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Abstract

Leaf rust is an important disease, threatening wheat production annually. Identification of

resistance genes or QTLs for effective field resistance could greatly enhance our ability to

breed durably resistant varieties. We applied a genome wide association study (GWAS)

approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from pub-

lic and private sectors that were predominately developed in the Americas. A total of 46

QTLs were identified for field and seedling traits and approximately 20–30 confer field resis-

tance in varying degrees. The 10 QTLs accounting for the most variation in field resistance

explained 26–30% of the total variation (depending on traits: percent severity, coefficient of

infection or response type). Similarly, the 10 QTLs accounting for most of the variation in

seedling resistance to different races explained 24–34% of the variation, after correcting for

population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identi-

fied. Identification of novel genes or QTLs and validation of previously identified genes or

QTLs for seedling and especially adult plant resistance will enhance understanding of leaf

rust resistance and assist breeding for resistant wheat varieties. We also developed com-

puter programs to automate field and seedling rust phenotype data conversions. This is the

first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high

density 90K SNP arrays.

Introduction

Wheat leaf rust, caused by the fungus Puccinia triticina Eriks, is a threat to world wheat pro-

duction. Identification of resistance genes using molecular markers is an important step toward

marker assisted selection and resistance breeding. To date, there have been more than 70 leaf

rust resistance genes identified, the majority of which confer leaf rust resistance in the seedling

stage and are race-specific [1]. Identification of resistance loci or major QTLs that confer adult
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plant or field resistance against leaf rust will enhance our ability to develop leaf rust resistant

wheat varieties.

One way to identify leaf rust resistance QTLs, is through association mapping (AM). Associ-

ation mapping has the potential of accommodating wide collections of germplasm and due to

historic recombination, AM studies generally have better mapping resolution compared to bi-

parental mapping [2]. With decreasing sequencing costs and the advent of high throughput

genotyping assays [3–5], association mapping using high density genome wide markers, also

known as genome wide association study (GWAS), has become more widely available to plant

researchers.

Association mapping for various traits in a number of crop species, including rice, corn, soy-

bean, wheat, barley, tomato and potato have been conducted [2, 6]. Association mapping stud-

ies were also conducted for various rust disease traits in wheat [7–13]. Maccaferri et al [7]

reported association mapping of leaf rust resistance using mostly SSR markers and a collection

of durum wheat (Triticum turgidum L. var. durum, tetraploid AABB), but not common wheat

(allohexaploid AABBDD). Kertho et al [13] explored resistance QTLs in a collection of winter

wheat landraces, but the study focused on seedling resistance, with no data on field resistance.

Few GWAS studies were conducted for mapping leaf rust resistance loci in both seedling and

adult plant stages, and in elite bread wheat cultivars or breeding lines. Furthermore, to our

knowledge, no study has utilized the recently developed high density iSelect 90K SNP array [5]

for GWAS analysis of leaf rust resistance in bread wheat.

The main feature of this mapping panel is that a large amount of the germplasm possesses

resistance to leaf rust and in some cases specific genes providing the resistance are known. It is

possible that such a panel will allow us to identify resistance alleles that are normally not

detected due to low allele frequency. This study aims to validate known genomic loci effective

to leaf rust resistance and to identify novel genes or QTLs that are effective against the leaf rust

pathogen in the seedling and (or) adult plant stages. Meanwhile, this study also explores the

genetic architecture and phenotypic correlations for seedling and adult plant resistance and

discusses ways to implement our research results in plant breeding and genetics efforts.

Materials and Methods

Plant Materials

A total of 381 spring wheat breeding lines derived from commercial and public breeding sec-

tors were selected to form a leaf rust association mapping (AM) panel. These lines were from

different countries of North, Central and South America, as well as some parts of Africa,

Europe and Asia. Public sector contributors included the University of Minnesota (MN),

North Dakota State University (NDSU), South Dakota State University (SDSU), the United

States Department of Agriculture, Agricultural Research Service (USDA-ARS), International

Center for Maize and Wheat Improvement (CIMMYT), Uruguay, Argentina, Brazil, and Chile

as well as some European and Asian countries. Private sector contributors included Syngenta

(Basel, Switzerland), Limagrain (Puy-de-Dome, France) andWestbred (Monsanto Co,

St. Louis, MO). The AM panel consists of wheat lines with leaf rust resistance to one or multi-

ple races. Over 70 Thatcher near isogenic lines (NILs) [14] with one or more known leaf rust

resistance genes were also included to assist with gene postulations.

Leaf Rust Disease Phenotyping

The 381 plants were grown under greenhouse conditions and inoculated at the first leaf seed-

ling stage, 7d after planting, in three independent experiments, each using a different race or

combination of races. Races of P. triticina included race 1 BBBDB (Long and Kolmer 1989)
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which is widely avirulent to many Lr genes in wheat; race CA1.2 (BBBQD), a race that is viru-

lent to most durum wheat cultivars and avirulent to most bread wheat cultivars; and a mixture

of six races of MHDSB, MFPSB, MLDSB, TBBGJ, TFGJQ and TFBGQ common in North

America. The six race mixture was also used to inoculate plants in the field. Disease phenotypes

were scored 10–12 d after inoculation, according to the 0 to 4 infection type (IT) scale devel-

oped by Stakman et al. [15]. The phenotype data was converted to a linearized 0 to 9 scales

using a custom Perl script and analyzed using R [16] to derive summary statistics. The program

for seedling rust score conversion adopted the scales developed by Zhang et al [10] with slight

modifications. Specifically, if it is a simple reading such as “1+” or “2-”, the original 0–9 scale

proposed by Zhang et al was used; if it is a complex reading such as “;13+”, the readings were

first split into simple readings such as “;” “1” “3+”, then the first reading was weighted double,

all readings were converted to 0–9 scales, and arithmetic means were calculated. The program

is fully automated and can take data tables with practically unlimited number of columns or

trait values. With slight modifications, this program can be used to convert other types of

text based categorical data into numeric scales (https://github.com/umngao/rust_scores_

conversion).

The 381 lines (with four check cultivars Thatcher, Tom, Verde and Knudson) were planted

in single rows in the field and inoculated with the race mixture (see above), approximately one

month after planting when the entries were starting to tiller. A mixture of the susceptible culti-

vars Max, Little Club, Thatcher and Morocco were planted perpendicular to the entries and

were inoculated with the race mixture to uniformly infect the entries. Phenotyping (rust scor-

ing) was done approximately one month post inoculation after anthesis on flag leaves of adult

plants. Phenotypes were collected in four years and two locations (2012 in Crookston, MN and

2012–2015 in St. Paul, MN). Leaf rust data was scored using the percentage of diseased leaf

area (“Field.SEV” or severity) using a modified Cobb scale [17] and response (“Field.IT” or

infection type) based on pustule sizes of uredinia spores and amount of necrosis and chlorosis,

on a scale of resistant to susceptible response that was converted to a numeric 0 to 1 scale [18].

The phenotypic data were automatically converted to three measures (severity, response and

coefficient of infection) using another custom Perl script for field rust score conversion

(https://github.com/umngao/rust_scores_conversion), whereas “severity” (Field.SEV) = per-

centage of diseased leaf area; “response” (Field.IT) = a numeric scale of 0 to 1. It is worth noting

that field. IT was converted to a 0–1 linearized scale, while seedling infection types against

race1, race.CA1.2 or race.Mix were converted to a 0–9 linearized scales [18]. Coefficient of

infection (Field.COI) equals to the product of “severity” and “response”. All of these measures

were used in association mapping, with COI values being the primary trait for selection of

most significant QTLs, as it combines the information from both severity and response or IT

for field resistance.

Phenotypic values were further adjusted based on a mixed linear model, with environments

(each year and location combination was counted as one environment for a total of five envi-

ronments: CrK12, StP12, StP13, StP14, StP15) as random effects, and genotypes as having

fixed effects. Best linear unbiased estimates (BLUE) combined the trait values across years.

