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GENOME-WIDE ASSOCIATION STUDY OF SUICIDE DEATH AND POLYGENIC PREDICTION OF 

CLINICAL ANTECEDENTS 

 

ABSTRACT 

 

Objective: Suicide death is a highly preventable, yet growing, worldwide health crisis. To date, there has 

been a lack of adequately powered genomic studies of suicide, with no sizeable suicide death cohorts 

available for study. To address this limitation, we conducted the first comprehensive genomic analysis of 

suicide death, using a previously unpublished suicide cohort. 

 Methods: The analysis sample consisted of 3,413 population-ascertained cases of European ancestry 

and 14,810 ancestrally matched controls. Analytical methods included principle components analysis for 

ancestral matching and adjusting for population stratification, linear mixed model genome-wide 

association testing (conditional on genetic relatedness matrix), gene and gene set enrichment testing, 

polygenic score analyses, as well as SNP heritability and genetic correlation estimation using LD score 

regression. 

Results: GWAS identified two genome-wide significant loci (6 SNPs, p<5x10
–8

). Gene-based analyses 

implicated 19 genes on chromosomes 13, 15, 16, 17, and 19 (q<0.05). Suicide heritability was estimated 

h
2
=0.2463, SE = 0.0356 using summary statistics from a multivariate logistic GWAS adjusting for 

ancestry. Notably, suicide polygenic scores were robustly predictive of out of sample suicide death, as 

were polygenic scores for several other psychiatric disorders and psychological traits, particularly 

behavioral disinhibition and major depressive disorder.  

Conclusions: In this report, we identify multiple genome-wide significant loci/genes, and demonstrate 

robust polygenic score prediction of suicide death case-control status, adjusting for ancestry, in 

independent training and test sets. Additionally, we report that suicide death cases have increased 

genetic risk for behavioral disinhibition, major depression, autism spectrum disorder, psychosis, and 

alcohol use disorder relative to controls. Results demonstrate the ability of polygenic scores to robustly, 

and multidimensionally, predict suicide death case-control status. 
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Suicide death is a behavioral event which reflects a complex, heritable phenotype with diverse clinical 

antecedents and environmental contributing factors.
1
 The rate of suicide death has been steadily 

increasing
2
 and, in the United States, suicide is now ranked the second leading cause of death for all 

persons 15-24 years old.
3
 Despite the significant heritability of suicide death,

4
 genetic research on suicide 

has generally been limited to the study of suicide-related behaviors, rather than the extreme phenotype of 

suicide death. Despite promising initial results in GWAS meta-analyses of suicidal behavior,
5
 most 

suicidal behavior does not result in suicide death.
1,6

 Thus, suicidal behavior likely represents a more 

heterogeneous and less severe phenotype than suicide death, and these features likely adversely affect  

statistical power to detect associated genomic signals. Conversely, the unambiguous phenotype of 

suicide death avoids several confounds inherent in the study of suicidal behavior or ideation, and also 

focuses study on one of single most critical public health outcomes in contemporary America.  

Previous genetic research on suicidal behavior phenotypes has tended toward narrow 

ascertainment, studying only individuals with specific diagnoses (e.g., mood disorders, psychotic 

disorders) in order to maximize severity and accommodate post hoc study design. However, in 

population-based sample with ascertainment wholly independent of any co-occurring diagnoses, like the 

current study, the distribution, prevalence, and interaction of variables will be more representative of the 

corresponding population of suicide deaths, ceteris paribus.  

Suicide death is a complex behavioral phenotype that, like its associated clinical antecedents 

including schizophrenia and depression, reflects a complex, and likely highly polygenic, etiology.
5,7

 

Currently, the scientific literature lacks robust examination of suicide death in relation to molecular genetic 

risk for any medical or psychiatric diagnoses, and no polygenic scores have yet been developed for the 

critical outcome of suicide death. This study addresses these gaps in knowledge, leveraging the world’s 

largest DNA databank of suicide death, merged with a massive bank of electronic medical record and 

demographic data for all cases
8,9

, to comprehensively model common variant genetic, and clinical 

phenotypic, precursors of suicide death. 

