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Abstract

Chronic pain is highly prevalent worldwide and represents a significant socioeconomic and

public health burden. Several aspects of chronic pain, for example back pain and a severity-

related phenotype ‘chronic pain grade’, have been shown previously to be complex heritable

traits with a polygenic component. Additional pain-related phenotypes capturing aspects of

an individual’s overall sensitivity to experiencing and reporting chronic pain have also been

suggested as a focus for investigation. We made use of a measure of the number of sites of

chronic pain in individuals within the UK general population. This measure, termed Multisite

Chronic Pain (MCP), is a complex trait and its genetic architecture has not previously been

investigated. To address this, we carried out a large-scale genome-wide association study

(GWAS) of MCP in ~380,000 UK Biobank participants. Our findings were consistent with

MCP having a significant polygenic component, with a Single Nucleotide Polymorphism

(SNP) heritability of 10.2%. In total 76 independent lead SNPs at 39 risk loci were associ-

ated with MCP. Additional gene-level association analyses identified neurogenesis, synaptic

plasticity, nervous system development, cell-cycle progression and apoptosis genes as

enriched for genetic association with MCP. Genetic correlations were observed between

MCP and a range of psychiatric, autoimmune and anthropometric traits, including major

depressive disorder (MDD), asthma and Body Mass Index (BMI). Furthermore, in Mendelian

randomisation (MR) analyses a causal effect of MCP on MDD was observed. Additionally, a

polygenic risk score (PRS) for MCP was found to significantly predict chronic widespread

pain (pain all over the body), indicating the existence of genetic variants contributing to both

of these pain phenotypes. Overall, our findings support the proposition that chronic pain

involves a strong nervous system component with implications for our understanding of the

physiology of chronic pain. These discoveries may also inform the future development of

novel treatment approaches.
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Author summary

Chronic pain is common worldwide and imposes a significant burden from a public

health and socioeconomic perspective. The reasons why some individuals develop chronic

pain and others do not are not fully understood. In this study we searched for genetic vari-

ants associated with chronic pain in a large general-population cohort. We also assessed

how this genetic variation was correlated with a range of other diseases and traits, such as

depression and BMI, and we tested for causal relationships between depression and

chronic pain. We found that chronic pain was associated with several genes involved in

brain function and development and was correlated with mental health and autoimmune

traits (including depression, PTSD and asthma). We also found evidence for causal rela-

tionships between chronic pain and major depressive disorder. This work provides new

insights into the genetics and underlying biology of chronic pain and may help to inform

new treatment strategies.

Introduction

Chronic pain, conventionally defined as pain lasting longer than 3 months, has high global

prevalence (~30%; [1]), imposes a significant socioeconomic burden, and contributes to excess

mortality [2,3]. It is often associated with both specific and non-specific medical conditions

such as cancers, HIV/AIDS, fibromyalgia and musculoskeletal conditions [4–6], and can be

classified according to different grading systems, such as the Von Korff chronic pain grade [7].

Several aspects of chronic pain, such as chronic pain grade and back pain, have been studied

from the genetic point of view, and several have been shown to be complex traits with moder-

ate heritability [3,8]. In part due to the heterogeneity of pain assessment and pain experience,

there are very few large-scale genetic studies of chronic pain and no genome-wide significant

genetic variants have yet been identified [9,10].

Chronic pain and chronic pain disorders are often comorbid with psychiatric and neurode-

velopmental disorders, including Major Depressive Disorder (MDD) [11]. The immune and

nervous systems play a central role in chronic pain development and maintenance [12,13].

Similarly, obesity and chronic pain are often comorbid, with extrinsic factors such as sleep dis-

turbance also impacting on chronic pain [14,15]. Altered sleep quality and reduced circadian

rhythmicity are also common in those with chronic pain [16]. Chronic pain is also a common

component of many neurological diseases [17].

The relationship between injury and other peripheral insult, consequent acute pain and the

subsequent development of chronic pain has not been fully explained. Not everyone who

undergoes major surgery or is badly injured will develop chronic pain, for example [18], and

the degree of joint damage in osteoarthritis is not related to chronic pain severity [19]. Con-

versely, Complex Regional Pain Syndrome (CRPS) can be incited by minor peripheral insult

such as insertion of a needle (reviewed by Denk, McMahon and Tracey, 2014). Structural and

functional changes in the brain and spinal cord are associated with the development and main-

tenance of chronic pain, and affective brain regions are involved in chronic pain perception

(this is in contrast to acute pain and even to prolonged acute pain experience) [20–24]. It is

also unlikely that there are legitimate cut-off points or thresholds for localised and widespread

chronic pain, with pain instead existing on a “continuum of widespreadness” [25]. It may,

therefore, be more valuable and powerful to examine measures of chronic pain as complex

neuropathological traits in themselves, rather than just to study disorders and conditions with

chronic pain as a main feature or pain experienced only in specific bodily locations. Our aim
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in this study was predicated on the idea that predisposing biological processes might influence

how many sites are affected in individuals that experience any chronic pain, and we carried

out a genome-wide association study of number of chronic pain sites to look for predisposing

loci, assess the degree of genetic overlap with related traits and disorders and generate insights

into the genetic architecture of chronic pain.

Results

Genome-wide association study

To identify genetic risk loci influencing Multisite Chronic Pain (MCP), we performed a

GWAS with adjustment for age, sex and genotyping array using BOLT-LMM (see Methods).

No evidence was found for inflation of the test statistics due to hidden population stratification

(λGC = 1.26; after adjustment for sample size λGC1000 = 1.001). LD-score regression (LDSR)

analysis was consistent with a polygenic contribution to MCP (LDSR intercept = 1.0249, SE

0.0274; Fig 1) [26] and yielded a Single Nucleotide Polymorphism (SNP) heritability estimate

of 10.2%. BOLT-LMM gave a similar SNP heritability estimate (pseudo-h2 = 10.3%). In total,

1, 748 SNPs associated with MCP level at genome-wide significance (p< 5 x 10−8) were identi-

fied. Conditional analysis of the association signals at each locus revealed 76 independent

genome-wide significant lead SNPs across 39 risk loci located on chromosomes 1–11, 13–18

and 20 (Table 1). Sensitivity analysis additionally adjusting for BMI did not significantly alter

these association analysis results.

Genomic risk loci are as defined by FUMA. Genomic Locus = numeric label (1–39), rsID =

SNP rsID label, chr = chromosome, pos = position in base-pairs, Nearest Gene = nearest

mapped gene, A1 = effect allele, A2 = non-effect allele, MAF = minor allele frequency (MAF

here refers to A1 frequency as all values are< 0.5 i.e. A1 is the minor allele as well as the effect

allele), r2 = imputation r-squared value, beta = association beta value, se = standard error of

beta, P = P value of association (GWAS P value).

