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Abstract

Objective—To identify genetic variants associated with sepsis (early and late-onset) using a 

genome wide association (GWA) analysis in a cohort of extremely premature infants.

Study Design—Previously generated GWA data from the Neonatal Research Network’s 

anonymized genomic database biorepository of extremely premature infants were used for this 

study. Sepsis was defined as culture-positive early-onset or late-onset sepsis or culture-proven 

meningitis. Genomic and whole genome amplified DNA was genotyped for 1.2 million single 

nucleotide polymorphisms (SNPs); 91% of SNPs were successfully genotyped. We imputed 7.2 

million additional SNPs. P values and false discovery rates were calculated from multivariate 

logistic regression analysis adjusting for gender, gestational age and ancestry. Target statistical 

value was p<10−5. Secondary analyses assessed associations of SNPs with pathogen type. Pathway 

analyses were also run on primary and secondary end points.

Results—Data from 757 extremely premature infants were included: 351 infants with sepsis and 

406 infants without sepsis. No SNPs reached genome-wide significance levels (5×10−8); two SNPs 

in proximity to FOXC2 and FOXL1 genes achieved target levels of significance. In secondary 

analyses, SNPs for ELMO1, IRAK2 (Gram positive sepsis), RALA, IMMP2L (Gram negative 

sepsis) and PIEZO2 (fungal sepsis) met target significance levels. Pathways associated with sepsis 

and Gram negative sepsis included gap junctions, fibroblast growth factor receptors, regulators of 

cell division and Interleukin-1 associated receptor kinase 2 (p values<0.001 and FDR<20%).

Conclusions—No SNPs met genome-wide significance in this cohort of ELBW infants; 

however, areas of potential association and pathways meriting further study were identified.
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BACKGROUND

Sepsis is a potentially life threatening illness, affecting 10–20% of neonates worldwide, with 

a higher incidence in preterm and very low birth weight infants.12 Up to one-third of 

extremely premature infants develop sepsis, which carries a high mortality and morbidity.1–3

Susceptibility to neonatal sepsis is mediated by complex interactions between environmental 

and maternal factors and the neonatal immune response, which may be modified by 

differences in genetic composition or function.3–5 Twin studies and ethnic variations suggest 

that host genetic factors may contribute to susceptibility to sepsis.4–8 Genetic studies of 
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sepsis in newborns have previously used candidate gene approaches, with varied 

findings. 9–14

While genome-wide association studies (GWAS) have been performed in adult sepsis, no 

GWAS has reported genetic variation in risk of sepsis in extremely preterm infants.15–17 An 

agnostic GWAS approach rather than a study on known variant candidate genes has potential 

to identify gene variants across many genes (1 million or more variants), including disease 

associations with previously unknown genes. In addition, investigators do not possess 

sufficient knowledge of the function of all genes to predict candidate genes well. The high 

rate of sepsis in extremely low birth weight (ELBW) neonates establishes them as a unique 

population for unbiased study of genetic associations with sepsis.4

METHODS

Study population and data source

We performed a secondary analysis utilizing an anonymized DNA biorepository from a prior 

study of cytokines and neurodevelopmental outcomes in ELBW infants conducted by the 

Eunice Kennedy Shriver NICHD Neonatal Research Network (NRN).1819 Enrolled infants 

were <1000 grams birth weight and <72 hours old at enrollment; infants with major 

congenital anomalies were excluded. The NRN’s anonymized DNA database and 

biorepository was previously approved by all site institutional review boards (IRBs) for 

candidate gene analyses and genome wide analyses of diseases associated with extreme 

prematurity, including sepsis.20 We received a waiver of IRB authorization for use of this 

anonymized data set. In this multi-racial and multi-ethnic study, blood spot samples were 

collected on more than 800 ELBW infants and analyzed using the Illumina Omni-1 Quad 

array.20

Primary Outcome

Our primary outcome was the identification of single nucleotide polymorphisms (SNPs) 

significantly associated with the occurrence of all sepsis in extremely preterm infants.