Heading and flowering dates were also collected and initially included into the mixed model

analysis. Because significant effects of heading or flowering on overall leaf rust disease severity

for this particular dataset were not detected, they were later dropped from the model. Mixed

model analysis was performed using the “lme4” package of the open source statistical language

or software environment R [16].
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DNA Extraction and Genotyping

DNA was collected from seedling plants using a Qiagen (Venlo, Limberg, Netherlands) Bios-

print method, and genotyped with the Illumina’s iSelect 90K SNP array at the USDA-ARS

Biosciences Research lab in Fargo, North Dakota, USA. Forty-two of the 381 lines were pheno-

typed, but not genotyped, thus not included into GWAS analysis. The data generated were

called and curated using Illumina GenomeStudio software, and uploaded to the T3 database

(http://triticeaetoolbox.org/wheat/). SNPs were filtered and converted to Hapmap format

using a custom Perl script incorporating the criteria for: minor allele frequency (MAF) greater

than 0.05; missing data less than 20% (only two lines had missing data greater than 15%) and

chromosome positions previously mapped in the wheat 90K consensus map [5]. A molecular

marker (csLV34) [19] tightly associated to Lr34, was used to genotype this panel, and the geno-

typed results were included in GWAS analysis.

Population Structure (Q), Kinship (K) and Linkage Disequilibrium (LD)
Analysis

Population structure (Q) was analyzed using a model based clustering method (admixture

models with correlated allele frequencies) in STRUCTURE [20] v2.3.4, and principal compo-

nent analysis (PCA) using the statistical software R. An LD-based pruning method imple-

mented in the PLINK software [21] v1.09 was used to prune the total filtered marker set

(18,924) using the command line option of “—indep-pairwise 100 5 0.2” under Linux environ-

ment. The pruned (or filtered) set of SNP markers (1309) were used for structure analysis. The

reason for using pruned markers rather than the whole set of markers is that STRUCTURE

assumes loci are at linkage equilibrium within sub-populations.

Ten independent STRUCTURE runs were conducted for each specified K (number of sub-

populations, from 2 to 10), with 20,000 burn-in length and 40,000 Markov chain Monte Carlo

(MCMC) iterations under Linux environment. The most likely number of clusters (K) was cho-

sen based on the ΔK method [22], implemented in a web-based informatics tool “Structure

Harvester” [23]. The method estimates ΔK based on the rate of change in the log probability

between successive K values. Clumpp [24] software v1.1 was used to consolidate STRUCTURE

runs and derive the Q matrix used in AM with mixed linear models (MLM). DISTRUCT v1.1

[25] was used to plot the population Q matrix bar graph. The fixation index (Fst) of subpopula-

tions was obtained through STRUCTURE run outputs.

TASSEL [26] v4.3.13 was used to derive a population Kinship matrix based on the scaled

IBS (identity by state) method using the complete set of markers that passed quality filtering.

Previous research has shown that using the complete set of markers is useful to control

genome-wide error rate and performs much better than pedigree based methods for kinship

estimates [27]. Linkage disequilibrium (LD) was calculated using TASSEL. LD decay curves for

each sub-genome (A, B, D) were fitted using a non-linear model described by Marroni et al.

[28]. The LD values (R2) were also used to assist QTL block determination (see next section for

details). Some LD blocks or adjacent regions were selected using PLINK software tool set [21]

and visualized using Haploview software [29].

GenomeWide Association Study (GWAS) Using MLM (QK), QGLM and
G-Model Analysis

Association mapping based on mixed linear model (MLM) and generalized linear model with

population structure as a covariate (QGLM) analysis was conducted primarily using TASSEL

[26], a JAVA based open source software for linkage and association analysis. MLMmodel
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results were further validated using the Genome Association and Prediction Integrated Tool

(GAPIT) [30] under open source R environment. The GAPIT tool does not report QGLM val-

ues. We also explored the use of a Fortran software or program developed by Dr. Rex Bernardo

(University of Minnesota) for GWAS analysis using genome wide markers to control for back-

ground variations in a multiple regression setting (known as G-model) (http://bernardo-group.

org/books-and-software/) [31]. For this study, we focused primarily on MLM results from

TASSEL outputs, but the results from GAPIT and G-models were used in a supporting

manner.

The Mixed linear model (MLM) approach [32] was used in GWAS analysis of leaf rust resis-

tance. The mixed linear model for GWAS can be specified as follows: y = Xβ + Qv + Zu +e,

where y is the phenotype values (either BLUE adjusted or environment specific values), β and v

are fixed effects due to marker and population structures respectively, u is a vector of random

effects due to the portion of breeding values not accounted for by the markers. X, Q and Z are

incidence matrices that related y to β, v and u. The covariance matrix of breeding value “u” is

the product of kinship matrix (commonly designated as A or K) and Vg, the portion of additive

variance that is not accounted for by the marker under test [33]. Considering the size of the

population in this study, we did not use the “compressed MLM” ability of GAPIT or Tassel

which groups individuals based on phenotypes [34].

P-values, R2 and marker effects were extracted from GWAS results. The false discovery rate

(FDR) adjusted p-values used in GAPIT were found to be highly stringent. Researchers have

debated that correcting for marker effects based on both population structure Q and kinship K

(which in turn were often calculated based on marker data as well) could be over-correcting

and might result in a need for relaxed p-value levels such as 0.001 [11, 35] or alternative ways

to correct for background variations [31]. Some researchers have developed or adopted alterna-

tive multiple test correction methods such as “simpleM”, a variant of the Bonferroni correction

[36, 37]. The SimpleM [36] approach applies a Bonferroni correction to the effective number of

independent tests (Meff). In this study, marker–wise significance was based on three criteria

(p<0.05, p<0.001, and SimpleM) with increasing stringency. For QTL nomination, a p-value

of less than 0.001 (detected in at least one environment) was required. For count-based analysis

of previously designated QTLs using vennCounts and vennDiagram functions from LIMMA

(linear model for microarrays, a Bioconductor package of R), a p-value cutoff of 0.05 was used

to capture the global similarity or dissimilarity between traits or environments. An effective

number of tests (Meff) were calculated for each chromosome individually and the SimpleM

level was determined as p-value = 7.72E-5, derived from 0.1 divided by the total number of

Meff for all chromosomes (n = 1295).

R2 values from LD analysis, in conjunction with genetic distances were used to assign co-

segregating or adjacent significant markers into a unique QTL block based on the criteria of R2

value greater than 0.2 and genetic distance less than 10 cM, with a few exceptions: QTLs 1B_1

and 4A_3 both had markers that are more than 10 cM apart, yet were almost completely linked

(LD R2
�1).

Most Significant Markers, Stepwise Regression, and Postulation of
Gene Names

For each LD block or QTL as defined above, markers with the most significant p-values or larg-

est R2 were extracted as representative markers for each marker-trait association. The most sig-

nificant 10 QTLs for each trait (field disease resistance, seedling resistance against Race 1,

CA1.2, and the race mixture) were summarized in more detail and the cumulative effects of
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significant markers were assessed using a multiple regression approach (considering additive

effects only) with population structure as a covariate.

Stepwise regressions were performed on significant markers to identify the loci that were

independently associated with disease resistance for each trait, respectively, with population

structure Q as covariate. For field BLUE trait values, a p-value cutoff of 0.005 was required for

inclusion in the stepwise regression (the selected markers also passed the 0.001 threshold for at

least one of the tested environments). For seedling traits, if less than 10 loci passed the 0.001

threshold (e.g. QTLs resistant to race CA1.2), the most significant 10 loci were used, roughly

equivalent to a p-value cutoff of 0.1 percentile. For both forward and backward selection (in

stepwise regression of the multiple regression models), a p-value of 0.05 determined whether

including or dropping a given QTL from the model was appropriate.