Post-GWAS analyses including gene expression and gene-level association testing was car-

ried out using FUMA. Gene-level association tests (MAGMA gene-based test) revealed 113

genes across 39 genomic risk loci significantly associated with MCP (S1–S3 Figs), including

genes with roles in neuronal adhesion and guidance, regulation of neural development and

neurotransmitter receptor function.

Analysis of Gene Ontology (GO) annotations revealed 3 significant categories (Table 2:

Bonferroni-corrected p< 0.05). The significant categories were enriched for terms including

neurogenesis and synaptic plasticity, DCC-mediated attractive signalling, neuron projection

guidance and central nervous system neuron differentiation, amongst others. Genes of interest

(n = 35) designated based on gene-level association tests and on annotation of genes at the

identified genomic loci (see S1 Text) are listed in S2 Table. Analysis of tissue-level expression

showed significant enrichment of brain-expressed genes, particularly in the cortex and cerebel-

lum (Fig 2),

Genetic correlations

Genetic correlations between MCP and 22 traits were estimated via LD-score regression using

ldsc [28]. The psychiatric phenotype most significantly genetically correlated with MCP was

MDD (Table 3: rg = 0.53, pFDR = 1.69e-78) while the largest significant genetic correlation coef-

ficient was for MCP and depressive symptoms (Table 3: rg = 0.59, pFDR = 6.19e-65). MCP was

also positively genetically correlated with neuroticism (Table 3: rg = 0.40), anxiety (Table 3: rg
= 0.49), schizophrenia (Table 3:rg = 0.10), cross-disorder psychiatric phenotype (Table 3: rg =

0.13) and PTSD (Table 3: rg = 0.41). Significant negative genetic correlations were observed
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between MCP and subjective well-being (Table 3: rg = -0.36), autism spectrum disorder

(Table 3: ASD; rg = -0.10) and between MCP and anorexia nervosa (Table 3: AN; rg = -0.06).

There was no significant genetic correlation between MCP and Bipolar disorder (Table 3: BD;

PFDR> 0.05). In relation to the immune-related disorders, rheumatoid arthritis (Table 3: rg =

0.16) and asthma (Table 3: rg = 0.22) were significantly positively genetically correlated with

MCP, as was primary biliary cholangitis (Table 3: rg = 0.10), while systemic lupus erythemato-

sus (SLE), ulcerative colitis and Crohn disease were not (PFDR> 0.05). BMI was significantly

genetically correlated with MCP (Table 3: rg = 0.31), while low relative amplitude, a circadian

Fig 1. Manhattan plot & QQ plot for MCP GWAS. A: SNP associations across chromosomes 1–22 are displayed. Genome-wide significance (a p value of 5
x 10−8, ~ 7.3 on the -log10 scale) is indicated by the dashed red line. B: Observed versus expected GWAS p values on the -log10 scale are shown.

https://doi.org/10.1371/journal.pgen.1008164.g001
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rhythmicity phenotype, exhibited a significant negative genetic correlation with MCP

(Table 3: rg = -0.30). There was no correlation between Parkinson disease and MCP (PFDR>

0.05). Non-significant genetic correlation results are shown in S3 Table.

Mendelian randomisation of MCP and major depressive disorder

Mendelian Randomisation with Robust Adjusted Profile Score (MR-RAPS) analysis was per-

formed to investigate causal relationships between MDD and MCP, first with MDD as the

Table 1. Genomic risk loci.

