RASIP1 and IZUMO1

region on chromosome 19. For CoLaus (lower triangle), the LD

block from rs516246 (ad) to rs11667321 (bh) is associated with

fucose, with the strongest association for SNP rs281408 in RASIP1.

For TasteSensomics, the much smaller LD block from rs516246 (ad)

to rs633372 (am) is associated with fucose, with the strongest

association for SNP rs492602 (ae). The combined association

signal mirrors the TasteSensomics signal, with again SNP rs492602

showing the strongest association.

(PDF)

Table S1 Details of the 56 SNP-feature associations for which: (1)

the discovery P-value, PC, was below 561028, (2) the replication P-

value, PT, was below 0.05/139 (139 associations were found in

discovery), (3) the effects matched directions, (4) and the combined

P-value obtained by meta-analysis, Pm, was below the Bonferonni

threshold of 561028/125. Positions are listed according to NCBI

build 36; MAF is the minor (effect) allele frequency.

(PDF)

Table S2 Metabomatching testing control SNP-metabolite

pairs, and ranking results. Metabomatching tends to perform

better in cases involving multi-peak spectra. Control pairs

correspond to associations previously discovered in urine metabo-

lome GWAS (from Nat Genet, 2011. 43(6): 565–9 and PLoS Genet,

2011. 7(9): e1002270), such that: (1) the metabolite is not a ratio;

(2) the control association P-value, Pref, is below 561028 (3) the

metabolite has a known NMR spectrum; (4) there exists, in CoLaus,

an association between a (linked) SNP and a feature corresponding

to a peak of the control metabolite NMR spectrum with

association P-value, PC, below 1026.

(PDF)

Table S3 Association signal meta-analysis. Association signal

meta-analysis. For each locus-metabolite association, the lead

SNPs for CoLaus, TasteSensomics, the cohorts combined, and cohorts

from previous studies, are listed, unless the lead SNP is consistent

across the four. The published lead SNPs for N-acetylated

compounds (rs9309473 in MolPAGE), as well as those for

trimethylamine (rs7072216 in MolPAGE) and 2-hydroxyisobuty-

rate (rs830124 in SHIP) are not part of either the CoLaus nor

TasteSensomics panels but are in perfect LD (r2 = D’ = 1, HapMap

Rel 22) with the CoLaus lead SNPs rs6546847, rs2147896, and

rs7314056, respectively. We therefore consider them equivalent

for the purpose of this table. As a result, the trimethylamine and 2-

hydroxyisobutyrate associations have a consistent lead SNP and

are not listed. Positions are listed according to NBCI build 36.

Stars in the Lead in C; T; m; P columns indicate whether the SNP is

the lead SNP in the respective cohort; a dash in the Lead in P

column indicates there is no previously published association, in

urine. P_ and x_ are the P-values and effect sizes for the SNP in

CoLaus, TasteSensomics, and the cohorts combined, respectively. rC
2

measures the linkage disequilibrium computed with the CoLaus

genotype between the SNP and the CoLaus lead SNP. rT
2 measures

the linkage disequilibrium computed with the TasteSensomics

genotype between the SNP and the TasteSensomics lead SNP. For

AGXT2, the combined lead SNP is not the shared lead SNP. This

can result from the inverse-variance weighting meta-analysis

(which assumes common effect sizes) when the associations have

different effect sizes across cohorts, as is the case for rs37369. This

effect size difference can stem from the differing minor allele

frequencies, of 0.08 in CoLaus and 0.29 in TasteSensomics. The

ALMS1 locus is a good example for how admixed populations can

narrow the association signal. While the causal SNP is most

probably shared in the two cohorts, a SNP in LD has taken lead of

the association signal in CoLaus due to stochastic fluctuations or

because the causal SNP in unmeasured. This CoLaus proxy may

not be a proxy in the TasteSensomics cohort due to the different LD

structures. The meta-analysis attenuates the association signal for

this type of SNPs, thereby producing a cleaner signal comprising

only SNPs in LD with the causal SNP in both cohorts.

(PDF)
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