This study represents the first adequately powered genome-wide association study of suicide 

death. Further, analyses leveraged comprehensive data on modes of suicide death, medical and 

psychiatric diagnostic (ICD-10) codes,
10

 and medical and psychiatric polygenic scores to predict common 
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variant genetic risk for suicide death. Secondary analyses of sex differences were conducted in response 

to the substantial sex differences in suicide death rates and modes of suicide death.
11,12

 This study 

achieved reliable and robust prediction of case-control status, adjusting for ancestry and sex, using both 

(1) a novel polygenic score for suicide death and (2) polygenic scores for a range of comorbid psychiatric 

and medical risk factors, particularly behavioral disinhibition and major depressive disorder. We 

additionally examined gene set enrichment, SNP heritability and genetic correlations in this unique, 

unpublished data resource. Finally, we review important considerations relating to ancestry in suicide 

genetics research. 

 

METHODS 

Sample Ascertainment 

Cases 

In collaboration with the centralized, statewide Utah Office of Medical Examiner (OME), the authors 

obtained DNA samples from ~6000 persons who died by suicide. The centralized OME and conservative 

determination helped to maximize the accuracy of suicide case status.
13

 Suicide cause-of-death 

determination results from a detailed investigation of the scene of the death and circumstances of death, 

determination of medical conditions by full autopsy, review of medical and other public records 

concerning the case, interviews with survivors, in addition to standard toxicology workups. Suicide 

determination is traditionally made quite conservatively due to its impact on surviving relatives.  

DNA from suicide deaths extracted from whole blood using the Qiagen Autopure LS automated DNA 

extractor (www.qiagen.com). Genotyping was performed on 4,381 of these cases, as described below. 

After quality control procedures and ancestry analysis, data comprised 3,413 Utah suicide deaths. The 

Utah population is primarily Northwestern European in ancestry, a relatively genetically homogeneous 

group with very low inbreeding across generations, comparable to the rest of the United States.
14

 Suicide 

determination results from a detailed investigation of the scene of the death and circumstances of death, 

determination of medical conditions by full autopsy, review of medical and other public records 

concerning the case, interviews with survivors, in addition to standard toxicology workups. Suicide 

determination is traditionally made quite conservatively due to its impact on surviving relatives. The 
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centralized OME and conservative determination helped to maximize the accuracy of suicide case 

status.
13

 

 

Controls 

Generation Scotland. Controls closely matching the Northern European ancestry of the cases were 

obtained from previously curated datasets in the UK. Wave 1 analysis included 3,623 founder controls 

from the population-based Generation Scotland Scottish Family Health Study.
15

 The Generation Scotland 

Scottish Family Health Study (N > 24,000) constitutes an ancestrally comparable population-based cohort 

for comparison with the suicide decedents in Utah. To eliminate confounding arising from intra-dataset 

relatedness, only the 3,623 founders from the Generation Scotland dataset were used in analyses. 

UK10k. A total of 11,049 UK10K controls
16

 were analyzed in wave 2 and GWAS analyses of both 

waves. This second control cohort is comprised of approximately 4000 genomes from the UK along with 

6000 exomes from UK individuals with selected health phenotypes. We chose these data due to the 

extensive phenotyping and characterization of any medical conditions present, and to avoid choosing a 

cohort of entirely psychiatrically and medically healthy individuals. 4,000 highly phenotyped “super 

control” samples were supplied from the King’s College London registry and the Avon Longitudinal Study 

of Parents and Children. UK10K was a collaborative project to examine obesity, autism, schizophrenia, 

familial hypercholesterolemia, thyroid disorders, learning disabilities, ciliopathies, congenital heart 

disease, coloboma, neuromuscular disorders, and rare disorders including severe insulin resistance. 

Genotyping and sequencing procedures for UK10k have been previously described
16

 

(http://www.uk10k.org) and all molecular genetic data from UK10k were filtered to the hard call variants 

present in our suicide death cohort prior to imputation of all cohorts simultaneously.  

1000 Genomes Reference Panel. The CEU population from the 1000 Genomes Project,
17

 which 

includes only Utah residents carefully screened for Northwestern European ancestry, was utilized as a 

model for excluding ancestrally discordant suicide and control samples. These CEU data were 

downloaded from the 1000 Genomes Project public repository. Unrelated individuals in the CEU provide a 

compelling, albeit small, ancestrally matched control resource (n = 99). A variety of candidate control 
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samples were assessed via PCA for ancestral comparability to CEU and decedent data, with UK10k and 

Generation Scotland founder data representing the closest match. 