Genomic Locus rsID chr pos Nearest Gene A1 A2 MAF r2 beta se P

1 rs10888692 1 50991473 FAF1 C G 0.4301 1 -0.0143 0.0025 5.30E-09

2 rs197422 1 112000000 KCND3 C A 0.3794 1 -0.015 0.0025 2.00E-09

3 rs59898460 1 150000000 LINC00568 T C 0.4044 1 0.0169 0.0025 9.20E-12

4 rs12071912 1 243000000 RP11-261C10.3 C T 0.3163 1 -0.0153 0.0026 5.30E-09

5 rs4852567 2 80703379 CTNNA2 A G 0.2834 1 0.0149 0.0027 4.30E-08

6 rs7628207 3 49754970 RNF123:AMIGO3:GMPPB T C 0.1766 1 0.0195 0.0032 8.40E-10

7 rs28428925 3 107000000 BBX G A 0.1365 1 -0.0214 0.0035 1.40E-09

8 rs6770476 3 136000000 STAG1 C T 0.289 1 -0.0154 0.0027 9.40E-09

9 rs34811474 4 25408838 ANAPC4 G A 0.2285 1 0.0192 0.0029 2.70E-11

10 rs13135092 4 103000000 SLC39A8 A G 0.08071 1 -0.0328 0.0044 1.50E-13

11 rs13136239 4 141000000 MAML3 G A 0.3508 1 0.0141 0.0026 3.60E-08

12 rs6869446 5 65570607 RP11-305P14.1 T C 0.3861 1 -0.0144 0.0025 9.50E-09

13 rs1976423 5 104000000 RP11-6N13.1 A C 0.4968 1 -0.014 0.0024 8.20E-09

14 rs17474406 5 123000000 CEP120 G A 0.01805 1 -0.0492 0.0088 2.40E-08

15 rs1946247 5 161000000 GABRB2 T G 0.1389 1 -0.019 0.0035 4.90E-08

16 rs11751591 6 33794215 MLN G A 0.1516 1 0.0214 0.0034 2.70E-10

17 rs6907508 6 34592090 C6orf106 A G 0.1146 1 -0.0217 0.0038 1.10E-08

18 rs6926377 6 145000000 UTRN A C 0.294 1 -0.0155 0.0027 7.90E-09

19 rs10259354 7 3487414 SDK1 G A 0.2983 1 0.0147 0.0026 3.00E-08

20 rs7798894 7 21552995 SP4 A T 0.2888 1 0.0153 0.0027 1.60E-08

21 rs6966540 7 95727967 DYNC1I1 T C 0.3762 1 -0.0139 0.0025 3.30E-08

22 rs12537376 7 114000000 FOXP2 A G 0.3969 1 0.0151 0.0025 1.70E-09

23 rs11786084 8 143000000 AC138647.1 G A 0.3328 1 -0.0145 0.0026 2.30E-08

24 rs10992729 9 96181075 Y_RNA C T 0.3344 1 0.0158 0.0026 1.10E-09

25 rs6478241 9 119000000 ASTN2 A G 0.365 1 0.0149 0.0025 3.10E-09

26 9:140251458_G_A 9 140000000 EXD3 G A 0.123 1 -0.0277 0.0037 5.30E-14

27 rs2183271 10 21957229 MLLT10 T C 0.3578 1 -0.014 0.0025 3.10E-08

28 rs11599236 10 106000000 SORCS3 T C 0.4058 1 0.0138 0.0025 3.30E-08

29 rs12765185 10 135000000 KNDC1 T A 0.2669 1 -0.0151 0.0027 3.90E-08

30 rs61883178 11 16317779 SOX6 C A 0.1696 1 -0.0208 0.0033 2.00E-10

31 rs1443914 13 53917230 AL450423.1 T C 0.475 1 0.0162 0.0024 2.80E-11

32 rs12435797 14 73797669 NUMB G T 0.1859 1 -0.0173 0.0031 3.70E-08

33 rs2006281 14 104000000 CTD-2134A5.4 C T 0.4981 1 0.0135 0.0024 3.40E-08

34 rs2386584 15 91539572 PRC1 T G 0.3835 1 -0.0166 0.0025 2.80E-11

35 rs285026 16 77100089 MON1B G T 0.4297 1 -0.0138 0.0025 1.90E-08

36 rs11871043 17 43172849 NMT1 T C 0.4213 1 0.0149 0.0025 1.70E-09

37 rs11079993 17 50301552 snoZ178 G T 0.3825 1 -0.0173 0.0025 5.70E-12

38 rs62098013 18 50863861 DCC G A 0.3631 1 -0.0169 0.0026 4.00E-11

39 rs2424248 20 19650324 SLC24A3 G A 0.1255 1 0.023 0.0037 3.70E-10

https://doi.org/10.1371/journal.pgen.1008164.t001
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exposure and MCP as the outcome. QQ plots, leave-one out versus t-value plots (S4 Fig) and

Anderson-Darling/ Shapiro-Wilk test p values indicated that models without dispersion were

best-fitting (S4 Table rows 1–3, pAD> 0.05, pSW> 0.05). Effects of outliers (idiosyncratic plei-

otropy) are not ameliorated in models with dispersion despite robust regression (S4D, S4E and

S4F Fig right-hand panels). The model allowing the greatest amelioration of pleiotropy is one

without over-dispersion and with a Tukey loss function (S4 Table: row 3, S4C Fig). This indi-

cates idiosyncratic pleiotropy (pleiotropy in some but not all instruments), i.e. that a subset of

instruments may affect MCP through pathways other than via MDD (the exposure). The

causal effect of MDD onMCP is positive and significant at beta = 0.019 and p = 0.0006, but

the diagnostic plots show a ‘swapping’ of sign for the causal estimate (S4 Fig), suggesting that

there is not a truly significant causal effect of MDD onMCP.

MR-RAPS analyses were then carried out with MCP as the exposure and MDD as the out-

come. Models with dispersion are a better fit than those without (S5A, S5B, S5C vs S5D, S5E

and S5F Fig, S5 Table: rows 4–6, pAD> 0.05, pSW> 0.05, pτ<< 0.05). This indicates that

effectively all instruments are pleiotropic (affecting MDD through pathways other than via

MCP). The causal effect of MCP on MDD is positive and significant at beta = 0.16 and

p = 0.047.

Overall, this analysis suggests a causal effect of MCP on MDD.

Relationship between multisite chronic pain and chronic widespread pain

Polygenic Risk Score (PRS) analyses were carried out to examine the relationship between

MCP and chronic widespread pain in UK Biobank. Increasing MCP PRS value was signifi-

cantly associated with having chronic pain all over the body (S6 Table: p = 1.45 x 10−109), with

each per-standard-deviation increase in PRS associated with a 63% increase in the odds of hav-

ing chronic widespread pain.

A secondary GWAS of chronic widespread pain (CWP) was carried out, the results from

which were used in LD score regression analysis to determine the genetic correlation between

CWP and MCP. This was found to be large (rg = 0.83) and significant (p = 2.45 x 10−54). A

lookup analysis was also carried out using the CWP GWAS summary statistics, and>90% of

SNPs showed consistent direction of effect between MCP and CWP (S7 Table). In addition, a

paired t-test of MCP versus CWP effect values showed that they are not significantly different

overall (t = -1.82, p = 0.07).

LocusZoom plots

LocusZoom plots for independent, genome-wide significant loci, calculated according to the

supplementary methods detailed in S1 Text, are shown in S6 Fig.

Table 2. GO annotations.

Gene Set N genes Beta SE SE P Pbon

GO_bp:go_neuron_projection_guidance 195 0.335 0.0341 0.0711 1.25E-06 0.013361

Curated_gene_sets:reactome_dcc_mediated_attractive_signaling 13 1.45 0.0381 0.313 1.94E-06 0.020616

GO_bp:go_central_nervous_system_neuron_differentiation 158 0.362 0.0331 0.0811 4.05E-06 0.043154

Significant GO annotations (ranked by p value) are shown. Beta = beta coefficient value from the FUMAMAGMA gene-set analyses for this Gene Ontology (GO) gene

set, SE = standard error of beta, Pbon = Bonferroni-corrected p value. ‘GO_bp’ and ‘Curated_gene_sets’ refers to Gene Ontology categories biological processes and

curated gene sets respectively [27].

https://doi.org/10.1371/journal.pgen.1008164.t002
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Discussion

We identified 76 independent genome-wide significant SNPs associated with MCP across 39

loci. The genes of interest had diverse functions, but many were implicated in nervous-system

development, neural connectivity and neurogenesis.

Genes of interest identified in GWAS of MCP

Potentially interesting genes included DCC (Deleted in Colorectal Cancer a.k.a. DCC netrin 1

receptor) which encodes DCC, the receptor for the guidance cue netrin 1, which is important

Fig 2. A) GteX Output–General Tissues. B) GteX Output–Detailed Tissues. Fig 2A and 2B. GTeX output–General Tissues and Detailed
Tissues.

https://doi.org/10.1371/journal.pgen.1008164.g002
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for nervous-system development [29]. SDK1 (Sidekick Cell Adhesion molecule 1) is implicated

in HIV-related nephropathy in humans [30] and synaptic connectivity in vertebrates [31], and

ASTN2 (Astrotactin 2) is involved in glial-guided neuronal migration during development of

cortical mammalian brain regions [32].

MAML3 (Mastermind-Like Transcriptional coactivator 3) is a key component of the Notch

signalling pathway [33,34], which regulates development and maintenance of a range of cell

and tissue types in metazoans. During neurogenesis in development the inhibition of Notch

signalling by Numb promotes neural differentiation [35]. Numb is encoded by NUMB (Endo-

cytic Adaptor Protein), which was also associated with MCP. In the adult brain Notch signal-

ling has been implicated in CNS plasticity across the lifespan [35].

CTNNA2 (Catenin Alpha 2) encodes a protein involved in cell-cell adhesion [36], found to

play a role in synapse morphogenesis and plasticity [37,38]. CEP120 (Centrosomal Protein

120) encodes Cep120, vital for Interkinetic Nuclear Migration (INM) in neural progenitor

cells of the cortex [39]. KNDC1 (Kinase Non-Catalytic C-Lobe Domain Containing 1) encodes

v-KIND in mice, linked to neural morphogenesis in the cortex [40], and KNDC1 in humans,

linked to neuronal dendrite development and cell senescence [41]. SOX6 (SRY-Box 6) is part

of the Sox gene family, first characterised in mouse and human testis-determining gene Sry

[42] and encoding transcription factors involved in a range of developmental processes

[43,44]. SOX6may be involved in development of skeletal muscle [43], maintenance of brain

neural stem cells [45] and cortical interneuron development [46], and variants in this gene

have been associated with bone mineral density in both white and Chinese populations [47].