Secondary Outcomes

Given that EOS and LOS have distinct etiologies and likely differences in mechanisms 

underpinning their pathogenesis, we planned a priori to identify SNPs significantly 

associated with late-onset sepsis (LOS) alone.321 Due to the relatively low incidence of 

early-onset sepsis (EOS), it was not feasible to examine SNPs associated with EOS alone. 

We also identified SNPs associated with Gram positive, Gram negative, and fungal 

pathogens. While infants who experienced multiple episodes of sepsis with different 

bacterial pathogens were included only once in the primary analysis, they were included in 

each pathogen category that they fit in secondary analyses. Finally, we also reviewed SNPs 

tested in previous candidate gene association studies in neonatal sepsis.

Study definitions

Cases consisted of infants with one or more episodes of culture-proven sepsis (EOS or LOS) 

or meningitis, treated with antibiotics for ≥ 5 days, or, who died before treatment was 
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completed.12 Controls were infants not classified as cases. Infants with positive blood or 

CSF cultures were defined as having culture proven sepsis. EOS comprised infants with 

culture proven sepsis in the first 72 hours of life, while LOS comprised cases beyond that 

timeframe. All subjects included in the study were followed through the duration of their 

hospital course for occurrence of sepsis.

Sample source and storage

Our study utilized DNA data obtained from samples originally collected as part of a 

prospective multicenter cohort study of cytokines in premature infants (the Cytokine Study, 

performed in 17 centers of the National Institute of Child Health and Human Development 

Neonatal Research Network).18 In the parent study, whole blood spots were obtained on 

filter paper within 4 hours after birth and at serial timepoints (days 3, 7, 14, 21). These filter 

paper blood spots were frozen as soon as possible. For our study and other secondary 

genomic analyses performed utilizing this dataset, DNA was extracted from filter paper 

blood spots for the earliest age available for each subject, amplified and analyzed using the 

Illumina Omni-1 Quad array, as described below. Additional details regarding sample 

methods are available in prior studies utilizing this sample set.1820

Genomic analysis

Genomic and whole genome amplified DNA were genotyped on the Human-OMNI1-

Quad_v1-0_B BeadChip platform (Illumina, San Diego, California). Initially, 1.2 million 

SNPs were tested, of which over 900,000 (91%) were successfully genotyped. We employed 

standard quality control thresholds, and included samples and SNPs with > 97% call rate, 

while excluding minor allele frequencies < 1%. Additionally, 7.2 million SNPs were 

imputed against the HapMap 3 cosmopolitan reference panel with Impute2.20 All SNP-gene 

assignments were made based on the UCSC gene tracks within the GRCh37/hg19 genome 

build.2223 Genotypes, and a subset of subject information inclusive of key characteristic and 

outcome phenotype data have been stored, with no identifying links, in the National Human 

Genome Research Institute Database of Genotypes and Phenotypes (dbGaP Study 

Accession: phs000353.v1.p1).1920.

Data Analysis

Following standard quality checks, single and multiple logistic regression models were 

developed for the primary and secondary analyses. Covariates included in the multiple 

regression model included gestational age, small for gestational age (SGA) status, ancestry, 

surgery, C-section, and the first four eigenvalues for ancestry (described below). In previous 

analyses of this dataset, these covariates were determined to be the most important 

predictors of sepsis.8 To minimize false discoveries, we established a conservative 

significance level of 10−5 as the ‘target’ for reporting, while a p value of 5×10−8 is regarded 

as a “genome-wide” association. The latter value is widely accepted to be the threshold in 

genome wide association studies that would adequately adjust for the multiple comparisons 

involved, and is estimated to correspond to a p value of 0.05 in a classical epidemiological 

study testing a single hypothesis.22–25
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We used this two-tiered approach in order to screen for genes of interest, which may be 

missed if only the more stringent threshold were applied. When SNPs met threshold 

significance, we did not limit reporting based on FDR thresholds, in order to better identify 

any genes of putative biologic importance that should be examined closely in future 

validation studies. 25 P values were calculated per SNP for a one degree of freedom additive 

model. For the secondary analysis of previously identified candidate SNPs, we reported p 

values <0.05 as trends of interest.