Utah controls would be an ideal match for the suicide cases, but as with most GWAS, local 

controls were not readily available at the sample size needed for GWAS. CEPH ancestry 1KG were a 

useful comparison group to assess the likelihood that UK controls were an appropriate match for the 

cases. In addition (and described in more detail below) we performed a GS control-UK10K control GWAS 

and subsequently eliminated any SNPs from the case-control analysis that evidenced signal between the 

control cohorts. This was performed to minimize the possibility of false positives in the case control 

GWAS due to population/geographic stratification across cohorts. 

 

Genotyping and Quality Control 

Suicide cases were genotyped using Illumina Infinium PsychArray platform measuring 593,260 single 

nucleotide polymorphisms (SNPs). Generation Scotland samples were genotyped using Illumina 

OmniExpress SNP GWAS and exome chip, measuring 700,000 and 250,000 SNPs, respectively.
15

 

UK10k samples were whole genome sequenced
16

 and variants were extracted to match the available 

QC’d hard-called 7,519,308 variants in the suicide cases. Genotypes were subsequently imputed in all 

cases and controls (details of imputation are presented in Analytics, below). Both case and control 

datasets resulted from population-based ascertainment, and cryptic relatedness was modeled via the 

derivation of genomic relatedness matrices. Genotyping quality control was performed using SNP 

clustering in Illumina Genome Studio https://www.illumina.com/techniques/microarrays/array-data-

analysis-experimentaldesign/genomestudio.html). SNPs were retained if the GenTrain score was > 0.5 

and the Cluster separation score was > 0.4. SNPs were converted to HG19 plus strand, and SNPs with 

>5% missing genotypes were removed. Samples with a call rate < 95% were removed. 

Prior to case-control GWAS, a control-control GWAS was run (using the same methods 

described in Analytics: GWAS, below) to detect signal between control groups to filter out of the case-

control GWAS (control-control q value >.10). For example, chromosome 4 variants within the MHC are 

often filtered from analyses involving Scottish controls, due to prevalent population stratification in this 

region. We performed a stringent screen for population-specific signal in the controls. While this method 
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is somewhat conservative, it was deemed necessary to address potential geographic stratification 

confounds. Signal detected from this control-control GS vs. UK10k comparison was then filtered from 

subsequent case-control analyses. For the purposes of future meta-GWAS analyses, and because the 

MHC is relevant to psychiatric risk, we included these filtered variants in a second version of our summary 

statistics, available upon request. 

 

Data analysis 

Principal Components Analysis (PCA) 

Supplementary Figure S1 shows 1000 Genomes (1KG) superpopulations and suicide case/control 

samples, both included and excluded, plotted by the top 2 principal components (PC). Approximately 20% 

of the population-based suicide cases had a significant degree of non-Northwestern European ancestry 

(chiefly of admixed ancestry) and were excluded from analyses. The variation explained by top 4 PCs 

was reduced 7.2-fold. The top 4 PCs explain 0.89% of variation before sample filtering and 0.12% of 

variation after filtering, if calculated on pruned genotypes. For adequate statistical power, we examined 

only cases of Northern European ancestry. However, it is clear from (a) and (c) that the cohort was 

comprised of multiple ancestries and that research on suicide death in non-European ancestries will 

reflect an important step beyond this first study. 

PCA was performed on control, suicide, and 1000 Genomes cohorts after LD pruning at a 0.2 

threshold. To exclude ancestrally heterogeneous samples, the top principal components (defined as 

those components which accounted for > 0.1% of the genotype variance, npc = 4) were used to establish 

PC centroid limits centered around 1000 Genomes CEU data, such that 99% of the CEU data fell within 

the limits. Only suicide and control samples also falling within these limits were considered ancestrally 

homogenous and thus were included in the association study. The ancestry PCA was performed using 

RaMWAS,
18,19

 a Bioconductor package, written by our analytical team, which comprises a complete 

toolset for high dimensional genomic analyses. RaMWAS includes functions for PCA for capturing batch 

effects and detection of outliers, association analysis while correcting for top PCs and covariates, creation 

of QQ-plots and Manhattan plots, and annotation of significant results. 
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Imputation 

European ancestry cases and controls were well-matched to 1000 Genomes CEPH. The Haplotype 

Reference Consortium is comprised in part by UK controls used here, so we elected to impute genotypes 

based on the 1000 Genomes reference panel using minimac3
20

 and Eagle.
21

 SNPs with ambiguous 

strand orientation, >5% missing calls, or Hardy-Weinberg equilibrium p < 0.001 were excluded. SNPs with 

minor allele frequency below 0.01 or imputation R2 < 0.5 were also excluded. Genomic data were handled 

using PLINK. 
22,23

 Final GWAS analysis was performed on 7,519,308 variants passing quality control. 