The most significant QTLs were postulated based on position, LD, infection type and pedi-

gree or donor line information. All sequences associated with 90K SNPs were blasted against

the wheat genome survey sequences v2 (http://www.wheatgenome.org/) using command line

version of BLAST+ v2.2.8 under Linux environment. A few target SNP sequences were also

used to BLAST against a newer version of wheat genome build [38] and reference Barley

genome sequences [39] for candidate gene annotation. The criterion was percent identity

greater than 95% and only the best hit was taken if there were multiple BLAST hits. The

BLAST hit information was used to explore candidate genes for certain QTLs and to assist opti-

mal chromosome arm assignments for certain SNPs. For this study, candidate genes or QTLs

were postulated or designated for those loci whose p-values (derived from either MLM or

QGLM analysis) surpassed the simpleM Bonferroni correction threshold. The candidate QTLs

identified through G-model generally have higher significance levels (strongly exceeding the

simpleM threshold).

Results

Phenotype Data and Results

For seedling plants, more than 50% of the tested lines were completely resistant (immune, with

IT = 0) against leaf rust race 1 or race CA1.2 (Fig 1). This suggests the presence of resistance

genes in many of the tested lines. Approximately 70% of the highly resistant lines are resistant

to both race 1 and race CA1.2, likely suggesting that these lines possess major genes that are

effective against both races. The median seedling leaf rust disease score was 0 (the completely

immune type) for resistance to race 1 and CA1.2 and 6 (equivalent to IT of 2+) for resistance to

the field race mixture. The mean disease severity of the race mixture was higher than the two

single races by 2.8 and 3.4 respectively, on a 0–9 disease scale. The ANOVA analysis for treat-

ment effects (or inoculation method) p-value was less than 2.2E-16. The higher disease severity

for race mixtures was expected, as the field race mixtures contain races that are more virulent

than race 1 and race CA1.2. Nonetheless, approximately 40% of the tested lines were resistant

(with IT of 2+ or less) to the field race mixtures at the seedling stage, suggesting that these lines

are broadly resistant to common North American races and also may be resistant in field trials.

Disease severity varied between years of field plot tests, with the year 2012 displaying the

lowest leaf rust severity. Nonetheless, the year to year correlations are still high, with an average

Pearson correlation coefficient of R = 0.77 (Fig 1), similar to those observed for a stripe rust

study [40]. After a mixed model adjustment, we estimated the heritability (h2) of leaf rust dis-

ease trait (for coefficient of infection, COI) to be 0.92. The overall disease distribution among

the 381 lines was highly skewed toward resistance types (Fig 1B, diagonal histograms). Coeffi-

cient of infections (COI) for 69% of the lines was less than 20 (on a 0–100 scale). These results

GWAS of Leaf Rust Resistance

PLOS ONE | DOI:10.1371/journal.pone.0148671 February 5, 2016 6 / 25

http://www.wheatgenome.org/


suggest that most of the breeding lines used in this AM study contain effective resistance genes

or QTLs against multiple leaf rust races under field environments.

The overall Pearson’s correlations among measured traits are listed in Table 1. Seedling

plant infection types to single races (race 1 and race CA1.2) were moderately correlated with

each other (0.63). We also observed a moderate correlation between seedling and field response

(IT) to race mixtures (R = 0.57). Our results showed a high correlation (R> = 0.88) among

field trait values calculated using different methods (COI, severity, and response or infection

type IT). The field response and response to single races are less well correlated (R<0.29),

Fig 1. Seedling disease levels and field disease (coefficient of infection, COI) correlations. (a) Left (black and white) panel showing seedling disease
distributions; X-axis represents linearized 0–9 scales; (b) Right (orange and blue) panel showing field disease correlations. Diagonals are histogram for each
environment (Crookston CRK12,Saint Paul StP12-15).

doi:10.1371/journal.pone.0148671.g001

Table 1. Phenotype correlations among field and seedling traits (Race.1, Race.CA1.2, Race.Mix, Field.COI, FIELD.SEV, FIELD.IT).

Race.1 Race.CA1.2 Race.Mix Field.COI Field.SEV Field.IT

Race.1 -

Race.CA1.2 0.63 -

Race.Mix 0.41 0.31 -

Field.COI 0.20 0.29 0.50 -

Field.SEV 0.18 0.25 0.51 0.98 -

Field.IT 0.17 0.22 0.57 0.90 0.88 -

doi:10.1371/journal.pone.0148671.t001
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which was expected as race 1 and CA1.2 are highly avirulent, while the mixture of race used for

the seedling and field plot tests is virulent to a number of Lr genes.

GenomeWide SNP Coverage and Linkage Disequilibrium (LD) Based
on 90K SNP Arrays

A total of 18,925 markers passed the quality filters (18,924 of them are SNP array based mark-

ers). On average, there are 1.4 markers per centimorgan (cM) (S1 Fig). Marker density on D

genome chromosomes was much lower compared to A and B genomes: one marker every 2.6

cM compared to one marker every 0.74–0.97 cM. This is roughly proportional to the total

mapped markers for each genome [5].

We found that the LD decays (as defined by R2 declining to below 0.2) at around 1.5–1.7

cM for A and B genomes, but extends to more than 8 cM in D genome chromosomes (Fig 2),

consistent with previous findings [5]. The high LD in D genome chromosomes has the practi-

cal effect of reducing the number of markers required to detect significant marker traits

associations.

Fig 2. Linkage disequilibrium based on 18924 SNPmarkers. For color fitted LD decay lines: red represents A genome; green represents B genome; blue
represents D genome. Orange bar indicates LD decay level (R2 = 0.2).

doi:10.1371/journal.pone.0148671.g002
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Population Structures of the Leaf Rust Association Mapping Panel and
Correlation with Leaf Rust Phenotype in the Field

For model based analysis using STRUCTURE [20], the optimal number of K was determined

to be 3 based on the ΔKmethod [22]. In this study, ΔK value equals 380 for K = 3 and the

remaining tested K’s all have a much smaller ΔK value (mean = 2, max = 5). Similarly, for PCA

based analysis, we found that the total variance explained by each principal component (PC)

drops sharply for the first three PCs (from 11.7 to 5.4 to 3.3), and levels after PC3. The first

three PCs capture over 20% of the total variance. Given the results from both model based and

PCA analysis, we used K = 3 for constructing the Q matrix in the mixed model marker trait

association analysis in both TASSEL and GAPIT. The population structure derived from the

model–based and PCA–based approaches were very similar (Fig 3). GWAS results (identified

QTLs and p-values for markers) using different version of Q3 matrices (either model based or

PCA based) agreed with each other: The correlation among sets of p-values and marker effects

were both over 0.9 for the field BLUE trait, and the correlation among set of R2 values was over

0.96 for the same trait (Field.COI).

STRUCTURE analysis revealed three sub-populations: i) Sub-population 1 (81 lines)

consisted of almost entirely Thatcher near isogenic lines (NILs) with a few exceptions;

ii) Sub-population 2 (117 lines) consisted of mostly (~70%) North American lines including

Fig 3. Population structure: model based approach and PCA approach. (a) model based approach for population structure analysis. (b) PCA approach
for population structure analysis. Orange: sub-population 1; Red: sub-population 2; Blue: sub-population 3. Asterisks (*) on PCA plot indicate accessions that
are typical of each sub-population. Sub-population 3 also has lines from North America. Both sub-pop2 and sub-pop 3 might include lines from Asia, Europe
etc.

doi:10.1371/journal.pone.0148671.g003
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genotypes from South Dakota State University, University of Minnesota, North Dakota State

University, Syngenta and Limagrain; iii) The majority (with only one exception) of CIMMYT

and South American lines were in sub-population 3 (140 lines). However, sub-population 3

also contained some North American lines. A few European, African and Asian lines were also

present in Sub-populations 2 and 3. The fixation index (Fst) values for the three sub-popula-

tions are 0.80, 0.43 and 0.12 respectively, suggesting that sub-population 3 has a much higher

divergence within itself. Different sub-populations are associated with different resistance lev-

els and the differences are highly significant (p< 1.8E-5). Sub-population 1 (Thatcher near iso-

genic lines) has the highest disease (mean 33.4), followed by sub-population 3 (South America,

mean 18.0) and sub-population 2 (North America, mean 9.9) (Fig 4).