Correction for population stratification

Spurious associations may be obtained, or true associations overlooked, if allele frequencies 

differ between subpopulations and are represented unequally between cases and controls due 

to systematic ancestry differences. 26–28 The first four eigenvalues derived from linkage 

disequilibrium pruned for genotyped SNPs were included as covariables in primary and 

secondary analyses, to adjust for individual ancestry (eigenvalues generated using GWAS-

Tools). 20

Exploratory pathway analysis

We assigned genes to biological pathways using the Reactome database 

(www.reactome.org), using the adaptive rank truncated product (ARTP) method (pathway 

tools package ARTP).29–31 SNPs were notated to genes based on their location within 50 kb 

of the gene models defined in Refseq, and p-values assigned based on the results of the 

GWA analysis. A summary of the association between each gene and sepsis was generated, 

based on the multiple-testing adjusted P-value associated with the most significant SNP 

within that gene. The ARTP method was used to combine gene-level P-values into a test 

statistic for the pathway association with sepsis.31 Given the exploratory nature of this 

analysis, we designated pathways with p values <0.005 as the cut-off for reporting, and 

reported false discovery rates (FDR) of less than 20% to facilitate assessment of the strength 

of the evidence.25

RESULTS

Data from 751 ELBW infants passed quality control checks and were included in the 

analysis. This cohort included 345 infants with sepsis (Supplementary Table 1). Most infants 

with sepsis had experienced LOS (320 infants, 393 episodes). Ninety-nine infants 

experienced more than one episode of sepsis. Gram positive pathogens were present in more 

than three-fourths of the LOS events (252 episodes), while Gram negative and fungal sepsis 

occurred with lower frequency (72 and 69 episodes respectively, Supplementary Table 1). 

Infants could be positive for more than one organism per sepsis event. Of the infants with 

sepsis, 42 were diagnosed with culture proven meningitis. Eighty-one infants in the overall 

cohort developed necrotizing enterocolitis (NEC), including 40 cases of surgical NEC. NEC 

events occurred more frequently in infants with sepsis compared to uninfected infants 

(14.1% versus 8.7%, p = 0.02, Chi square test); however the dataset lacked information on 

timing of NEC in relation to sepsis event.
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Primary Outcome

In the primary analysis of overall sepsis, no SNPs reached a priori genome-wide significance 

levels (5×10−8); however, several achieved p values of 10−5 (Table 1). While these SNPs 

were generally noted to be in intergenic regions, several were located on chromosome 16, in 

proximity to genes for FOXC2 (forkhead box protein C2) and FOXL1 (forkhead box protein 

L1) (Supplementary Figure 1). The analysis limited to LOS demonstrated similar results.

Secondary Outcomes

Examining Gram positive LOS only, SNPs that achieved target level of associations (<10−5) 

included introns for ELMO1 (engulfment and cell motility 1) on chromosome 7, and introns 

for VIL1 (villin 1, chromosome 2) (Table 2, Supplementary Figures 2a–b). For Gram 

negative LOS, SNPs in introns for RALA (Ras-like protein A) and IMMP2L (inner 

mitochondrial membrane peptidase-2 like), located on chromosome 7, and several SNPs in 

the intergenic area of chromosome 2 achieved the highest levels of association (Table 3). In 

the analysis of fungal LOS, over-represented SNPs included introns for PIEZO2 (piezo-type 

mechanosensitive ion channel component 2, chromosome 18), and several SNPs in the 

intergenic area of chromosome 10 (Table 4). In the analysis of previously tested candidate 

gene SNPs, we identified 62 SNPs from previous gene association studies of neonatal sepsis. 

Several SNPs demonstrated p values <0.05, but none reached target or genome wide levels 

of significance (Supplementary Table 2).

Findings from pathway analyses

We tested 1308 Reactome pathways. For Gram negative sepsis, 30 pathways had a p value 

<0.005 and FDR<20% (Supplementary Table 3). Pathways identified involved gap junction 

genes, fibroblast growth factor receptor and insulin receptor signaling. No pathways for 

Gram positive sepsis or fungal sepsis met FDR thresholds for reporting.