 

Genome-wide Association Testing 

A Linear Mixed Model (LMM) algorithm tested variant association with suicide death, with follow-up 

examination of significant hits for linkage disequilibrium and gene set enrichment. GWAS were performed 

using GEMMA,
24

 a computationally efficient and open-source LMM algorithm for GWAS that models 

population stratification remaining after PCA by use of genomic relatedness matrices. Sex was not 

included as a covariate in GWAS analyses due to the association of suicide with sex status at a ratio of 

approximately 3:1 males: females. GWAS with hard call-only and then with imputed data were examined 

separately to assess potential population stratification unique to our imputed GWAS. Prior to case-control 

GWAS, control-control GWAS was implemented to filter signal likely due to population stratification in the 

controls.  

 Power Analysis. With a suicide death prevalence rate of approximately .002%, this GWAS of 

European ancestry with 3,413 population-based suicide deaths and 14,810 ancestry-matched controls 

would be expected to have at least 80% power to detect common variants (MAF ≥ 0.15) with effect 

sizes ≥ 1.20 at P<5x10
–8

 and P<1×10
–6 

(Supplementary Figure S2). Power at P�<�1�×�10
–6

 is 

relevant because 52 SNPs reach that threshold in the current analysis. Power is lower for less-

common variants and in secondary analyses stratifying by mode of suicide death and sex.  

 

Gene and Gene Set Enrichment and Functional Mapping 

SNP results from the GWAS were then mapped to genes within 1kb of the SNP and these genes were 

examined for gene set enrichment and LD using FUMA
25

 and GREAT.
26

 FUMA annotates SNPs, uses 
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MAGMA to identify associated genes (of approximately 18,612) and provide gene and gene pathway 

enrichment analysis (of approximately 10,649 pathways). GREAT analyzes the functional significance of 

sets of cis-regulatory regions, by modeling the genome regulatory landscape using multiple 

information sources and can determine the functional domain of intergenic variants. GREAT improves 

upon the identification of genes associated with non-coding genomic regions through statistically rigorous 

incorporation of more distal binding sites from 20 ontologies. The GWAS catalog 

(https://www.ebi.ac.uk/gwas/) includes studies and associations if they: include a primary GWAS analysis 

from >100,000 SNPs, SNP-trait p-value <1.0 x 10-5 in the overall (initial GWAS + replication) population. 

The most significant SNP from each independent locus is extracted. 

 

Polygenic Risk Scores, SNP Heritability (h
2
), and Genetic Correlations (rG) 

Discovery GWAS summary statistics for phenotypes were compiled to score each cohort for polygenic 

risk. PS for suicide death was derived using PRSice 2.0
27

 and summary statistics from a 10-fold cross 

validation procedure to avoid overfitting. To elaborate, k-folds cross-validation is a well-established 

method to allow out-of-sample prediction,
28

 allowing a single dataset to unbiased serve as both training 

and testing data, for the purpose of suicide death polygenic score development and validation.  We 

conservatively set the p-value threshold for predicting case status based on the data to 1.0. This 

eliminated overfitting arising from choosing the threshold based on the phenotype.  

