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Abstract

Migraine is a common episodic neurological disorder, typically presenting with recurrent
attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes,
no genetic or molecular markers for migraine have been convincingly established. We
identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with
migraine (P = 5.38 x 10, odds ratio = 1.23, 95% CI 1.150-1.324) in a genome-wide association
study of 2,731 migraine cases ascertained from three European headache clinics and 10,747
population-matched controls. The association was replicated in 3,202 cases and 40,062
controls for an overall meta-analysis P value of 1.69 x 10(1)(1) (odds ratio = 1.18, 95% CI
1.127-1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as
AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression
quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to
have a significant correlation to rs1835740 (P = 3.96 x 10, permuted threshold for
genome-wide significance 7.7 x 10. To our knowledge, our data establish [...]
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Abstract

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of

severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or

molecular markers for migraine have been convincingly established. We identified the minor allele

of rs1835740 on chromosome 8q22.1 to be associated with migraine (p=5.12 × 10−9, OR 1.23

[1.150-1.324]) in a genome-wide association study of 2,748 migraineurs from three European

headache clinics and 10,747 population-matched controls. The association was replicated in 3,202

cases and 40,062 controls for an overall meta-analysis p-value of 1.60 × 10−11 (OR 1.18 [1.127 –

1.244]). rs1835740 is located between the astrocyte elevated gene 1 (MTDH/AEG-1) and plasma

glutamate carboxypeptidase (PGCP). In an expression quantitative trait study in lymphoblastoid cell

lines transcript levels of the MTDH/AEG-1 were found to have a significant correlation to rs1835740.

Our data establish rs1835740 as the first genetic risk factor for migraine.

The recent boom of genome-wide association (GWA) studies has had a major impact on our

current view of genetic susceptibility to common traits and complex disorders. However, the

number of loci identified in central nervous system disorders (CNS) is underrepresented

(www.genome.gov/gwastudies 1). To our knowledge no GWA studies or any common,

robustly established variants have been reported for major episodic neurological disorders (ICD

G40-44, migraine, epilepsy, ataxias). However, there is substantial genetic information for rare

Mendelian forms of migraine, epilepsy and ataxia, which classify them as channelopathies

associated with compromised neurotransmitter homeostasis2. So far there is no evidence for

the contribution of ion channel variants in common forms of these diseases3,4.
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Migraine is an episodic neurological disorder with complex pathophysiology, affecting 8% of

males and 17% of females5. Migraine ranks among the 20 most disabling diseases and has

been estimated the most costly neurological disorder for society with a considerable impact on

public health6. Clinically, the International Classification of Headache Disorders (ICHD-II
7
)

recognizes two main common forms: i) migraine with aura (MA), (ii) migraine without aura

(MO). The two forms are distinguised based on the presence of aura, a period of variable and

diverse neurological symptoms that precede the headache phase. Patient may have attacks of

only MO, or only MA, or a combination of both types in variable proportions. There is debate

whether MA and MO attacks represent two distinct disorders, or merely are variations of a

single disease entity on a common complex genetic background. Migraine headache is believed

to be caused by activation of the trigeminovascular system and the aura by cortical spreading

depression (CSD), a slowly propagating wave of neuronal and glial depolarization8-10.

However, these are considered to be downstream events, and it is unknown how migraine

attacks are initiated.

To identify variants associated with the common forms of migraine we carried out a two-stage

GWA study in six clinic-based and one population-based European migraine samples

(Supplementary Figure 1). In the discovery stage, we studied 3,279 migraineurs (1,124 Finns,

1,276 Germans and 879 Dutch) recruited from headache clinics and genotyped using Illumina

arrays, against population-matched controls (10,747) recruited from pre-existing population-

based GWA studies (see Supplementary Note for details). In the replication stage, a further

3,202 patients and 40,062 population-matched controls from Iceland, Denmark, the

Netherlands and Germany were studied.