CA10 (Carbonic Anhydrase 10) is predominantly expressed in the CNS, encoding a protein

involved in development and maintenance of synapses [48]. DYNC1I1 (Dynein Cytoplasmic 1

Intermediate Chain 1) encodes a subunit of cytoplasmic dynein, a motor protein which plays a

role in cargo transport along microtubules, including in the function of neuronal cells [49].

UTRN (Utrophin) is a homologue of Duchenne Muscular Dystrophy gene (DMD), encoding

utrophin protein which is localised to the neuromuscular junction (NMJ) [50]. Utrophin has

Table 3. Genetic correlations between MCP and multiple traits.

Trait rg se z h2 Ph2 (fdr) source PMID Category p P (fdr-corrected)

MDD 0.53 0.03 18.92 0.077 1.25E-47 PGC 29700475 psychiatric 7.68E-80 1.69E-78

Depressive symptoms 0.59 0.03 17.16 0.047 6.87E-29 ld_hub 27089181 psychiatric 5.63E-66 6.19E-65

BMI 0.31 0.02 15.69 0.138 5.42E-59 GIANT consortium 25673413 anthropometric 1.90E-55 1.39E-54

Neuroticism 0.4 0.03 11.9 0.089 3.66E-26 ld_hub 27089181 personality 1.24E-32 6.82E-32

Subjective well being -0.36 0.04 -8.94 0.025 2.77E-32 ld_hub 27089181 psychiatric 3.78E-19 1.66E-18

Low Relative Amplitude -0.3 0.05 -6.37 0.053 3.03E-13 In-house analysis 30120083 circadian 1.91E-10 7.00E-10

Rheumatoid Arthritis 0.16 0.03 4.7 0.160 7.41E-08 ld_hub 24390342 autoimmune 2.64E-06 8.30E-06

Anxiety (Case-Control) 0.49 0.11 4.53 0.081 0.00405 PGC 26754954 psychiatric 5.91E-06 1.63E-05

Schizophrenia 0.1 0.03 4.08 0.443 6.56E-79 PGC 25056061 psychiatric 4.50E-05 1.10E-04

Asthma 0.22 0.06 3.63 0.123 3.53E-06 ld_hub 17611496 autoimmune 3.00E-04 6.60E-04

PGC cross-disorder analysis 0.13 0.04 3.54 0.172 7.89E-36 ld_hub 23453885 psychiatric 4.00E-04 8.00E-04

PTSD (European Ancestry) 0.41 0.12 3.28 0.097 0.030855 PGC 28439101 psychiatric 0.001047 1.92E-03

Autism spectrum disorder -0.1 0.04 -2.22 0.451 9.38E-17 ld_hub NA psychiatric 0.026 0.0443

Primary biliary cirrhosis 0.1 0.04 2.17 0.376 1.11E-08 ld_hub 26394269 autoimmune 0.03 0.047

Anorexia Nervosa -0.06 0.03 -2.14 0.556 2.18E-63 ld_hub 24514567 psychiatric 0.032 0.0471

rg = genetic correlation coefficient value, se = standard error of correlation value, z = z value, h2 = SNP-heritability value, ph2(fdr) = p value (FDR-corrected) for SNP-

heritability, source = source of GWAS summary statistics, PMID = PubMed ID of associated paper (if applicable), p = p value for genetic correlation coefficient, p(fdr) =

FDR-corrected p value for genetic correlation coefficient.

https://doi.org/10.1371/journal.pgen.1008164.t003
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also been implicated in neutrophil activation [51], dystrophin-associated-protein (DPC)-like

complex formation in the brain [52], and is expressed during early foetal brain development in

neurons and astrocytes [53].

FOXP2 encodes a member of the FOX family of transcription factors, which are thought to

regulate expression of hundreds of genes in both adult and foetal tissue, including the brain

[54]. These transcription factors may play an important role in brain development, neurogen-

esis, signal transmission and synaptic plasticity [55]. FOXP2 is essential for normal speech and

language development [56]. GABRB2 encodes a GABA (gamma-aminobutyric acid) type A

receptor beta subunit. These pentameric chloride channels mediate fast inhibitory synaptic

transmission and are extremely important for network function in many brain regions, with

the b2 subunit forming part of the most widely expressed receptor across the mammalian

brain [57,58].

Another group of genes associated with MCP were linked to cell-cycle progression, DNA

replication and apoptosis such as EXD3 (Exonuclease 3’-5’ Domain Containing 3), which

encodes a protein involved in maintaining DNA fidelity during replication (‘proof-reading’)

[59]. BBX (HMG-Box Containing protein 2) encodes an HMG (high mobility group) box-con-

taining protein necessary for cell-cycle progression from G1 to S phase [60]. STAG1 (Cohesin

Subunit SA-1) encodes a cohesin-complex component–cohesin ensures sister chromatids are

organised together until prometaphase [61–63]. ANAPC4 (Anaphase Promoting Complex

Subunit 4) encodes a protein making up the anaphase promoting complex (APC), an essential

ubiquitin ligase for eukaryotic cell-cycle progression [64]. PRC1 (Protein Regulator of Cytoki-

nesis 1) is involved in the regulation of cytokinesis [65], the final stage of the cell cycle. Y RNA

(Small Non-Coding RNA, Ro-Associated Y3) encodes a small non-coding Y RNA. These

RNAs have been implicated in a wide range of processes, including cell stress response, DNA

replication initiation and RNA stability [66]. FAM120A (Oxidative Stress-Associated Src Acti-

vator) encodes an RNA-binding protein which regulated Src-kinase activity during oxidative

stress-induced apoptosis [67]. The protein encoded byMON1B (MON1 Homolog B, Secretory

Trafficking Associated) is necessary for clearance of cell ‘corpses’ following apoptosis, with

defects associated with autoimmune pathology [68]. FAF1 (Fas Associated Factor 1) encodes a

protein which binds the Fas antigen to initiate or facilitate apoptosis, amongst a wide range of

other biological processes (including neuronal cell survival) [69].

Several MCP associated genes have been previously implicated in diseases such as Brugada

Syndrome 9 and Spinal ataxia 19 & 22 (KCND3) [70–72], Systemic lupus erythematosus (SLE)

(Y RNAs) [66], Joubert syndrome 31 and short-rib thoracic dysplasia 13 (CEP120) [73],

Amyotrophic lateral sclerosis (ALS) (FAF1) [74], Urbach-Wiethe disease (ECM1) [75,76],

mental retardation and other cohesinopathies such as Cornelia de Lange Syndrome (STAG1)

[77,78], split hand/ split foot malformation (DYNC1I1) [79,80], and a wide range of cancers

(PRC1) [81]. Other disorders found to involve MCP-related genes include schizophrenia

(FOXP2 and GABRB2) [82–88], intellectual disability and epilepsy (GABRB2) [89], and neuro-

leptic-induced tardive dyskinesia (GABRB2) [90].