DISCUSSION

We report the first GWA study of sepsis in ELBW infants. In this unique cohort, we 

identified several SNPs of potential association, although none met genome-wide 

significance. The results contain potential clues to newborn genetic susceptibility to sepsis, 

with several SNPs identified related to innate immunity. Over-represented SNPs were found 

in FOXC2, FOXL1 (all sepsis), ELMO1, VIL1 (Gram positive sepsis), RALA, IMMP2L 

(Gram negative sepsis) and PIEZO2 (fungal sepsis).

Sepsis is a major co-morbidity in the ELBW population, with up to 36% of infants 

experiencing at least one episode during their hospital stay.13233 Immature innate and 

adaptive immune defenses, and environmental factors, contribute to a complex multifactorial 

etiology.18 Recent evidence also suggests genetic susceptibility to infection in preterm 

neonates. 6–8

Epidemiologic and twin studies indicate a heritable component in certain infections and their 

complications in adult populations.3435 In neonates, a twin study suggested that genetic risk 

factors were responsible for 49% of variability in sepsis risk;7 however this was not 
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confirmed in a subsequent study of multiple births.8 Several candidate gene studies 

examined the association of neonatal sepsis with biologically plausible SNPs in cytokines, 

cytokine receptors, pathogen recognition receptors, cluster differentiation molecules, 

endothelial and hemostasis markers.10–1336–38 These studies demonstrated varying results, 

described in a recent systematic review.14

We performed this study to explore genetic associations in neonatal sepsis with an unbiased 

genome wide approach. The NRN’s anonymized genomic database provides a sizable cohort 

of ELBW infants with genotype and phenotype data. In the analysis of all sepsis, we found 

over-represented SNPs in proximity to genes encoding forkhead box protein family 

transcription factors FOXC2 and FOXL1. These genes are involved in intestinal mucosal 

structure and function, including development of Peyer’s patches; alterations could plausibly 

contribute to risk of LOS via microbial translocation, and NEC.39–42

There are likely differences in diagnosis, and in the interaction between the environment and 

genome in EOS as compared to LOS.21 To assess LOS as a distinct disease entity, we 

performed a secondary analysis to identify SNPs associated with LOS alone. As LOS 

comprised the majority of sepsis cases, the findings of this analysis were very similar to 

those previously mentioned in all sepsis. We also examined SNPs associated with known 

specific pathogen categories in LOS. In the analysis of Gram positive LOS, over-represented 

SNPs were found in engulfment and cell motility 1 (ELMO1) (chromosome 7), which 

promotes phagocytosis and cell migration (Table 2).43–45

Our exploratory analysis of SNPs that have been previously tested in candidate gene 

association studies yielded trends of interest in gene variants located in TNF, IL-6, IL-10RA, 

TLR-2 and TLR-4 (Supplementary Table 2). While none reached target levels of 

significance in our study, these trends warrant further exploration in replication cohorts.

Traditional GWAS and candidate gene analyses examine significance at the level of 

individual SNPs and genes. This approach risks missing modest but more meaningful 

changes in multiple genes involved in a biological pathway.46 In contrast, a pathway analysis 

approach uncovers enrichment of ‘significant’ SNPs in groups of related genes.2930 The 

strongest pathway associations were noted in Gram negative sepsis, where pathways 

involving regulation of gap junctions and connexin function had low FDR estimates 

(Supplementary Table 3). Connexin proteins provide the framework for gap junction 

hemichannels, which play an important role in migration and intracellular signaling in 

immune cells.47 Downregulation of gap junction channels results from inflammation and 

infection.48–51 Several pathways regulating fibroblast growth factor receptors were also 

significantly enriched (Supplementary Table 3), and are implicated in attachment and 

replication of certain pathogens.52–55 Pathways related to gap junction channels and 

fibroblast growth factor receptors may play important roles in mediating respiratory and gut 

mucosal integrity.505155 On analyzing expression quantitative trait loci (eQTL), ELMO1 

levels were noted to be regulated mostly in the gastrointestinal tract, in addition to 

vasculature. This finding preliminarily suggests a role for alteration in gastrointestinal 