Diagnoses were made by headache experts using a combination of questionnaire and individual

interviews that are based on the ICHD-II7. Due to the overlap between MA and MO, we

analyzed the following groups: i) “all migraine”, i.e. all migraine patients irrespective of

subtype, ii) “MA only”, i.e. patients who only have attacks where aura is present, iii) “both

MA and MO”, i.e. patients with attacks both with and without aura and iv) “MO only”, i.e.

patients with only attacks of migraine without aura.

A multi-population Cochran-Mantel-Haenszel (CMH) association analysis and a significance

threshold of p ≤ 5 × 10−8 were applied. In the initial GWA study, 2,748 cases and 10,747

controls (Table 1) passed quality control steps, and 429,912 markers were successfully

genotyped (see Online Methods for details). A quantile-quantile plot of the CMH analysis

(Supplementary Figure 2) and an overall inflation factor (λ = 1.08) were used as final quality

control measures.

Only one marker, rs1835740 on chromosome 8q22.1, showed significant association to

migraine in the multi-population CMH analysis (Figure 1, Supplementary Figure 3). Further

11 loci were found with p-values ≤ 5 × 10−5 (Supplementary Table 1). The minor allele (A) of

marker rs1835740 was associated with migraine with a p-value of 5.12 × 10−9 and odds ratios

ranging between 1.21 – 1.33 (Table 2). Two nearby markers with the highest linkage

disequilibrium (LD) to rs1835740 (rs982502: r2=0.59, p=1.54 × 10−4 and rs2436046: r2=0.68,

p=3.83 × 10−5) also showed association to migraine (Supplementary Table 2). Haplotype

analysis detected a 27 kb haplotype (p=1.15 × 10−7) (Supplementary Figure 4 and

Supplementary Table 3). We analysed the HapMap Phase II data11 to demonstrate that no long-

range LD to rs1835740 exists within a 5 Mb window using the ssSNPer program12, strongly

suggesting that the causative variant is tagged by the minor allele of rs1835740 located between

two close recombination hotspots (at 98.199 Mb and 98.309 Mb, Figure 1). The 2 Mb window

around rs1835740 was also imputed against the 1000 Genomes data (August 2009 release),

but no other marker exceeded (Figure 1) the evidence of rs1835740 for association. Conditional

analysis of the SNPs around rs1835740 showed no additional independent signals
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(Supplementary Table 2). The proportion of genetic variance explained by the rs1835740

variant was estimated to be 1.5-2.5% depending on the heritability estimate used and the

population attributable risk to be 10.7% using the methodology of Risch et al.13

To confirm and extend our results, we performed a replication study on the only marker with

genome-wide significance in the initial study, rs1835740. The replication samples were divided

into the phenotypic subgroups similar to the discovery sample. Replication was successful in

two “MA only” subsets (Danish: p=0.015, OR 1.29; Icelandic: p=0.038, OR 1.36), the Icelandic

MO set (p=0.0292, OR 1.18) as well as in the Icelandic “all migraine” group (p=0.010, OR

1.18) (Table 2). Overall, the A allele of marker rs1835740 was overrepresented (OR 1.05 –

1.36, Table 2) in each subset of all replication samples except in the Danish “MA, MO” group

(OR 0.99). The effect was stronger in the MA groups than other migraine subgroups (Figure

2). It should be noted that the majority of the groups which did not reach formal replication

were small with limited power. Meta-analysis was conducted using the CMH test for each

diagnosis subgroup alone as well as for all migraine samples, with the latter showing a final

p-value of 1.60 × 10−11 (Table 2).

Marker rs1835740 is located between two potentially interesting candidate genes, MTDH/
AEG-1 and PGCP. We analyzed the effect of the marker genotype on the expression of genes

within a 2 Mb window in fibroblasts, primary T-cells and lymphoblastoid cell lines (LCL)

established from umbilical cords14. In the expression quantitative trait locus (eQTL) analysis,

the rs1835740 genotype was found to have significant correlation to the transcript levels of the

nearby MTDH/AEG-1 gene in LCLs (see Table 3 and Supplementary Table 4), with the risk

allele A being associated with higher expression levels (Figure 3). This is in line with previous

studies, which have proven expression analyses in LCL cells to be informative in neurological

and neuropsychiatric traits15-17. No significant association was detected in fibroblasts or

primary T-cells. The eQTL analysis suggests rs1835740 to be a cis regulator of MTDH/
AEG-1 in LCLs.