Marker Trait Associations by MLM (QK), QGLM and G-Model Analysis

After trimming the genotype and phenotype datasets, 18,925 markers and 338 lines were

included in the GWAS analysis. As an exploratory analysis, GWAS (MLM) for plant flowering

date phenotype analysis revealed a single genomic locus at 90cM (long arm) of chromosome

5A using GAPIT with default settings (S2 Fig). The marker trait association p-value was highly

significant (p< 1E-10). We hypothesize that this locus is Vrn-A1, consistent with previous

mapping results [4]. The successful detection of Vrn-A1 suggests that the MLM (with popula-

tion structure Q and kinship K) model fits the data. We further utilized quantile-quantile (QQ)

plots to examine the MLMmodel fitness for leaf rust traits. The expected–log10P value and the

Fig 4. Different sub populations of this AM panel are associated with different levels of leaf rust disease severity (measured using coefficient of
infection Field.COI).

doi:10.1371/journal.pone.0148671.g004
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observed–log10P value distributions follow the X = Y diagonal line until it curves at the end (S3

Fig). These results further suggest that our MLMmodels fit the data.

After fitting the MLM using TASSEL [26], a total of 333 markers were identified to be signif-

icantly (p< 0.001) associated with leaf rust resistance for at least one of the field or seedling

traits (S1 Table) We combined adjacent markers based on LD and genetic distance informa-

tion, and were able to obtain 46 unique QTLs (Table 2).

Manhattan plots for the BLUE estimated field traits across different field environments

(2012–2015) are shown in Fig 5. A majority of the field QTLs were detected under multiple

environments (Table 2 and Fig 6). Similar to MLM analysis, exploratory analysis using QGLM

model (population structure + generalized linear model) also revealed the known flowering

locus at 5AL (data not shown). The QGLM p-values for leaf rust traits are generally more sig-

nificant compared to MLM analysis (Table 3).

We used the GAPIT tool to validate QTLs detected by TASSEL. A total of 44 out of 46

QTLs detected by TASSEL (96%) were also detected using GAPIT (S2 Table). By relaxing the

p-value threshold slightly from 0.0010 to 0.0013, all of the 46 QTLs (100%) were significantly

detected by GAPIT (S2 Table). We also explored the use of G-model [31] to do GWAS analysis,

the p-value used in multiple regression fitting is 0.000001 (highly significant and far surpassing

the simpleM threshold), and a total of 108 markers were identified for the Field.COI trait.

Many of these markers share similar positions with those identified through MLM and QGLM

analysis (S3 Table). Overall, our GWAS results showed high agreement across multiple envi-

ronments and between various methods of QTL detection.

Gene or QTL Postulations for the Most Significant (Top 10) QTLs for
Seedling and Field Resistance

Combining the most significant 10 QTLs (based on MLM p-values, abbreviated as p.MLM) for

each trait (Race1, Race.CA1.2, Race.Mix, Field.COI) resulted in a total of 29 unique QTLs.

Some of the loci were detected for multiple traits, thus the unique number of QTLs for the four

traits is 29 instead of 40 (Table 3). We found that a number of loci were likely known or previ-

ously identified loci that are involved in rust resistance. For example, QTL 5D_1 (203.88 cM)

located on long arm of chromosome 5D (Table 3), approximately the same location as Lr1.

This locus was detected only in the seedling stage, which is consistent with Lr1 being not effec-

tive to races present in the field (environments in which the locus was not detected were repre-

sented with a dash “-” in Table 2). Thatcher near isogenic line RL6003 (known to possess Lr1)

has the favorable allele. This evidence suggests that QTL 5D_1 is Lr1. One of the most signifi-

cant loci for seedling resistance against race 1 and CA1.2 was QTL 6B_4, which was located on

long arm of chromosome 6B (122.92cM, Table 3, Fig 5). Thatcher near isogenic lines RL6002

and RL6042 were known to possess Lr3 [42], and both of these lines possess the favorable SNP

allele (C). This evidence suggests that QTL 6B_4 is Lr3. Our data show that the Lr68 represent-

ing contig 7BL_6748067 [43] was positioned at 171 cM based on BLAST hit information,

roughly at the same location of QTL 7B_4 (166.99 cM). QTL 7B_4 is effective at the adult plant

stage only (Table 2). All these results suggest that QTL 7B_4 (SNP IWB64015) represents Lr68.

Besides Lr1, Lr3, Lr68, a number of quantitative trait loci (Table 2) were mapped to approxi-

mately the locations of loci Lr26 (QTL 1B_2) [29], Lr42 (1D_t1) [44], Lr21 (1D_3), Lr17

(2A_1), [42], Lr11 (2A_3) [45], Lr28 (4A_t2) [46], Lr14 (7B_3) [47], QLr.cimmyt-1BS (1B_1)

[48], QLr.cdl-5BL (5B_2) [49], and possibly Lr30 and others [50, 51]. However, due to the lack

of pedigree and donor line genotype information (within this panel), and also the near fixation

of some alleles within sub-population 1 (i.e., majority of Thatcher NILs have the same allele),

GWAS of Leaf Rust Resistance
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Table 2. A total of 46 QTLs were identified that were significantly associated with field or seedling leaf rust disease resistant (p.MLM < 0.001).

QTL
(gene)a

Chr Position
(90K)