ELMO1 expression in sepsis. Lastly, IRAK-2, a known component of the classical pro-
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inflammatory signaling pathway activated by infection, was also identified as enriched in 

patients that developed Gram positive sepsis.57

Our moderately powered study did not identify SNPs that achieved significance at the 

genome-wide level, indicating that genetic susceptibility to sepsis may be mediated by more 

than just one or a few SNPs. We did find several over-expressed SNPs at our targeted 

‘discovery’ association levels (10−6 to 10−7) in genes related to cell migration, phagocytosis 

and cytokine function. We also identified pathways related to innate immune receptors, 

maintenance of mucosal homeostasis and barrier defense mechanisms, and cellular 

signaling, that were enriched in patients who developed sepsis. Adaptive immunity is poorly 

developed in extremely premature infants; the immune response to infectious insults is 

therefore reliant on innate immune pathways.58 We speculate that the identified variants, and 

pathways that they are involved in, may regulate key aspects of the premature neonate’s 

innate immune response, leading to alterations in susceptibility to sepsis. Alteration of gut 

and respiratory epithelial integrity mediated by these pathways may be an important 

mechanism of increased sepsis and NEC risk.

The relatively modest size of our cohort imposes limitations on the statistical power of this 

GWAS. While adult GWA studies have been larger, this is the largest ELBW neonatal 

population with complete genotyping and sepsis-specific phenotype data available. Our 

study provides novel insights into potential heritable factors for sepsis predilection in this 

extremely vulnerable population. The smaller sample sizes of subgroups limited conclusions 

that could be drawn from subgroup analyses, and also restricted our ability to perform 

analyses of specific phenotypic subgroups such as meningitis without bacteremia. We 

limited our analysis to a stringent definition of sepsis (culture proven infection that was 

treated with a prolonged course of antibiotics). Other limitations include the multi-ethnic 

population (fairly representative of the US preterm birth population). To address this, we 

used eigenvalues to represent ancestry in the analysis, which allowed more complete 

utilization of the dataset; but precluded any inferences related to specific racial or ethnic 

subgroups. This dataset contained 70 identical twins, with separate clinical data on each; 

SNPs were run on the first sample in an identical twin set (with blinding to clinical 

phenotype), and SNP results were ascribed to both twins. As we used anonymized clinical 

data collected in a general database, we possessed limited information on the temporality of 

comorbidities in relation to the sepsis event. As a result, NEC and other co-morbidities could 

not be reliably accounted for as covariates in the analyses.

We provide data on the role of genetic variants in predisposition to sepsis in extremely 

premature neonates. While no genes achieved genome-wide significance, several SNPs in 

genes and pathways relevant to innate immunity were identified with our screening approach 

using ‘target’ levels of significance. Additional pathway analyses and gene expression 

profiling studies could help better understand interactions and downstream effects of these 

genetic variations in neonatal sepsis. It is essential to ascertain whether these SNPs and 

pathways related to them, continue to demonstrate an association with sepsis in additional 

cohorts of ELBW infants.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is known about this topic

• Sepsis is a major co-morbidity in extremely low birth weight infants.

• Preterm infants may have genetic susceptibility to infection.

What this study adds

• In a a genome wide association study in extremely low birth weight infants 

with sepsis, we identified several over-represented single nucleotide 

polymorphisms (SNPs) related to innate immunity, although none met 

genome-wide significance.

• Alteration of gut and respiratory epithelial integrity mediated by these SNPs 

and related pathways may be an important mechanism of increased sepsis 

risk.
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Table 1

SNPs with highest association with all sepsis*

Chr SNP Location** P value Gene

16 rs13380717 86904135 1.08E-07 Intergenic

16 rs9933616 86903194 3.64E-07 Intergenic

16 rs59876150 86918734 6.80E-07 Intergenic

16 rs34528289 86907297 6.95E-07 Intergenic

4 rs2412930 59588228 1.16E-06 Intergenic

4 rs6837629 59583956 1.49E-06 Intergenic

6 rs9456883 1.64E+08 1.63E-06 Intergenic

2 rs41461846 2.19E+08 1.93E-06 Intergenic

2 chr2:219344165 2.19E+08 1.99E-06 Intergenic

2 rs6717433 2.19E+08 2.04E-06 Intergenic

*
Top ten SNPs for each analysis listed; covariates in analysis: gestational age, SGA, eigenvalues for ancestry, surgery, and Cesarean section; infants 

who died before 72 hours excluded from controls

**
Location in Base pairs from p telomere

Arch Dis Child Fetal Neonatal Ed. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Srinivasan et al. Page 16