Several GWASs of chronic pain at specific body sites, of specific pain types such as neuro-

pathic pain, and of diseases and disorders where chronic pain is a defining symptom, have

been carried out previously (reviewed by [10], [91]). DCC and SOX5 (which jointly functions

with SOX6 in chondrogenesis) have been associated with chronic back pain [92], GABRB3

(encoding one of three beta subunits of the GABA A receptor along with GABRB2) has been

associated with migraine and fibromyalgia [10], and ASTN2 and SLC24A3 have been associ-

ated with migraine [10,93]

Overall, this indicated that MCP, a chronic pain phenotype, involves structural and func-

tional changes to the brain, including impact upon neurogenesis and synaptic plasticity both
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during development and in adulthood. Also implicated was regulation of cell-cycle progres-

sion and apoptosis. This is also supported by GO categories DCC-mediated attractive signal-

ling, neuron projection guidance and CNS neuron differentiation being significantly

associated with MCP. There was also evidence of pleiotropy, with genes associated with a

range of neurodegenerative, psychiatric, developmental and autoimmune disease traits, as well

as being associated with MCP.

Genetic correlations

Chronic pain and chronic pain disorders are often comorbid with psychiatric and neurodeve-

lopmental disorders [11]. This has been observed for Major Depressive Disorder (MDD)

[8,94], post-traumatic stress-disorder (PTSD) [95–99], schizophrenia [100–102] and bipolar

disorder (BD) [94,103]. There are also reported differences in the perception of pain and inter-

oception (sensing and integration of bodily signals) for people with schizophrenia [104,105],

anorexia nervosa (AN) [106–108] and autism spectrum disorders (ASD) [109,110], with some

evidence of an increase in pain thresholds for AN and ASD.

There is significant cross-talk between the immune system and nervous system in nocicep-

tion and sensitisation leading to chronic pain [12,13], and many autoimmune disorders cause

or have been associated with chronic pain including neuroinflammation implicated in devel-

opment of neuropathic pain [111].

Similarly, obesity and chronic pain are often comorbid, with extrinstic factors such as

MDD and sleep disturbance also impacting on chronic pain [14,15]. Obesity and related

chronic inflammation may affect chronic pain [112], and adipose tissue is metabolically active

in ways that can affect pain perception and inflammation [113–115].

Sleep changes and loss of circadian rhythm is common in those with chronic pain [16], and

myriad chronic diseases, including chronic pain, have shown diurnal patterns in symptom

severity, intensity and mortality [116,117]. Chronic pain is also a common component of

many neurological diseases, particularly Parkinson’s disease [17], and disorders such as Multi-

ple Sclerosis and migraines are considered neurological in nature.

MCP showed moderate positive genetic correlation with a range of psychiatric disorders

including MDD, SCZ, and PTSD, along with traits anxiety and neuroticism. The magnitude of

genetic correlation between MCP and MDD was similar to that shown for von Korff chronic

pain grade (a chronic pain phenotype) and MDD by McIntosh et al via a mixed-modelling

approach (ρ = 0.53) [8]. This is in line with previous observations of association and indicates

that shared genetic risk factors exist between MCP and a range of psychiatric disorders, most

notably MDD, and that the genetic correlation between MCP and MDDmatches with that

between MDD and von Korff CPG, a validated chronic-pain questionnaire-derived phenotype

[7].

Autoimmune disorders rheumatoid arthritis, asthma and primary biliary cholangitis

showed positive genetic correlation with MCP. However, gastrointestinal autoimmune disor-

ders UC, IBD and Crohn’s Disease did not. This suggests separate genetic variation and mech-

anisms underlying chronic pain associated with these autoimmune disorders compared to

those outwith the digestive system. Pain related to inflammatory bowel diseases may represent

something less ‘chronic’ and more ‘on-going acute’, as stricture, abscesses and partial or com-

plete obstruction of the small bowel result in pain [118]. Structural and functional brain

changes associated with the transition to chronic pain may also play a less central role in gas-

trointestinal autoimmune disorder-associated pain, due to potential for the enteric nervous

system (ENS) to act independently from the CNS, and the role of the gut-brain axis (GBA)

[119,120].
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There was significant negative genetic correlation between low relative amplitude, a circa-

dian rhythmicity phenotype indicating poor rhythmicity [121]. Opposing direction of effect of

genetic variants on MCP versus low RAmay mean that insomnia and other sleep difficulties

(for which low RA represents a proxy phenotype) associated with MCP are due to environ-

mental and lifestyle factors related to chronic pain, rather than shared genetic factors predis-

posing to increased risk for both traits. There was also significant negative genetic correlation

between MCP and both AN and ASD, which may be linked to changes in interoception and

atypical pain experience seen in individuals with these conditions [106–110], and may suggest

a genetic basis for increased pain thresholds.

SNP heritability of MCP

LDSR analyses gave a heritability estimate of 10.2% for MCP, lower than the pseudo-h2 esti-

mate of 10.3% given by BOLT-LMM. this suggests SNP-heritability (h2) of MCP to be

roughly-10%, slightly lower than an estimate of ‘any chronic pain’ of 16%, and markedly lower

than a heritability estimate of 30% for ‘severe chronic pain’ derived from a pedigree-based

analyses [3].

Causal associations between MDD andMCP

Mendelian randomisation analyses indicated a causal effect of MCP onMDD, with widespread

pleiotropy and a less significant causal estimate value for MCP as the exposure–this suggests

most instruments for MCP are pleiotropic, affecting MDD through pathways other than

directly through MCP. In contrast, only a small subset of instruments for MDD as the expo-

sure were found to be pleiotropic.

Relationship between MCP and CWP

It has been argued that CWP and other clinical syndromes involving chronic pain all over the

body represent the upper end of a spectrum of centralisation of pain, or the extreme of a

chronic pain state [122]. It has also been argued that there are not “natural cut-off points”

when it comes to chronic widespread pain versus localised chronic pain [25]. In support of

this view, the MCP PRS was significantly associated with increased odds of having chronic

pain all over the body/ CWP, suggesting that chronic widespread pain may in fact represent

the upper end of a spectrum of ‘widespreadness’ of chronic pain, as previously suggested

[25,122], and that there are likely to be genetic variants that predispose both to MCP and to

CWP.

Conclusions & limitations

Multisite chronic pain (MCP), a chronic pain phenotype defined as the number of sites at

which chronic pain is experienced, is a complex trait with moderate heritability. To date, this

study represents the largest GWAS of any chronic pain phenotype and elucidates potential

underlying mechanisms of chronic pain development. Substantial genetic correlations with a

range of psychiatric, personality, autoimmune, anthropometric and circadian traits were

identified.