Num
SNPs

Crk
2012

StP
2012

StP
2013

StP
2014

StP
2015

Lr.COI Lr.SEV Lr.IT Race.1 Race
CA1.2

Race
Mix

1A_3 1A 148.99–
151.22

6 4.43E-
03

6.89E-

05

2.01E-
03

8.55E-

05

6.34E-
04

1.11E-
04

8.63E-
04

2.35E-
03

- - 3.55E-
03

1B_1 1B 43.66–
64.89

88 1.17E-
02

3.39E-
04

2.09E-
03

6.23E-
04

2.56E-
03

1.07E-
03

2.01E-
03

4.78E-
05

- 9.21E-
03

3.77E-
04

1B_t1 1B 81.95–
82.86

2 1.96E-
02

7.36E-
04

5.27E-
03

8.63E-
04

8.03E-
03

1.62E-
03

1.17E-
03

1.49E-
02

9.03E-
03

- -

1B_2 1B 84.43–
85.57

11 - - - - - - - - 7.84E-
05

1.96E-
02

-

1D_1 1D 3.5–8.71 4 1.46E-
02

7.02E-
03

4.90E-
03

5.87E-
03

7.72E-
03

1.80E-
03

3.55E-
03

1.31E-
04

- 1.05E-
02

1.46E-
03

1D_2 1D 44.69–
44.69

2 - - 9.64E-
03

- 1.48E-
02

1.76E-
02

2.67E-
02

4.48E-
04

- - -

1D_t1 1D 45.44–
45.44

1 - - - - - - - - 3.85E-
04

- -

1D_3 1D 88.85–
89.58

5 2.45E-
02

- 5.10E-
03

1.49E-
02

- 1.44E-
02

2.81E-
02

- 2.97E-
02

3.96E-
04

-

2A_1 2A 20.14–
20.14

1 - - - - - - - - 3.64E-
02

- 2.58E-
04

2A_2 2A 101.97–
101.97

1 - - - - 3.28E-
04

3.66E-
02

- 1.61E-
02

- 2.21E-
02

-

2A_3 2A 108.46–
108.46

1 1.69E-
02

4.64E-
04

3.69E-
03

1.78E-
03

1.19E-
02

4.38E-
04

1.54E-
03

2.60E-
03

3.94E-
02

5.61E-
03

-

2B_2 2B 88.44–
97.26

24 3.45E-

06

1.95E-
02

2.88E-
03

7.75E-
03

1.20E-
04

4.52E-
04

5.97E-
04

7.80E-
04

- 9.08E-
05

4.47E-
02

2B_3 2B 102.28–
108.35

15 1.57E-
03

4.29E-
04

4.61E-
03

3.45E-
04

1.75E-
03

7.55E-
04

1.38E-
03

2.13E-
03

- - -

2D_1 2D 18.22–
18.22

1 - - 6.82E-
03

1.12E-
02

9.26E-
03

4.84E-
03

3.48E-
04

5.73E-
04

- - -

3A_1 3A 86.16–
87.78

3 - 8.17E-
04

9.32E-
04

5.56E-
05

9.54E-
03

1.50E-
03

3.72E-
04

4.15E-
02

- - 3.11E-
02

3A_t2 3A 169.89–
169.89

1 1.25E-
03

1.50E-
03

4.96E-
03

2.96E-
03

1.73E-
03

4.31E-
04

7.47E-
04

1.19E-
03

- - 1.16E-
03

3B_t2 3B 51.07–
51.08

2 3.09E-
02

- 5.14E-
03

3.50E-
02

1.32E-
02

1.82E-
02

- 1.34E-
03

- - 6.69E-
04

3B_1 3B 139.62–
139.62

3 - 1.29E-
02

4.62E-
05

4.14E-
02

- 8.23E-
03

3.06E-
02

3.53E-
02

- - -

4A_1
(umn-
4AS)

4A 37.05–
37.05

2 7.72E-
03

9.45E-
04

8.60E-
05

3.50E-
04

2.20E-
03

4.17E-

05

4.74E-
05

9.64E-
05

3.24E-
02

- -

4A_2 4A 48.52–
48.84

60 1.34E-
02

- 7.26E-

05

- 2.34E-
02

1.69E-
02

4.00E-
02

3.22E-
02

- 6.04E-
03

2.89E-
02

4A_3 4A 51.7–53.13 7 1.39E-
03

1.24E-
03

8.79E-
03

1.18E-
04

3.01E-
02

6.67E-
04

1.40E-
03

3.69E-
03

- - -

4A_t1 4A 73–73 1 2.57E-
02

6.18E-
03

2.89E-
02

5.72E-
04

1.31E-
02

1.43E-
03

9.18E-
03

2.34E-
03

- - -

4A_t2 4A 139.97–
144.38

4 - 3.09E-
02

4.26E-
02

7.16E-
03

1.53E-
02

1.41E-
02

4.17E-
03

3.24E-
04

5.59E-
04

7.94E-
03

-

4B_1 4B 15.91–
15.91

1 - - 1.91E-
02

- 6.01E-
03

7.47E-
03

9.71E-
03

7.71E-
04

- - 4.02E-
03

4B_3 4B 74.62–
90.07

10 5.64E-

05

2.77E-
03

1.73E-
03

1.99E-
04

1.07E-
02

1.56E-
04

1.02E-
04

1.35E-
03

- 2.44E-
02

2.93E-
03

(Continued)
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Table 2. (Continued)

QTL
(gene)a

Chr Position
(90K)

Num
SNPs

Crk
2012

StP
2012

StP
2013

StP
2014

StP
2015

Lr.COI Lr.SEV Lr.IT Race.1 Race
CA1.2

Race
Mix

4D_1 4D 70.59–
70.59

1 7.58E-
03

6.42E-
03

5.06E-
03

6.95E-
03

1.35E-
02

1.82E-
03

2.78E-
03

2.26E-
04

2.34E-
02

1.90E-
02

2.31E-
04

5B_1 5B 39.4–39.4 8 - 1.67E-
03

5.73E-
03

2.41E-

03

4.05E-
04

9.90E-
04

1.51E-
03

4.03E-
02

- - -

5B_2 5B 49.01–
49.65

2 6.71E-
04

8.99E-
04

2.34E-
02

5.95E-
06

2.07E-
03

1.69E-
04

6.78E-
04

1.14E-
03

5.08E-
05

- -

5B_t1 5B 119.54–
119.54

1 9.68E-
04

3.26E-
02

2.05E-
02

- - 3.58E-
02

3.46E-
02

- - - -

5D_1
(Lr1)

5D 203.88–
204.58

6 - - - - - - - - 1.17E-
04

3.74E-
02

-

6A_1 6A 25.86–
27.15

2 4.60E-
04

- 2.22E-
02

8.55E-
03

7.57E-
03

1.32E-
03

5.59E-
03

3.16E-
03

- - -

6A_t1 6A 48.09–
48.09

1 4.38E-
03

4.46E-
03

1.70E-
02

9.81E-
03

8.01E-
04

4.97E-
04

5.57E-
04

3.28E-
03

- - -

6A_2 6A 100.62–
100.62

1 - - - - - - - - 2.23E-
04

1.24E-
02

-

6A_3 6A 119.64–
119.64

1 1.56E-
02

- - - - - - - - - 2.28E-
04

6B_1 6B 16.76–
16.76

1 - - - - - - - - 9.43E-
04

- -

6B_3 6B 66.36–
66.36

2 - 8.10E-
03

- 3.04E-
03

2.84E-
02

1.36E-
02

1.24E-
02

1.14E-
02

2.33E-
03

5.05E-
04

7.02E-
04

6B_4 (Lr3) 6B 118.99–
122.92

31 - - - - - - - - 6.02E-

07

8.78E-
05

8.81E-
03

7A_3 7A 125.47–
125.47

1 9.59E-
04

2.90E-
02

- - 3.24E-
02

1.25E-
02

2.01E-
02

- - - -

7B_1 7B 58.17–
58.63

3 - 3.60E-
04

6.11E-
04

7.56E-
03

2.32E-
02

1.57E-
02

2.54E-
02

2.51E-
03

- 4.03E-
03

-

7B_2 7B 66.62–
71.33

8 - - - - - - - - - 1.22E-
04

-

7B_t1 7B 73.79–
73.79

1 4.73E-
02

1.47E-
02

1.59E-
02

2.77E-
02

9.50E-
03

3.88E-
03

2.53E-
03

5.60E-
04

- - -

7B_3 7B 76.31–
76.31

2 - - - - - - - - 2.09E-
04

- -

7B_t2 7B 89.13–
89.13

2 1.90E-
02

9.54E-
03

3.54E-
03

- 6.00E-
04

2.60E-
03

4.48E-
03

3.74E-
03

- - -

7B_4 7B 166.99–
166.99

1 1.89E-
04

2.58E-
04

7.93E-
04

1.42E-
03

2.35E-
03

5.03E-
04

1.66E-
03

6.36E-
03

- - -

7D_1
(Lr34)

7D 35.00–
35.00b

1 8.16E-
05

7.55E-
03

2.15E-
02

- 3.15E-
02

3.51E-
03

2.03E-
03

- - 3.22E-
02

-

7D_2 7D 169.51–
169.51

1 2.86E-
03

1.15E-
02

- - 6.53E-
04

2.91E-
03

3.91E-
03

2.32E-
02

- - -

aPostulated loci names are given (within parentheses) if strong evidences to support such postulations were obtained.
bThe approximate Lr34 position on the 90K map is based on blast hit information on a recent chromosome 7D scaffold build published by Chapman et al.

[38].

Columns “CrK2012”, “StP2012”- “StP2015” indicate GWAS p-values for individual field environments in Crookston and St Paul, MN.

Columns “Lr.COI”, “Lr.SEV”, “Lr.IT” indicate GWAS p-values for BLUE estimated field traits (coefficient of infection, severity and infection type).