Ta
b

le
 2

SN
Ps

 w
ith

 h
ig

he
st

 a
ss

oc
ia

tio
n 

w
ith

 G
ra

m
 p

os
iti

ve
 L

O
S*

C
hr

SN
P

L
oc

at
io

n
P

 v
al

ue
G

en
e

G
en

e 
fu

nc
tio

n

7
rs

64
62

72
8

37
07

13
52

8.
42

E
-0

7
In

tr
on

 E
L

M
O

1
E

nc
od

es
 c

el
l m

ot
ili

ty
 a

nd
 e

ng
ul

fm
en

t p
ro

te
in

. I
nt

er
ac

ts
 w

ith
 c

yt
ok

in
es

is
 p

ro
te

in
s 

to
 p

ro
m

ot
e 

ph
ag

oc
yt

os
is

, c
el

l m
ig

ra
tio

n.
43

44
 

A
ni

m
al

 s
tu

di
es

 o
f 

G
ra

m
 n

eg
at

iv
e 

se
ps

is
: b

ac
te

ri
al

 in
te

rn
al

iz
at

io
n,

 p
ha

go
cy

to
si

s 
m

ed
ia

te
d 

vi
a 

E
L

M
O

1/
D

oc
k1

80
 p

at
hw

ay
, w

hi
ch

 
tr

ig
ge

rs
 a

ct
iv

at
io

n 
of

 R
ac

1,
 c

au
si

ng
 m

em
br

an
e 

in
va

gi
na

tio
n 

an
d 

ps
eu

do
po

d 
fo

rm
at

io
n.

7
rs

13
22

77
35

37
07

34
37

8.
83

E
-0

7
In

tr
on

 E
L

M
O

1
Se

e 
ab

ov
e

16
rs

13
38

07
17

86
90

41
35

9.
37

E
-0

7
In

te
rg

en
ic

3
rs

38
44

28
0

10
21

22
58

1.
24

E
-0

6
In

tr
on

 I
R

A
K

2
E

nc
od

es
 I

nt
er

le
uk

in
-1

 r
ec

ep
to

r 
as

so
ci

at
ed

-k
in

as
e 

2.
 U

po
n 

st
im

ul
at

io
n,

 th
is

 k
in

as
e 

as
so

ci
at

es
 w

ith
 I

L
-1

 r
ec

ep
to

r 
an

d 
pa

rt
ic

ip
at

es
 

in
 I

L
-1

 m
ed

ia
te

d 
up

-r
eg

ul
at

io
n 

of
 N

F-
K

B

1
rs

31
00

12
7

2.
02

E
+

08
1.

30
E

-0
6

In
te

rg
en

ic

13
rs

11
84

01
43

93
28

46
61

1.
76

E
-0

6
In

tr
on

 G
PC

5
E

nc
od

es
 g

ly
pi

ca
n 

5,
 a

 c
el

l s
ur

fa
ce

 p
ro

te
og

ly
ca

n

2
rs

41
46

18
46

2.
19

E
+

08
1.

83
E

-0
6

In
tr

on
 V

IL
1

E
nc

od
es

 v
ill

in
 1

, a
 c

al
ci

um
 r

eg
ul

at
ed

 a
ct

in
 b

in
di

ng
 p

ro
te

in

2
ch

r2
:2

19
34

41
65

2.
19

E
+

08
1.

89
E

-0
6

In
tr

on
 V

IL
1

Se
e 

ab
ov

e

2
rs

67
17

43
3

2.
19

E
+

08
1.