Using related methods, we calculated polygenic scores for several psychiatric and psychological 

traits in the current dataset. Of several thousand medical and psychological GWAS now available, only 

GWAS with N>10,000 individuals and >1,000 cases (or for population-based studies, adequate base 

rates) were selected for these analyses. These generally included the largest medical and psychiatric 

GWAS and when several versions of GWAS were available for the same phenotype (for example, 

neuroticism or depression) we selected the most comprehensive. For a helpful reference to GWAS 

available, see Watanabe et al.’s online GWAS Atlas (http://atlas.ctglab.nl/). PRSice 2.0 was used to 

calculate individual PS for 59 phenotypes with estimated risk allele effect sizes for each discovery sample 

trait. A PS is traditionally calculated as a weighted sum score, where a score for an individual in the target 

sample is calculated by the summation of each SNP multiplied by the effect size of that SNP in the 
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discovery GWAS.  Based on the cross-disorder psychiatric genomics findings to date, we hypothesized 

significant positive prediction of suicide with PS for depressive symptoms, depressive disorders, 

behavioral disinhibition, schizophrenia, autism, loneliness, child IQ, alcohol use, and neuroticism. Betas, 

p-values, and q-values (after correcting the p-values for the FDR of 5%) for association of all polygenic 

scores, adjusting for five ancestry principle components, to suicide death are presented in Supplementary 

Tables.  

LDSC was used to calculate common variant h
2
 using summary statistics from a logistic 

regression model with five ancestry covariates and pruning related samples at 0.2 p� from IBD. LDSC 

was also used to calculate common variant molecular genetic correlations (rG) with psychiatric and 

medical phenotypes. Finally, we performed secondary analyses to characterize genetic predictors, and 

clinical antecedents of (Supplementary Methods S1), mode of suicide death (Supplementary Methods 

S2). Specifically, in these secondary analyses, we conducted (1) epidemiological association tests 

between four sufficiently prevalent/powered modes of death (i.e., gun, overdose, asphyxiation, and violent 

trauma) and 30 ICD-10 derived clinical antecedents, and (2) association tests the suicide polygenic score 

with modes of death, adjusting for five ancestry covariates in multivariate regressions.  

 

Sex Differences 

As suicide rates and modes of suicide death are characterized by substantial sex differences
11,12

, we 

performed secondary epidemiological and genomic analyses to characterize sex differences in mode of 

death and clinical antecedents. These sex stratified analyses mirrored the full sample analyses described 

above, including (1) sex stratified epidemiological association tests between four sufficiently 

prevalent/powered modes of death (i.e., gun, overdose, asphyxiation, and violent trauma) and 30 ICD-10 

derived clinical antecedents, and (2) sex stratified association tests the suicide polygenic score with 

modes of death, adjusting for five ancestry covariates in multivariate regressions. We constrained these 

exploratory analyses to only those medical diagnoses with frequencies high enough in either females or 

males to provide decent power for testing and report false discovery rate (FDR) corrected p-values; 

nonetheless, it is worth noting that power for these secondary analyses of sex differences was limited by 

N, which was restricted to cases-only and stratified by sex and mode of death.  
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RESULTS 

Genome-wide Association 

A total of six variants from two loci met genome-wide criteria for statistical association with suicide death 

(p < 5x10
-8

). An additional 52 variants were “nominally significant” at q < 0.1 and mapped to 19 genes. (λ 

= 1.015, Figure 1 and Table 1).
29,30

 All results on the full cohort are derived from analyses adjusting for 

effects of ancestry and sex. Genes associated with top genomic regions are presented in Supplementary 

Table S1. Chromosome 13 and 15 regions were supported by additional positive results that were 

suggestive but below threshold. Ten additional genes were identified in gene-based tests meeting 

threshold for nominal significance (Figure 2). The large number of signals in the SNP-based tests 

prompted quality control analyses varying the degree of LD pruning prior to PCA for the purposes of 

sensitivity analysis, and results and respective λ’s were consistent across these analyses. Supplementary 

Figures S3-S10 present additional plots of the top signals in each of nine regions.  

 

Gene and Pathway Functional Enrichment Tests 

Gene-base analysis using MAGMA (FUMA
1
) identified 10 genes significantly associated (q<0.1) with 

suicide death (Supplementary Table S2). Additionally, mapping top SNP hits to genes suggested another 

19 gene association, including chromosome 13 genes, Daschund family transcription factor 1 (DACH1), 

Ubiquitin-protein ligase protein (UBE3A), and Kelch-like family member 1 (KLHL1) on chromosome 15. 