The genes potentially associated with MCP implicated neurogenesis, neuronal development

and neural connectivity, along with cell-cycle and apoptotic processes, and expression was pri-

marily within brain tissues. This is in line with theories of functional and structural changes to

the brain contributing to development of chronic pain [21,24,123–125], and may also explain

the genetic correlations observed. A causal effect of MCP on MDD was identified.
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Although the phenotype was based on self-report, this study was very large in size and so

likely had sufficient power to detect genetic variation associated with MCP. Replication of SNP

associations was not possible due to the nature of chronic pain phenotyping and available

cohort sizes, but several genes significantly associated with MCP have been previously associ-

ated with chronic pain conditions including chronic back pain, migraine and fibromyalgia,

and genetic risk for MCP was found to be significantly associated with chronic widespread

pain.

Methods

We carried out a GWAS of Multisite Chronic Pain (MCP), a derived chronic pain phenotype,

in 387,649 UK Biobank participants (Table 4). UK Biobank is a general-population cohort of

roughly 0.5 million participants aged 40–79 recruited across the UK between 2006 and 2010.

Details on phenotyping, follow-up and genotyping have been described in detail elsewhere

[126].

Phenotype definition and GWAS

During the baseline investigations, UK Biobank participants were asked via a touchscreen

questionnaire about “pain types experienced in the last month” (field ID 6159), with possible

answers: ‘None of the above’; ‘Prefer not to answer’; pain at seven different body sites (head,

face, neck/shoulder, back, stomach/abdomen, hip, knee); or ‘all over the body’. The seven indi-

vidual body-site pain options were not mutually exclusive and participants could choose as

many as they felt appropriate. Where patients reported recent pain at one or more body sites,

or all over the body, they were additionally asked (category ID 100048) whether this pain had

lasted for 3 months or longer. Those who chose ‘all over the body’ could not also select from

the seven individual body sites.

Multisite Chronic Pain (MCP) was defined as the sum of body sites at which chronic pain

(at least 3 months duration) was recorded: 0 to 7 sites. Those who answered that they had

chronic pain ‘all over the body’ were excluded from the GWAS as there is some evidence that

this phenotype relating to widespread pain can be substantially different from more localised

chronic pain [94] and should not, therefore, be considered a logical extension of the multisite

scale. 10,000 randomly-selected individuals reporting no chronic pain were excluded from the

GWAS to use as controls in subsequent polygenic risk score (PRS) analyses.

SNPs with an imputation quality score of less than 0.3, Minor Allele Frequency (MAF)<

0.01 and Hardy-Weinberg equilibrium (HWE) test p< 10−6 were removed from the analyses.

Participants whose self-reported sex did not match their genetically-determined sex, those

Table 4. Demographics of those included in BOLT-LMMGWAS of MCP.

chronic pain sites male (N) female (N) male (%) female (%) age (mean) total (N) total (%)

0 105474 113148 48.2 51.8 56.71 218622 56.40

1 42734 49984 46.1 53.9 57.03 92718 23.92

2 18612 26000 41.7 58.3 57.29 44612 11.51

3 7771 12376 38.6 61.4 57.65 20147 5.20

4 2970 5319 35.8 64.2 57.48 8289 2.14

5 780 1723 31.2 68.8 56.53 2503 0.65

6 181 471 27.8 72.2 56.20 652 0.17

7 34 72 32.1 67.9 56.17 106 0.03

total 178556 209093 NA NA 56.91 387649 NA

https://doi.org/10.1371/journal.pgen.1008164.t004
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who had putative sex-chromosome aneuploidy, those considered outliers due to missing het-

erozygosity, those with more than 10% missing genetic data and those who were not of self-

reported white British ancestry were excluded from analyses.

An autosomal GWAS was run using BOLT-LMM [127], with the outcome variable, MCP,

modelled as a linear quantitative trait under an infinitesimal model, and the model adjusted

for age, sex and chip (genotyping array). Related individuals are included and accounted for,

as are any population stratification effects, via use of a genetic relatedness matrix as part of the

BOLT-LMM analysis [127]. The SNP-level summary statistics from the GWAS output were

analysed using FUMA [128], which implements a number of the functions fromMAGMA

(gene-based association testing, gene-set analyses) [129]. Tissue expression (GTEx) analysis

[130] and Gene Ontology [27] and ANNOVAR [131] annotation analysis with default settings

was used to characterise lead SNPs further. LocusZoom [132] was used to plot association

results at higher resolution (N = 47) (S1 Text). Genomic risk loci were identified using the def-

inition deployed by FUMA [128].

Genetic correlation analysis

Genetic correlations between MCP and 22 complex traits selected on the basis of prior pheno-

typic association evidence were calculated using linkage disequilibrium score regression

(LDSR) analyses [28], implemented either using the ‘ldsc’ package [28] and downloaded pub-

licly-available summary statistics and summary statistics from in-house analyses or using LD

Hub [133]. LD Hub datasets from the categories Psychiatric, Personality, Autoimmune and

Neurological were selected and datasets with the attached warning note ‘Caution: using this

data may yield less robust results due to minor departure from LD structure’ were excluded

from the analyses. Where multiple GWAS datasets were available for the same trait, the one

with the largest sample size and/or European ancestry was retained with priority given to

European ancestry.

Mendelian randomisation analysis of MCP and major depressive disorder

Mendelian randomisation analysis was carried out with MR-RAPS (MR-Robust Adjusted Pro-

file Score; [134] using the R package ‘mr-raps’. This method is appropriate when doing MR

analysis of phenotypes that are moderately genetically correlated and likely to share some

pleiotropic risk loci. MDD was chosen for MR analysis as this disorder represents an impor-

tant and common comorbidity with chronic pain [2,8,135]. Summary statistics from the most

recent MDD GWASmeta-analysis [136], with UK Biobank and 23andMe results removed,

were harmonised with MCP GWAS summary statistics following guidelines [137] as closely as

possible with the available data. Bi-allelic SNPs shared between the two datasets were identified

and harmonised (by ‘flipping’) with respect to the strand used to designate alleles. Reciprocal

MR analysis was carried out using subsets of SNPs associated with each of the exposure traits

(MCP and MDD) at p< 10−5. This threshold is an order of magnitude lower than suggested

as part of the MR-RAPS method [134] and was chosen in order to attempt to account for ‘win-

ner’s curse’, as independently selecting and then testing association for instruments in separate

GWAS datasets was not possible in this study. The harmonisation process also involved ensur-

ing that the effect allele was trait-increasing in the exposure trait, and that the effect allele

matched between the exposure and the outcome. These selected subsets of variants were then

LD-pruned at a threshold of r2< 0.01 using command-line PLINK using ‘indep-pairwise’ with

a 50-SNP window and sliding window of 5 SNPs [138]. This resulted in a set of 200 instru-

ments for MCP as the exposure, and a set of 99 instruments for MDD as the exposure.
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PRS prediction of chronic widespread pain

Those who reported chronic pain all over the body were excluded from the MCP GWAS anal-

yses above. This is because chronic pain all over the body, taken as a proxy for chronic wide-

spread pain (CWP), may be a different clinical syndrome from more localised chronic pain,

and does not necessarily directly reflect chronic pain at 7 bodily sites. To investigate the rela-

tionship between CWP and MCP, a polygenic risk score (PRS) approach was taken.