93
E

-0
6

In
tr

on
 V

IL
1

Se
e 

ab
ov

e

1
rs

23
61

42
2

2.
02

E
+

08
1.

97
E

-0
6

5′
 P

T
PR

V
P

* To
p 

te
n 

SN
Ps

 f
or

 e
ac

h 
an

al
ys

is
 li

st
ed

; c
ov

ar
ia

te
s 

in
 a

na
ly

si
s:

 g
es

ta
tio

na
l a

ge
, S

G
A

, e
ig

en
va

lu
es

 f
or

 a
nc

es
tr

y,
 s

ur
ge

ry
 a

nd
 C

es
ar

ea
n 

se
ct

io
n;

 in
fa

nt
s 

w
ho

 d
ie

d 
be

fo
re

 7
2 

ho
ur

s 
ex

cl
ud

ed
 f

ro
m

 c
on

tr
ol

s 
an

d 
L

O
S

**
L

oc
at

io
n 

in
 b

as
e 

pa
ir

s 
fr

om
 p

 te
lo

m
er

e

Arch Dis Child Fetal Neonatal Ed. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Srinivasan et al. Page 17

Ta
b

le
 3

SN
Ps

 w
ith

 h
ig

he
st

 a
ss

oc
ia

tio
n 

w
ith

 G
ra

m
 n

eg
at

iv
e 

L
O

S*

C
hr

SN
P

L
oc

at
io

n*
*

P
 v

al
ue

G
en

e
G

en
e 

fu
nc

tio
n

2
ch

r2
:1

46
36

97
34

1.
46

E
+

08
1.

13
E

-0
7

In
te

rg
en

ic

8
rs

51
37

93
20

77
40

64
5.

82
E

-0
7

In
te

rg
en

ic

2
ch

r2
:1

46
35

83
94

1.
46

E
+

08
8.

84
E

-0
7

In
te

rg
en

ic

2
ch

r2
:1

46
35

69
63

1.
46

E
+

08
8.

85
E

-0
7

In
te

rg
en

ic

7
rs

22
37

49
9

39
74

08
46

1.
06

E
-0

6
In

tr
on

 R
A

L
A

E
nc

od
es

 p
ro

te
in

 b
el

on
gi

ng
 to

 R
as

 f
am

ily
 o

f 
G

T
P 

bi
nd

in
g 

pr
ot

ei
ns

, i
m

pl
ic

at
ed

 in
 f

ilo
po

di
a 

fo
rm

at
io

n 
fo

r 
ce

ll 
m

ig
ra

tio
n

2
rs

58
16

24
39

1.
46

E
+

08
1.

55
E

-0
6

In
te

rg
en

ic

16
rs

59
87

61
50

86
91

87
34

1.
99

E
-0

6
In

te
rg

en
ic

7
rs

47
30

48
6

1.
11

E
+

08
3.

10
E

-0
6

In
tr

on
 I

M
M

P2
L

E
nc

od
es

 p
ro

te
in

 im
po

rt
an

t f
or

 f
un

ct
io

n 
of

 m
ito

ch
on

dr
ia

l i
nn

er
 m

em
br

an
e 

pe
pt

id
as

e 
(I

M
P)

 c
om

pl
ex

7
rs

69
50

97
4

37
07

58
28

3.
20

E
-0

6
In

tr
on

 R
A

L
A

7
rs

78
11

30
8

1.
11

E
+

08
3.

92
E

-0
6

In
tr

on
 I

M
M

P2
L

* To
p 

te
n 

SN
Ps

 f
or

 e
ac

h 
an

al
ys

is
 li

st
ed

; c
ov

ar
ia

te
s 

in
 a

na
ly

si
s:

 g
es

ta
tio

na
l a

ge
, S

G
A

, e
ig

en
va

lu
es

 f
or

 a
nc

es
tr

y,
 s

ur
ge

ry
 a

nd
 C

es
ar

ea
n 

se
ct

io
n;

 in
fa

nt
s 

w
ho

 d
ie

d 
be

fo
re

 7
2 

ho
ur

s 
ex

cl
ud

ed
 f

ro
m

 c
on

tr
ol

s 
an

d 
L

O
S

**
L

oc
at

io
n 

in
 b

as
e 

pa
ir

s 
fr

om
 p

 te
lo

m
er

e

Arch Dis Child Fetal Neonatal Ed. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Srinivasan et al. Page 18