The location of the associating sequence variant, rs1835740, between two genes involved in

glutamate homeostasis, PGCP and MTDH/AEG-1, suggests that this region contains elements

that could regulate either or both of these flanking genes, the eQTL analysis pointing to the

latter gene. Although MTDH/AEG-1 has mainly been studied in carcinogenesis18, previous

studies in cultured astrocytes have shown that MTDH/AEG-1 down-regulates EAAT2/

GLT118-22, the major glutamate transporter in the brain. Furthermore, mice lacking the EAAT2

gene have been shown to suffer from lethal spontaneous epileptic seizures23. Despite the

limitations to extrapolate eQTL findings from LCL cells directly to brain tissue the data

suggests a plausible link between the identified variant and glutamate regulation. This is a

tempting hypothesis as this neurotransmitter has long been suspected to play a key role in

migraine pathophysiology24.

Although the evidence provided here is indirect, accumulation of excess glutamate in the

synaptic cleft through down-regulation of EAAT2/GLT1 or through increased PGCP activity

(or both), would provide an intriguing putative mechanism for the occurrence of migraine

attacks. It is reasonable to speculate that this accumulation can increase susceptibility to

migraine through increased sensitivity to CSD, the likely mechanism for the migraine aura9,

10, as well as through glutamate involvement in central sensitization, which has been postulated

to be the underlying mechanism of allodynia during a migraine attack25.

This and our previous study3 did not yield evidence for association of ion channel genes to

common forms of migraine. Thus, even if the contribution of ion channel genes is well

established in Mendelian forms of paroxysmal neurological disorders, such as familial

hemiplegic migraine (FHM)26-29, their direct role in more common forms remains open.
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Interestingly, previous studies suggested that the imbalance of glutamate release and clearance

is a key component of the pathogenesis of FHM, where the underlying mutation is in

CACNA1A, ATP1A2 or SCN1A30,31. The results of the present study support the hypothesis

that complementary pathways such as the glutamate system may tie the Mendelian

channelopathies with pathogenetic mechanisms of more common forms of episodic

neurological disorders, such as migraine. Mutations in the functionally related EAAT1

transporter have been identified in other episodic phenotypes (such as episodic ataxia 632, and

a non FHM1/2 hemiplegic migraine/episodic ataxia/seizure phenotype33), providing an

example of the link between EAAT transporters to episodic disorders. Future studies should

be conducted to specifically test this hypothesis.

In summary, we have identified the first robust genetic association to migraine. As our cases

were mainly selected from specialized headache clinics, subsequent studies are needed to

establish the contribution of rs1835740 in population-based migraine cohorts. These

population based cohorts may represent a different severity spectrum and thus, possibly, also

a somewhat different underlying combination of genetic susceptibility variants. The effect of

rs1835740 is stronger in MA than MO, but further studies are needed to confirm the role of

the variant in different migraine subgroups. The variant explains only a small fraction of the

overall genetic variance in migraine and future GWA studies, perhaps with different

ascertainment schemes, will likely identify additional loci explaining more of the genetic

variance.

Online Methods

Study design

We jointly analyzed patient samples from three migraine with aura collections from Finland,

Germany and the Netherlands with population-matched controls obtained from pre-existing

studies. This initial phase was followed by a replication study of the top SNP, rs1835740, in
migraine samples from Denmark, Iceland, the Netherlands and Germany. Characteristics of

each study sample are described in Table 1, and the recruitment and ascertainment of cases

and controls are described in the Supplementary Note.