Underlined p-values are those that surpass the simpleM Bonferroni correction threshold.

doi:10.1371/journal.pone.0148671.t002
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more genetic experiments are needed to further confirm these postulations, especially for those

that are postulated based primarily on position.

We also designated two potentially novel loci (Table 3) that are associated with different

seedling and field rust traits with p-values surpassing the simpleM threshold (7.72E-5). QTL

Fig 5. Manhattan plots for field (a) and seedling (b) traits. Red line indicates SimpleM bonferroni corrected p-value threshold for significance (7.7x10-5);
Green line indicates p-value of 1x10-3.

doi:10.1371/journal.pone.0148671.g005

Fig 6. Venn diagrams (a) Overlap between QTLs under different field environments. (b) Overlap between field and seedling QTLs.

doi:10.1371/journal.pone.0148671.g006
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Table 3. Most significant (top 10) QTLs and representative SNPs for field and seedling traits.

Trait QTL Marker blast Chr Position p.MLM p.

QGLM

RSQ eff R Sub

pop1

Sub

pop2

Sub

pop3

postulation reference

Race.1 1B_2 IWB13336 NA 1B 85.57 7.84E-
05

1.39E-

06

0.05 2.76 C 78 99 108 Lr26? Kolmer 2003

Race.1 1D_t1 IWB14612 1DS_1885467 1D 45.44 3.85E-
04

2.77E-

05

0.04 2.48 A 77 107 101 Lr42? Liu et al 2013

Race.1 4A_t2 IWB3569 4AL_v2_7176180 4A 144.38 5.59E-
04

1.08E-

05

0.04 2.32 A 10 107 83 Lr28? Bipinraj et al
2011

Race.1 5B_2 IWB9055 NA 5B 49.65 5.08E-

05

1.44E-

06

0.06 2.35 G 76 101 78 QLr. cdl-
5BL?

Kolmer 2015

Race.1 5D_1 IWB53861 NA 5D 203.88 1.17E-
04

2.32E-

05

0.05 -2.58 A 3 16 30 Lr1 Kolmer 2003

Race.1 6A_2 IWB625.2 NA 6A 100.62 2.23E-
04

5.76E-

06

0.05 1.97 G 75 57 87 Lr64? -

Race.1 6B_1 IWB65148 NA 6B 16.76 9.43E-
04

4.82E-

06

0.04 2.51 G 9 114 102 - -

Race.1 6B_3 IWB65914 6BL_4378239 6B 66.36 2.33E-
03

3.06E-
04

0.03 1.83 G 43 110 112 Lr9? Kolmer 2003

Race.1 6B_4 IWB3292 6BL_4278271 6B 122.92 6.02E-

07

1.18E-

07

0.09 -3.43 C 4 14 23 Lr3 Kolmer 2003

Race.1 7B_3 IWA306 7BL_6747122 7B 76.31 2.09E-
04

9.56E-

07

0.05 3.16 G 75 115 115 Lr14? Kolmer 2003

Race.
CA1.2

1B_1 IWB19584 NA 1B 63.91 9.21E-
03

3.24E-
04

0.02 -2.46 G 4 3 20 QLr.cimmyt-
1BS

Rosewarne
2012

Race.
CA1.2

1D_3 IWB35520 1DL_2290849 1D 89.58 3.96E-
04

5.16E-

08

0.04 2.42 A 79 113 94 Lr21?

Race.
CA1.2

2A_3 IWA3151 2AL_6426630 2A 108.46 5.61E-
03

2.97E-

05

0.03 -1.40 T 4 49 104 Lr11.Lr38? Darino 2015

Race.
CA1.2

2B_2 IWB37811 2BS_5186722 2B 93.47 9.08E-
05

8.75E-

08

0.05 1.91 G 73 47 82 Lr13.Lr23.
Lr16?

Oelke &
Kolmer 2005

Race.
CA1.2

4A_2 IWB40915 4AS_v2_6008166 4A 48.52 6.04E-
03

1.13E-
04

0.03 1.95 T 79 116 95 - -

Race.
CA1.2

4A_t2 IWB3569 4AL_V2_7176180 4A 144.38 7.94E-
03

1.86E-
04

0.02 1.57 A 10 107 83 Lr28? Bipinraj et al
2011

Race.
CA1.2

6B_3 IWB65914 6BL_4378239 6B 66.36 5.05E-
04

1.16E-

06

0.04 1.89 G 43 110 112 Lr9? Kolmer 2003

Race.
CA1.2

6B_4 IWB6474 NA 6B 119.73 8.78E-
05

1.53E-

05

0.06 2.27 G 9 110 95 Lr3 Kolmer 2003

Race.
CA1.2

7B_1 IWB39492 7BS_3168118 7B 58.17 4.03E-
03

1.60E-
02

0.03 1.76 A 72 111 113 Lr72? Herrera-
Foessel et al.
2014

Race.
CA1.2

7B_2 IWB68484 7BS_3079273 7B 66.62 1.22E-
04

3.19E-

07

0.05 4.06 T 80 111 126 Lr14? Singh et al.
2009

Race.
Mix

1A_3 IWB48030 1AL_3976804 1A 149.82 3.55E-
03

5.99E-
04

0.03 1.72 G 10 113 103 QLr.umn-
1AL

*

Race.
Mix

1B_1 IWB19584 NA 1B 63.91 3.77E-
04

2.67E-

07

0.05 -3.44 G 4 3 20 QLr.cimmyt-
1BS

Rosewarne
et al 2012

Race.
Mix

1D_1 IWB44021 1DS_1912623 1D 8.71 1.46E-
03

9.51E-

07

0.04 -3.22 T 4 3 17 Lr42? Liu et al 2013

Race.
Mix

2A_1 IWB74529 NA 2A 20.14 2.58E-
04

4.56E-

06

0.05 2.10 C 79 36 121 Lr17? Kolmer 2003

Race.
Mix

3A_t2 IWB34789 3AL_4449581 3A 169.89 1.16E-
03

3.57E-

05

0.04 1.57 G 8 61 105 QLr.fcu-
3AL?

Chu et al. 2009

Race.
Mix

3B_t2 IWB74350 3B_10762316 3B 51.07 6.69E-
04

8.56E-
05

0.04 1.74 A 73 83 85 - -

Race.
Mix

4B_3 IWB72129 4BL_7035179 4B 86.55 2.93E-
03

4.75E-

06

0.03 1.55 G 76 80 103 Lr30? Draz et al 2015

(Continued)
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1A_3 (QLr.umn-1AL) was mapped to position 149.8 cM on chromosome 1AL for both field

BLUE and seedling race mixture traits (Table 3). Chromosome 1AL is not associated with

adult leaf rust resistance [41]. It is also not likely to be Lr59 [52] because Lr59 is located on an

alien introgression that is unlikely to be present in this AM panel. QTL 4A_1 (QLr.umn-4AS),

highly associated with field resistance (both p.MLM and p.QGLM surpassing the simpleM

threshold), was represented by two SNP markers (IWB13323 and IWB59410), located at 37

cM of 4AS (Fig 5 and Table 2). No known QTLs or genes are present on chromosome 4AS that

confer resistance to leaf rust.

Table 3. (Continued)

Trait QTL Marker blast Chr Position p.MLM p.

QGLM

RSQ eff R Sub

pop1

Sub

pop2

Sub

pop3

postulation reference

Race.
Mix

4D_1 IWB17540 4DS_2288313 4D 70.59 2.31E-
04

1.78E-

07

0.05 -3.35 T 6 3 19 ?