A PRS was constructed for MCP in individuals who reported chronic pain all over the body

(n = 6,815; these individuals had all been excluded from the MCP GWAS), and in controls

(n = 10,000 individuals reporting no chronic pain at any site, also excluded from the MCP

GWAS). The PRS was calculated using SNPs associated with MCP at p< 0.01, weighting by

MCP GWAS effect size (GWAS β) for each SNP. A standardised PRS (based on Z-scores) was

used in all analyses, constructed by dividing the calculated PRS by its standard deviation across

all samples. The ability of the standardised PRS to predict chronic widespread pain status was

investigated in logistic regression models adjusted for age, sex, genotyping array and the first 8

genetic principal components.

Individual-level data are available via application to UK Biobank. Multisite chronic pain

GWAS summary statistics are available via contacting the authors and will be submitted to UK

Biobank for publication at their website.
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51. Cerecedo D, Cisneros B, Gómez P, Galván IJ. Distribution of dystrophin- and utrophin-associated pro-
tein complexes during activation of human neutrophils. Exp Hematol. 2010; 38(8):618–28. https://doi.
org/10.1016/j.exphem.2010.04.010 PMID: 20434517

52. Blake DJ, Hawkes R, Benson MA, Beesley PW. Different dystrophin-like complexes are expressed in
neurons and glia. J Cell Biol. 1999; 147(3):645–57. https://doi.org/10.1083/jcb.147.3.645 PMID:
10545507

53. Sogos V, Curto M, Reali C, Gremo F. Developmentally regulated expression and localization of dystro-
phin and utrophin in the human fetal brain. Mech Ageing Dev. 2002; 123(5):455–62. PMID: 11796130

54. Carlsson P, Mahlapuu M. Forkhead Transcription Factors: Key Players in Development and Metabo-
lism. 2002; 23:1–23.

55. Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, et al. Foxp2 regulates gene net-
works implicated in neurite outgrowth in the developing brain. PLoS Genet. 2011 Jul; 7(7):e1002145.
https://doi.org/10.1371/journal.pgen.1002145 PMID: 21765815

56. MacDermot KD, Bonora E, Sykes N, Coupe A-M, Lai CSL, Vernes SC, et al. Identification of FOXP2
truncation as a novel cause of developmental speech and language deficits. Am J HumGenet. 2005
Jun; 76(6):1074–80. https://doi.org/10.1086/430841 PMID: 15877281

Genetics of chronic pain

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008164 June 13, 2019 18 / 22

http://www.ncbi.nlm.nih.gov/pubmed/11590244
https://doi.org/10.1016/j.tins.2008.07.001
http://www.ncbi.nlm.nih.gov/pubmed/18684518
https://doi.org/10.1523/JNEUROSCI.0835-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19403811
https://doi.org/10.1016/j.neuron.2007.09.019
http://www.ncbi.nlm.nih.gov/pubmed/17920006
https://doi.org/10.3892/mmr.2018.8775
https://doi.org/10.3892/mmr.2018.8775
http://www.ncbi.nlm.nih.gov/pubmed/29568929
http://www.ncbi.nlm.nih.gov/pubmed/11255018
https://doi.org/10.1093/nar/20.11.2887
https://doi.org/10.1093/nar/20.11.2887
http://www.ncbi.nlm.nih.gov/pubmed/1614875
https://doi.org/10.1158/0008-5472.CAN-17-0704
https://doi.org/10.1158/0008-5472.CAN-17-0704
http://www.ncbi.nlm.nih.gov/pubmed/28687615
https://doi.org/10.1016/j.neuron.2009.08.005
https://doi.org/10.1016/j.neuron.2009.08.005
http://www.ncbi.nlm.nih.gov/pubmed/19709629
https://doi.org/10.1007/s00198-011-1626-x
http://www.ncbi.nlm.nih.gov/pubmed/21625884
https://doi.org/10.1073/pnas.1703198114
https://doi.org/10.1146/annurev.neuro.23.1.39
http://www.ncbi.nlm.nih.gov/pubmed/10845058
http://www.ncbi.nlm.nih.gov/pubmed/8866746
https://doi.org/10.1016/j.exphem.2010.04.010
https://doi.org/10.1016/j.exphem.2010.04.010
http://www.ncbi.nlm.nih.gov/pubmed/20434517
https://doi.org/10.1083/jcb.147.3.645
http://www.ncbi.nlm.nih.gov/pubmed/10545507
http://www.ncbi.nlm.nih.gov/pubmed/11796130
https://doi.org/10.1371/journal.pgen.1002145
http://www.ncbi.nlm.nih.gov/pubmed/21765815
https://doi.org/10.1086/430841
http://www.ncbi.nlm.nih.gov/pubmed/15877281
https://doi.org/10.1371/journal.pgen.1008164


57. Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of
neuronal inhibition. Nat Rev Neurosci. 2008 May; 9(5):331–43. https://doi.org/10.1038/nrn2370 PMID:
18382465

58. Sigel E, Steinmann ME. Structure, Function, and Modulation of GABA A. 2012; 287(48):40224–31.
https://doi.org/10.1074/jbc.R112.386664 PMID: 23038269

59. Bębenek A, Ziuzia-Graczyk I. Fidelity of DNA replication—amatter of proofreading. Curr Genet. 2018;
64(5):985–96. https://doi.org/10.1007/s00294-018-0820-1 PMID: 29500597

60. Malarkey CS, Churchill MEA. The high mobility group box: The ultimate utility player of a cell. Trends
Biochem Sci. 2012; 37(12):553–62. https://doi.org/10.1016/j.tibs.2012.09.003 PMID: 23153957

61. Murayama Y, Uhlmann F. Biochemical reconstitution of topological DNA binding by the cohesin ring.
Nature. 2014; 505(7483):367–71. https://doi.org/10.1038/nature12867 PMID: 24291789

62. Losada A, Yokochi T, Kobayashi R, Hirano T. Identification and characterization of SA/Scc3p subunits
in the Xenopus and human cohesin complexes. J Cell Biol. 2000; 150(3):405–16. https://doi.org/10.
1083/jcb.150.3.405 PMID: 10931856