Initial genome-wide association (GWA) study genotyping

DNA was extracted from patient blood samples using standard methods. Genotyping of the

GWA study samples was done at the Wellcome Trust Sanger Institute on the Illumina 610K

(Finns, Germans) and 550K (Dutch) single nucleotide polymorphisms (SNP) microarrays

following the Infinium II protocol from the manufacturer (Illumina Inc., San Diego, USA).

Genotype calling was performed using the Illuminus software34.

Replication study genotyping

For the replication study, Danish cases and 459 migraine-free controls were genotyped using

the Centaurus platform (Nanogen Inc., San Diego, CA, USA), and 904 additional controls were

genotyped at deCODE genetics using Illumina HumanHap650 BeadArrayTM. The Icelandic

cases and controls were genotyped using the Illumina HumanHap 317K, 370K, 610K or 1M

bead arrays at deCODE genetics. The Dutch replication cohort was genotyped using the

TaqMan technology (Applied Biosystems, Life Technologies, Foster City, CA, USA) at Leiden

University Medical Center. The German replication cases were genotyped using Illumina

HumanHap 610K at Munich with external replication.
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Expression study

The GenCord resource, a collection of cell lines derived from umbilical cords of 75 newborns

of Western European origin born at the maternity ward of the University of Geneva Hospital,

was used. Sample collection was performed on full term or near full term pregnancies to ensure

homogeneity for sample age. Three cell types were derived: 1) primary fibroblasts, 2) LCLs

and 3) primary T-cells14. Total RNA was extracted from these cells and two one-quarter scale

Message Amp II reactions (Ambion) were performed for each extraction with 200 ng of total

RNA. 1.5 μg of cRNA was hybridized to Illumina's WG-6 v3 Expression BeadChip array to

quantify transcript abundance35. Intensity values were log2 transformed and normalized

independently for each cell type using quantile normalization for sample replicates, and median

normalization across all individuals. Each cell type was renormalized using the mean of the

medians of each cell type expression values. DNA samples were extracted from umbilical cord

tissue LCLs with the Puregene cell kit (Gentra-Qiagen, Venlo, the Netherlands) and genotyping

was performed using the Illumina 550K SNP array (Illumina Inc., San Diego, USA) to obtain

the SNP genotypes for the samples.

Statistical analysis of initial genome-wide scan data

Stringent per-SNP and per-sample limits were implemented in order to obtain high-quality

data. Quality control measures were: exclusion of samples with call rates <97%, non-

comparable ancestry as measured using multidimensional scaling plots from PLINK36,

possible contamination as identified by being an extreme heterozygosity outlier, and cryptic

relatedness (low-level relatedness to a large number of samples), and non-cryptic relatedness

of pi-hat>12.5%. From the initial 3,279 cases and 12,369 controls, altogether 2,748 cases and

10,747 controls passed all quality control criteria, while 531 cases and 1,622 controls were

excluded. The majority of case exclusions were due to quality issues on the 550K chips, and

the majority of control exclusions were due to low-level relatedness in the Dutch control set.

SNPs were excluded for having a minor allele frequency of <1% or for departing from Hardy-

Weinberg equilibrium with p < 10−6 in cases or controls. Only completely overlapping SNPs

from the three populations were used, leaving a total of 429,912 SNPs for analysis. To ascertain

whether the control samples were properly matched to the cases, a population-specific and

overall genomic inflation factors (λ) was estimated using the median χ2 value from a 1-degree

of freedom allelic χ2 test. For the Finns, λ = 1.05, for Germans λ = 1.07, for the Dutch λ = 1.09,

and overall λ = 1.08, suggesting reasonably well-matched controls in each case. Differences

between cases and controls were assessed between each SNP and disease using a two-tailed

Cochran-Mantel-Haenszel (CMH) test for 2x2xK stratified data (K = 3), as implemented in

PLINK v1.06. To exclude long-range LD for the identified variant, we used the program

ssSNPer12 to demonstrate that no SNP within a 5 Mb window had high LD to rs1835740 in

HapMap Phase II data.