Race.
Mix

6A_3 IWA7764 6AL_5772638 6A 119.64 2.28E-
04

1.13E-

06

0.06 2.12 C 74 60 83 - -

Race.
Mix

6B_3 IWB11702 6BL_4398818 6B 66.36 7.02E-
04

5.60E-

05

0.04 1.86 T 43 111 125 Lr9? Kolmer 2003

Field.
COI

1A_3 IWB48030 1AL_3976804 1A 149.82 1.11E-
04

7.23E-

06

0.05 12.98 G 10 113 103 QLr.umn-
1AL

*

Field.
COI

2A_3 IWA3151 2AL_6426630 2A 108.46 4.38E-
04

1.17E-

06

0.04 -10.14 T 4 49 104 Lr11? Darino et al
2015

Field.
COI

2B_2 IWB22236 2BS_5202128 2B 88.44 4.52E-
04

6.65E-

06

0.04 10.02 T 13 79 104 Lr13.Lr23.
Lr16?

Oelke &
Kolmer 2005

Field.
COI

3A_t2 IWB34789 3AL_4449581 3A 169.89 4.31E-
04

8.19E-

06

0.04 9.48 G 8 61 105 QLr.fcu-
3AL?

Chu et al. 2009

Field.
COI

4A_1 IWB59410 4AS_v2_5925149 4A 37.05 4.17E-

05

7.73E-

06

0.05 11.23 T 7 74 99 QLr.umn-
4AS

*

Field.
COI

4A_3 IWB7998 NA 4A 51.7 6.67E-
04

1.11E-
04

0.04 -9.63 T 38 38 16 - -

Field.
COI

4B_3 IWB7278 4BL_6967384 4B 78.96 1.56E-
04

6.47E-

06

0.04 13.46 T 81 108 103 QLr.cimmyt-
4BL?

William et al
2006

Field.
COI

5B_2 IWB39735 5BL_10794137 5B 49.01 1.69E-
04

6.69E-

06

0.04 20.17 C 80 115 124 QLr. cdl-
5BL?

Kolmer 2015

Field.
COI

6A_t1 IWB40242 NA 6A 48.09 4.97E-
04

3.26E-
04

0.04 -11.69 T 4 10 61 - -

Field.
COI

7B_4 IWB64015 7BL_6699942 7B 166.99 5.03E-
04

9.98E-
05

0.04 10.87 T 75 107 81 Lr68 Herrera-
Foessel et al
2012

Column "Marker", underlining indicates SNPs detected by or significant in stepwise regression models.

Columns "p.MLM" and "p.QGLM" reflect p-values from the MLM and QGLM methods, underlining indicates p-values passing the simpleM threshold.

Column R indicates resistance (or favorable) allele.

Columns “RSQ” and “eff” indicate marker R2 and effects based on MLM models.

Columns “Sub pop1”, “Sub pop2” and “Sub pop3” indicate number of favorable allele within each sub-populations. Column "postulation" are postulated

genes or QTLs based on position, infection type, and donor parents or pedigree information. Some of the loci names were adopted from Li et al [41]. The

postulated gene or QTLs followed by questions marks "?" are primarily based on position and infection type (pedigree or donor line information was

unobtainable).

Column "reference" shows literature reports that support our loci postulation. Dash "-" signs indicate that the corresponding p-values are below the

simpleM threshold and loci identity were not postulated. Asterisks "*" indicate potentially novel loci identified through this study.

doi:10.1371/journal.pone.0148671.t003
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Trait Genetic Architecture Revealed by Most Significant QTLs and by
Loci Selected Using Stepwise Regression Models

The top 10 QTLs for field resistance were all detected in at least three field environments (p.

MLM< 0.001), or all of the five environments (CrK12, StP12, StP13, StP14, StP15) when using

less stringent p.MLM cutoffs of 0.02 (S1 Table and Table 2). Our results also show that QTLs

associated with the seedling race mixture trait had a higher overlap with QTLs detected in the

field (Fig 6, Table 2), consistent with the finding that the two traits are moderately correlated

(R> 0.5, Table 1). QTL 1B_1 (likely QLr.cimmyt-1BS, Table 3) is highly effective (p.

MLM = 3.77E-4, p.QGLM = 2.67E-7) against seedling race mixtures, but is not among the

most significant ones for BLUE estimated coefficient of infection (COI) trait (Field.COI),

despite a moderately significant p-value (p.MLM = 1.07E-3) (Table 2). Interestingly, it is the

most significant QTL for field response type (Field.IT) trait (p.MLM = 4.78E-5, Table 2). This

observation corresponds with the field response type values (Field.IT) having the highest corre-

lation with seedling IT values against race mixtures (Table 1), likely reflecting the biology that

both field response type (Field.IT) and seedling infection type are partially measured by pustule

sizes of leaf rust fungus uredinia spores. These results suggest that although field response type

(Field.IT) and field severity (Field.SEV) or COI (Field.COI) have high correlations between

each other (r> = 0.88), the exact ranks and significance levels of effective loci may differ. Over-

all, the high number of common loci shared between seedling and field traits suggest that race

mixtures can be used to screen for field resistance against the same race mixtures at the seedling

stage.

The main contributor genes or loci for seedling resistance included QTLs 6B_3 (likely Lr9),

6B_4 (Lr3), 5D_1 (Lr1), and 2B_2 (likely one of Lr13, Lr16 or Lr23) (Table 3). The 10 most sig-

nificant seedling QTLs (Table 3) explained a total of 29.4%, 24.3% and 34.3% phenotypic varia-

tions for seedling race 1, seedling race CA1.2, and seedling race mixtures, respectively, after

subtracting variance due to population structure. The main contributor loci or genes for field

resistance include 4A_1 (QLr.umn-4AS), 1A_3 (QLr.umn-1AL), 2B_2 (likely one of Lr13, Lr16

or Lr23) and 5B_2 (likely QLr.cdl-5BL) [49] and 7B_4 (likely Lr68). We plotted the cumulative

additive effects of the 10 most significant QTLs (Table 3) in each line of the TCAP leaf rust AM

population with their observed phenotype in the field (Fig 7). The selected 10 QTLs for field

resistance (measured as COI) (Table 3) explained over 26% of the total phenotypic variation

(excluding the amount of contribution derived from population structure). The 10 most signif-

icant for field traits (severity and response type) explained 26% and 30% of the phenotypic var-

iations (S4 Fig). Three of the 10 field QTLs (QLr.umn-1AL, QLr.umn-4AS and Q.Lr.cimmyt-

4BL) together explained 12% of phenotypic variation (after removing population structure

effects). QLr.umn-4AS is the only QTL whose p.MLM and p.QGLM values both pass the sim-

pleM threshold for field resistance. A Haploview [29] of this region is provided (S5 Fig).

BLAST search using flanking loci sequence information revealed a possible candidate gene,

belonging to the family of ras proteins. One family member of this family was previously iden-

tified to be involved in resistance against wheat stripe rust pathogen [53].

We utilized stepwise regression [13, 54] to identify the minimal number of markers that are

independently associated with leaf rust resistance for each trait. Our results indicate that, over-

all, the most significant markers are often included by stepwise regression to account for phe-

notypic variation (Table 3). However, there are cases where markers with less significance

levels were included. For example, the Lr34marker (csLv34, Table 2) was associated with the

leaf rust severity trait (p = 2.03E-3), but its rank of significance is only at 15th (among all 46

loci). However, it was included as one of the seven markers (IWB19584.1B_1, IWA3151.2A_3,

IWA6877.3A_1, IWB59410.4A_1, IWB39735.5B_2, IWB40242.6A_t1, cslv34.7D_1) to
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account for a significant portion of variation (1.5% out of a total of 25%) in the multiple regres-

sion model for leaf severity (Field.SEV), but not for leaf response type (Field.IT). These results

suggest that leaf rust severity and response types are probably controlled by different genetic

loci, and is consistent with the role of Lr34 as a gene mostly effective for APR (as response type

likely share more common loci with seedling resistance).