63. Peters JM, Nishiyama T. Sister chromatid cohesion. Cold Spring Harb Perspect Biol. 2012; 4(11):1–
18.

64. Peters JM. The anaphase promoting complex/cyclosome: A machine designed to destroy. Nat Rev
Mol Cell Biol. 2006; 7(9):644–56. https://doi.org/10.1038/nrm1988 PMID: 16896351

65. Shrestha S, Wilmeth LJ, Eyer J, Shuster CB. PRC1 controls spindle polarization and recruitment of
cytokinetic factors during monopolar cytokinesis. Mol Biol Cell. 2012; 23(7):1196–207. https://doi.org/
10.1091/mbc.E11-12-1008 PMID: 22323288

66. Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J BiochemCell Biol. 2015; 66:20–
9. https://doi.org/10.1016/j.biocel.2015.07.003 PMID: 26159929

67. Tanaka M, Sasaki K, Kamata R, Hoshino Y, Yanagihara K, Sakai R. A Novel RNA-Binding Protein,
Ossa/C9orf10, Regulates Activity of Src Kinases To Protect Cells fromOxidative Stress-Induced Apo-
ptosis. Mol Cell Biol. 2009; 29(2):402–13. https://doi.org/10.1128/MCB.01035-08 PMID: 19015244

68. Kinchen JM, Ravichandran KS. Identification of two evolutionarily conserved genes regulating pro-
cessing of engulfed apoptotic cells. Nature. 2010; 464(7289):778–82. https://doi.org/10.1038/
nature08853 PMID: 20305638

69. Menges CW, Altomare DA, Testa JR. FAS-associated factor 1 (FAF1): Diverse functions and implica-
tions for oncogenesis. Cell Cycle. 2009; 8(16):2528–34. https://doi.org/10.4161/cc.8.16.9280 PMID:
19597341

70. Giudicessi JR, Ye D, Tester DJ, Crotti L, Mugione A, Nesterenko V V., et al. Transient outward current
(Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syn-
drome. Hear Rhythm. 2011; 8(7):1024–32.

71. Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et al. Mutations in KCND3 cause spinocer-
ebellar ataxia type 22. Ann Neurol. 2012; 72(6):859–69. https://doi.org/10.1002/ana.23701 PMID:
23280837

72. Duarri A, Jezierska J, Fokkens M, Meijer M, Schelhaas HJ, Den DunnenWFA, et al. Mutations in
potassium channel KCND3 cause spinocerebellar ataxia type 19. Ann Neurol. 2012; 72(6):870–80.
https://doi.org/10.1002/ana.23700 PMID: 23280838

73. Roosing S, Romani M, Isrie M, Rosti RO, Micalizzi A, Musaev D, et al. Mutations in cep120 cause jou-
bert syndrome as well as complex ciliopathy phenotypes. J Med Genet. 2016; 53(9):608–15. https://
doi.org/10.1136/jmedgenet-2016-103832 PMID: 27208211

74. Baron Y, Pedrioli PG, Tyagi K, Johnson C, Wood NT, Fountaine D, et al. VAPB/ALS8 interacts with
FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase. BMC Biol. 2014; 12
(1):1–20.

75. Oyama N, Chan I, Neill SM, Hamada T, South AP, Wessagowit V, et al. Autoantibodies to extracellular
matrix protein 1 in lichen sclerosus. Lancet. 2003; 362(9378):118–23. https://doi.org/10.1016/S0140-
6736(03)13863-9 PMID: 12867112

76. Hamada T, Wessagowit V, South AP, Ashton GHS, Chan I, Oyama N, et al. Extracellular matrix pro-
tein 1 gene (ECM1) mutations in lipoid proteinosis and genotype-phenotype correlation. J Invest Der-
matol. 2003; 120(3):345–50. https://doi.org/10.1046/j.1523-1747.2003.12073.x PMID: 12603844

77. Liu J, Krantz ID. Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet. 2009; 76(4):303–14.
https://doi.org/10.1111/j.1399-0004.2009.01271.x PMID: 19793304

78. Lehalle D, Mosca-Boidron AL, Begtrup A, Boute-Benejean O, Charles P, ChoMT, et al. STAG1muta-
tions cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. J Med
Genet. 2017; 54(7):479–88. https://doi.org/10.1136/jmedgenet-2016-104468 PMID: 28119487

Genetics of chronic pain

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008164 June 13, 2019 19 / 22

https://doi.org/10.1038/nrn2370
http://www.ncbi.nlm.nih.gov/pubmed/18382465
https://doi.org/10.1074/jbc.R112.386664
http://www.ncbi.nlm.nih.gov/pubmed/23038269
https://doi.org/10.1007/s00294-018-0820-1
http://www.ncbi.nlm.nih.gov/pubmed/29500597
https://doi.org/10.1016/j.tibs.2012.09.003
http://www.ncbi.nlm.nih.gov/pubmed/23153957
https://doi.org/10.1038/nature12867
http://www.ncbi.nlm.nih.gov/pubmed/24291789
https://doi.org/10.1083/jcb.150.3.405
https://doi.org/10.1083/jcb.150.3.405
http://www.ncbi.nlm.nih.gov/pubmed/10931856
https://doi.org/10.1038/nrm1988
http://www.ncbi.nlm.nih.gov/pubmed/16896351
https://doi.org/10.1091/mbc.E11-12-1008
https://doi.org/10.1091/mbc.E11-12-1008
http://www.ncbi.nlm.nih.gov/pubmed/22323288
https://doi.org/10.1016/j.biocel.2015.07.003
http://www.ncbi.nlm.nih.gov/pubmed/26159929
https://doi.org/10.1128/MCB.01035-08
http://www.ncbi.nlm.nih.gov/pubmed/19015244
https://doi.org/10.1038/nature08853
https://doi.org/10.1038/nature08853
http://www.ncbi.nlm.nih.gov/pubmed/20305638
https://doi.org/10.4161/cc.8.16.9280
http://www.ncbi.nlm.nih.gov/pubmed/19597341
https://doi.org/10.1002/ana.23701
http://www.ncbi.nlm.nih.gov/pubmed/23280837
https://doi.org/10.1002/ana.23700
http://www.ncbi.nlm.nih.gov/pubmed/23280838
https://doi.org/10.1136/jmedgenet-2016-103832
https://doi.org/10.1136/jmedgenet-2016-103832
http://www.ncbi.nlm.nih.gov/pubmed/27208211
https://doi.org/10.1016/S0140-6736(03)13863-9
https://doi.org/10.1016/S0140-6736(03)13863-9
http://www.ncbi.nlm.nih.gov/pubmed/12867112
https://doi.org/10.1046/j.1523-1747.2003.12073.x
http://www.ncbi.nlm.nih.gov/pubmed/12603844
https://doi.org/10.1111/j.1399-0004.2009.01271.x
http://www.ncbi.nlm.nih.gov/pubmed/19793304
https://doi.org/10.1136/jmedgenet-2016-104468
http://www.ncbi.nlm.nih.gov/pubmed/28119487
https://doi.org/10.1371/journal.pgen.1008164
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