Conditional analysis for secondary effects

In addition to rs1835740, two other SNPs on 8q22.1, rs2436046 and rs982502, showed a CMH

p-value < 10−3 (main paper Table 2 and Figure 2). Based on our data, rs2436046 (r2 = 0.68)

and rs982502 (r2 = 0.59) are in moderate LD with rs1835740. To evaluate whether these signals

were independent from the top SNP association signal, the association between migraine and

SNP alleles was tested using logistic regression and conditioning on rs1835740 as implemented

in PLINK v1.06. Conditioning on rs1835740, no evidence of additional independent signals

was found either for rs2436046 or rs982502 (p = 0.89 and p = 0.47) (Supplementary Table 3),

suggesting that the moderate association of rs2436046 and rs982502 observed in the CMH test

is the result of these SNPs being in LD with rs1835740.
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Meta-analysis of initial and replication samples

The CMH test was used for meta-analysis, with a nominal covariate used to distinguish each

sample collection from the others. For the replication in Icelandic and Danish samples,

association analysis was carried out using a likelihood procedure37, and results were adjusted

for relatedness by dividing the chi-square statistics by an inflation factor estimated through

simulation38.

Imputation

For each cohort, imputation of the untyped markers in the 2 Mb region around rs1835740 was

carried out using IMPUTE v2 with recommended options39. Haplotypes from the 1,000

Genomes Project (August 2009 release) and haplotypes from HapMap Phase 3

(www.hapmap.org) were used as reference panels.

eQTL analysis

Association between genotypes and expression was analyzed with Spearman rank correlation

for all SNPs with a 2 Mb window centered on the transcription start site of the gene.

Significance was assessed by comparing the observed p-values at a 0.001 threshold with

minimum p-values from each of 10,000 permutations of the expression values relative to

genotypes35.

URLs

Control populations: Finland – Health2000 study, www.nationalbiobanks.fi; Finland –

Helsinki Birth Cohort study, www.nationalbiobanks.fi; Germany – KORA S4/F4 study,

www.helmholtz-muenchen.de/kora; Germany – PopGen study, www.popgen.de; Germany –

HNR study, www.recall-studie.uni-essen.de; Illumina iControlDB – www.illumina.com; the

Netherlands – Rotterdam I and III studies, www.epib.nl/research/ergo.htm; the Netherlands –

Lumina study, www.lumc.nl/hoofdpijn. Other URLs: International Headache Genetics

Consortium – www.headachegenetics.org; ssSNPer –

http://gump.qimr.edu.au/general/daleN/ssSNPer/; GWAS plotter –

broadinstitute.org/node/555; HapMap Phase 2 and 3 data – www.hapmap.org
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Figure 1. Cochran-Mantel-Haenszel association results for combined analysis of the three study
populations between 97.5 and 98.5 Mb on chromosome 8q22.1

Diamonds show position and p-value for each marker in the region, with colors representing

extent of linkage disequilibrium (measured in r2) with marker rs1835740, and blue circles

indicate locations and p-values of imputed markers. For rs1835740, p-values are shown for

both the original genome-wide association study and the meta-analysis of all migraine samples

in the study (denoted by asterisk). The blue graph shows the local recombination rate based on

HapMap Phase II data11. Red line denotes the threshold for genome-wide significance (p ≤ 5

× 10−8). Figure was generated using a modified version of the script available at

broadinstitute.org/node/555.
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Figure 2. Forest plot of migraine risk for individuals carrying the A allele of marker rs1835740 in
each study population

For each dataset, the horizontal line indicates 95% confidence interval, and the number above

the line indicates the point estimate of the odds ratio. MA only – patients whose attacks are

always accompanied with aura, Both MA, MO – patients with attacks with and without aura,

MO only – patients whose attacks never include aura.
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Figure 3. A box-plot of the quantified expression values for MTDH/AEG-1 ordered based on sample
genotype of rs1835740

Normalised expression levels in lymphoblastoid cell lines using Illumina's WG-6 v3

Expression BeadChip array are shown. In each group, the small pyramid indicates median

value, the shaded area represents the lower and upper quartiles, and the crosses show the

minimum and maximum values in the expression data.
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