Ta
b

le
 4

SN
Ps

 w
ith

 h
ig

he
st

 a
ss

oc
ia

tio
n 

w
ith

 f
un

ga
l L

O
S*

C
hr

SN
P

L
oc

at
io

n*
*

P
 v

al
ue

G
en

e
G

en
e 

fu
nc

tio
n

18
rs

64
55

05
10

68
27

20
6.

35
E

-0
7

In
tr

on
 P

IE
Z

O
2

E
nc

od
es

 p
ro

te
in

 w
hi

ch
 f

un
ct

io
ns

 a
s 

pa
rt

 o
f 

m
ec

ha
ni

ca
lly

-a
ct

iv
at

ed
 c

at
io

n 
ch

an
ne

ls
, c

on
ne

ct
in

g 
m

ec
ha

ni
ca

l f
or

ce
s 

to
 

bi
ol

og
ic

al
 s

ig
na

ls

10
rs

11
59

72
85

85
89

81
3

7.
36

E
-0

7
In

te
rg

en
ic

10
rs

20
31

55
8

85
89

40
8

7.
49

E
-0

7
In

te
rg

en
ic

10
rs

11
59

68
35

85
89

96
9

7.
53

E
-0

7
In

te
rg

en
ic

10
ch

r1
0:

11
36

62
22

2
1.

14
E

+
08

1.
28

E
-0

6
In

te
rg

en
ic

10
rs

11
59

35
42

86
00

33
9

1.
37

E
-0

6
In

te
rg

en
ic

10
rs

13
25

88
4

85
99

82
0

1.
43

E
-0

6
In

te
rg

en
ic

12
rs

16
91

36
66

18
13

49
55

1.
73

E
-0

6
In

te
rg

en
ic

4
rs

17
59

98
16

47
16

45
56

1.
85

E
-0

6
In

tr
on

 G
A

B
R

B
1

E
nc

od
es

 g
am

m
a-

am
in

ob
ut

yr
ic

 a
ci

d 
(G

A
B

A
) 

A
 r

ec
ep

to
r, 

be
ta

 1

3
rs

12
49

09
44

50
05

96
51

1.
90

E
-0

6
In

tr
on

 R
B

M
6

E
nc

od
es

 R
N

A
 b

in
di

ng
 m

ot
if

 p
ro

te
in

 6
 (

pr
ev

io
us

ly
 im

pl
ic

at
ed

 in
 v

ar
io

us
 c

an
ce

rs
)

* To
p 

te
n 

SN
Ps

 f
or

 e
ac

h 
an

al
ys

is
 li

st
ed

; c
ov

ar
ia

te
s 

in
 a

na
ly

si
s:

 g
es

ta
tio

na
l a

ge
, S

G
A

, e
ig

en
va

lu
es

 f
or

 a
nc

es
tr

y,
 s

ur
ge

ry
 a

nd
 C

es
ar

ea
n 

se
ct

io
n;

 in
fa

nt
s 

w
ho

 d
ie

d 
be

fo
re

 7
2 

ho
ur

s 
ex

cl
ud

ed
 f

ro
m

 c
on

tr
ol

s 
an

d 
L

O
S

**
L

oc
at

io
n 

in
 b

as
e 

pa
ir

s 
fr

om
 p

 te
lo

m
er

e

Arch Dis Child Fetal Neonatal Ed. Author manuscript; available in PMC 2017 September 01.


	Abstract
	BACKGROUND
	METHODS
	Study population and data source
	Primary Outcome
	Secondary Outcomes
	Study definitions
	Sample source and storage
	Genomic analysis
	Data Analysis
	Correction for population stratification
	Exploratory pathway analysis

	RESULTS
	Primary Outcome
	Secondary Outcomes
	Findings from pathway analyses

	DISCUSSION
	References
	Table 1
	Table 2
	Table 3
	Table 4