Overall, the leaf rust phenotype for field and seedling plants both suggest the presence of

resistance alleles in a large percentage of lines within this AM population (Fig 1). The number

of favorable alleles and disease resistance are significantly correlated (p<0.05). Our GWAS

results confirmed the presence of multiple favorable alleles in a high percentage of individuals

within the AM population. We identified a subset of cultivars or lines that possess favorable

alleles for 6 of the 7 QTLs obtained through stepwise regression (see above paragraph for

regression model components) for field resistance measured by coefficient of infection (COI).

As expected, their field evaluation often showed “trace” resistance (Field.Sev< 5, S4 Table).

Adult plant leaf rust resistance breeding could potentially be rapidly improved by selecting

lines with complimentary resistance genes or QTLs as parents.

Fig 7. Scatterplot of phenotypic values versus genotypic fitted values usingmarkers representing top ten QTLs for field resistance.

doi:10.1371/journal.pone.0148671.g007
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Discussion

Population Structure and Its Relationship with Leaf Rust Disease Levels
and GWAS Results

For field data, the observation that sub-population 1 (Thatcher NILs) was associated with

higher disease (Fig 4) was not unexpected. Thatcher is susceptible to leaf rust and the Thatcher

near isogenic lines carry single resistance genes that are mostly ineffective against multiple race

mixtures as tested in the field. Sub-pop 2 (mostly North American lines) were more resistant

than the other two sub-populations. It remains to be explored whether this is partially due to

the better adaptation of sub-pop 2 in Northern environments (such as day length), or more

likely, because the lines have been selected for leaf rust resistance with the races that are com-

mon in North America [55]. The South American lines were selected for inclusion in the panel

based on their resistance to predominant races in South America. Sub-population 3 (mostly

CIMMYT and South American lines, but some North American lines as well, including lines

fromMN, North Star Genetics, and Limagrain) has the largest range of phenotypic variation,

reflecting its more diverse geographical origins and genetic compositions (lower Fst values

compared to the other two sub-populations).

Collectively, both origin of the lines and structure analysis based on molecular markers sug-

gest that the true population structures were well captured in our GWAS analysis. It is worth

noting that some of the alleles were (nearly) fixed in sub-population 1, as this population con-

sists of almost entirely Thatcher near isogenic lines, which means that they share a significant

portion of exactly the same genome. Thus, the presence of favorable marker alleles (particularly

in this sub-population) might not indicate the presence of resistant genes. Nonetheless, QTL

5D_1 (Lr1) and QTL 6B_4 (Lr3) alleles were detected only in a few Thatcher NILs, and our evi-

dence suggests that these are SNPs that are in high LD (or may even be diagnostic) with the

gene. We also explored the effects of removing sub-population 1 on GWAS analysis results,

and found that the most significant loci were mostly not affected. For example, QTL 5D_1

(Lr1) and 6B_4 (Lr3), 4A_1 (QLr.umn-4AS), 1A_3 (QLr.umn-1AL) were again detected

(results not shown), adding further support that these are true loci conferring resistance to the

leaf rust disease.

Comparisons between Models

The difference between the two models (MLM QK and QGLM) used in this study lies in

whether Kinship was included into the model analysis. As expected, the p-values derived from

QGLMmodel are generally more significant compared to MLM (QK) model (Table 3), as no

kinship relatedness was factored into the model analysis. We further noticed that the p-value

differences between MLM (QK) and QGLMmodels are more pronounced for seedling traits

than for field traits (Table 3). It was known that for this panel, many related cultivars or lines

possess certain seedling leaf rust resistance genes. For example, the NDSU cultivars Faller and

Glenn and the MN cultivar RB07 all possess Lr21 [56]. Thus, kinship itself could be correlated

with the presence or absence of certain seedling leaf rust genes. Correcting for kinship within

each sub-population could result in lower statistical power to detect those true QTLs or genes

under these circumstances. The QQ plot (S3 Fig) shows that for some traits such as the seedling

disease levels against race mixtures, the upper corner dots (higher significance level p-values)

curved downwards instead of upwards, possibly indicating that there might be over-correction

in the MLM (QK) model analysis. It might make more sense to use p-values derived from

QGLM analysis to assist QTL or gene detection under these circumstances. Overall, the QGLM

models and MLM (QK) models reveal a similar set of markers. As an exploratory analysis, the
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G-model revealed QTLs that are often at the same positions of the MLM or QGLMmodels.

The two putatively novel loci (QLr.umn-1AL, QLr.umn-4AS) were repeatedly detected using

either one of the models or the G-model, suggesting the robustness of these associations and

likelihood that these associations represent relevant Lr resistance loci.

Comparison of Seedling and Field Resistance Genes or QTLs

Although seedling resistance QTLs or genes against race 1 are largely non-overlapping with

field resistance loci (Fig 6), we found a high percentage of common loci for field and seedling

resistant against race CA1.2 and race mixtures (68 and 80 percent for race CA1.2 and race mix-

tures respectively) (Fig 6) with consistent marker effects. These results suggest that the seedling

resistance genes we detected also contribute to field resistance.

This study also detected some resistance effects in the same regions as the known race non-

specific resistance genes (Lr34, and possibly Lr68) that are effective in the adult plant stage.

Gene Lr34 encodes an ABC transporter and is effective against multiple pathogen species

including leaf rust (Puccinia triticina), stripe rust (P. striiformis) and powdery mildew (Blu-

meria graminis) [57]. Our results are consistent with the previous discovery that Lr34 is more

effective in the adult plant stage rather than the seedling stage.

One of the major QTLs for field resistance (QLr.umn-4AS) was detected in every field envi-

ronment but not at the seedling stage. Similarly, a few other loci (such as 7B_4, 4B_3 and 5B_2,

possibly representing Lr68, QLr.cimmyt-4BL, QLr.cdl-5BL) were also detected for APR but not

for seedling resistance. The presence of multiple adult plant APR only loci suggest that field

and seedling resistance differ considerably, despite a moderate correlation and the presence of

multiple common loci (Table 1 and Fig 5B) between the field and seedling resistance.

Potential Applications in Future Research

The wheat 90K SNP array is among the highest density genotyping platforms available for

wheat researchers [5] and has a much improved coverage of the genome than the 9K SNP

array [4]. Various research projects have been published using this genotyping platform [58–

61]. The availability of high density consensus maps [5] coupled with the rapid progress in

genome-wide sequencing efforts [38, 62] will greatly enhance our ability to dissect important

agronomic traits such as leaf rust resistance.

The QTLs or genes identified or validated in this study were associated with sequence based

markers which could be more efficiently anchored to reference genomes [62] than traditional

markers such as simple sequence repeats (SSRs). Assays such as KASP [63, 64] can be devel-

oped based on closely linked SNP markers (such as QLr.umn-4AS, 5D_1.Lr1, 7B_4.Lr3 loci) to

provide more high-throughput genotyping and marker assisted breeding. Contextual genome

sequences around target SNPs might provide direct insights into the genetic composition of

trait of interest. Accessions with a high percentage of leaf rust resistance alleles could serve as

parental breeding lines to enable more efficient breeding, especially for adult plant resistance.

Conclusions

We conducted a genome-wide association study on a population consisting of mostly breeding

lines with known seedling or adult plant resistance. This study is among the first GWAS studies

that utilizes the wheat iSelect 90K SNP array to explore leaf rust resistance QTLs. A large per-

centage of lines were associated with multiple resistance alleles or QTLs for leaf rust resistance.

The 10 most significant QTLs accounted for 24–34% of phenotypic variation for each trait ana-

lyzed. Compared to single races, leaf rust reaction to race mixtures in the seedling test best
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resembled field resistance, suggesting that field resistance can be partially screened in the seed-

ling stage using race mixtures. Identification of novel QTLs (such as QLr.umn-1AL, QLr.umn-

4AS) with field resistance against leaf rust could enhance our understanding of leaf rust resis-

tance and provide new resources of leaf rust resistance. Identification of a subset of lines with a

high percentage of favorable alleles (based on SNP marker information) may serve as valuable

parental materials for further resistance breeding.
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