Eleven of the 19 associated genes carry prior evidence of association with suicidal behaviors 

(Supplementary Table S2). GO pathway results included enrichment of histone modification sites SETD6, 

COPR5, GATAD2A. Full gene and Gene Ontology (GO, http://www.geneontology.org/) pathway 

enrichment results are presented in Supplementary Tables S3-S4. In addition to functional pathways, 

significant enrichment was indicated for schizophrenia results in the GWAS Catalog (p=1x10
-11

) 

(https://www.ebi.ac.uk/gwas/). Psychiatric associated traits are in green (Supplementary Table S3). IW-

scoring in SNP-Nexus
31

 suggested regulatory functional significance for one SNP (chr13:71553748:C/T). 

Ten of the implicated genes from positional or gene-based testing have evidenced genome-wide 

significant differential gene expression in postmortem brain in either schizophrenia, autism, or bipolar 

disorder (FDR<0.1; PsychENCODE Consortium, Supplementary Table S5).
32
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Polygenic Scores, SNP Heritability, and Genetic Correlations  

In European ancestry training and test samples comprising independent case and control cohorts, and 

accounting for five ancestry PCs and sex, suicide PS robustly predicted suicide death case status. 

Suicide waves 1 and 2 comprise approximately 1,321 and 2,092 suicide cases, respectively. These 

predictions are plotted across 1000 p-value thresholds in Figure 3.  

A Linkage Disequilibrium SCore regression (LDSC)
33,34

 common variant h
2
 estimate based on 

only the summary statistics from a logistic GWAS, with five ancestry covariates and pruning to remove 

related samples, was 0.2463, SE = 0.0356. Lambda in the latter model was inflated at 1.239. The suicide 

death cases differed significantly from two UK control groups on PS of phenotypes relevant to suicide 

death. These differences were in the expected directions. Original discovery GWAS for all phenotypes 

were filtered to exclude any using these control cohorts (Supplementary Table S6).  

Consistent with hypotheses, significant PS elevations included alcohol use, autism spectrum 

disorder, child IQ, depressive symptoms, disinhibition, loneliness, and neuroticism (Figure 4). Effect sizes 

are communicated from the y-axis, indicating the largest effects for behavioral disinhibition and major 

depressive disorder PS. LD Hub
33

 provided estimates of SNP-based shared genetic covariance for 

several phenotypes (Supplementary Table S7). As sensitivity analysis, we disaggregated suicide by 

mode of death into four categories (see Supplementary Methods S2), gun, overdose, asphyxiation, 

violent trauma, and epidemiologically characterized these groups by association testing with 30 ICD-10 

derived clinical antecedents (Supplementary Figure S11; Supplementary Tables S8-S10). Additionally, 

we conducted PS association testing to mode of death in all cases and no associations met multiple 

testing adjusted significance criteria (q<0.1; Supplementary Figure S12; Supplementary Tables S11-S13).    

 

Sex Differences 

Epidemiological analyses of sex differences indicated that suicide cases of both sexes evidenced clinical 

diagnostic clusters of 1) internalizing-trauma-cluster B psychiatric disorders and 2) metabolic-

cardiovascular-obesity medical disorders (Supplementary Tables S14-S19). Female cases were observed 

to have a higher overall number of diagnoses relative to males, which could reflect increased severity in 
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females, decreased severity in males, decreased likelihood of males receiving diagnosis, and/or 

decreased help-seeking in males. This is broadly consistent with observed higher relative prevalence 

rates of gun-related death in males and overdose death in females. All associations of PS with mode of 

death are presented for females and males separately in Supplementary Figures S15-S16. All PS 

analyses include ancestry covariates. All corresponding statistics are reported in Supplementary Tables 

S20-S25. No sex stratified polygenic scores findings met multiple testing adjusted significance criteria 

(q<0.1).    

 

DISCUSSION 

Results from this analysis, the first adequately powered comprehensive genomic study of suicide death, 

yield several insights into the process and suggest important applications for future extension. The GWAS 

of suicide death identified two genome-wide significant loci on chromosomes 13 and 15. Moreover, 11 of 

the 19 genes implicated by top GWAS hits overlap with schizophrenia results from the GWAS Catalogue, 

and two of these 11 genes have prior associations with risk of suicidal behavior (HS3ST3B, NCAN; for 

relevant literature see Supplementary Table S26). Additionally, using k-folds cross-validation methods we 

were able to robustly predict suicide death case-control status using polygenic scores in out-of-sample 

prediction. Perhaps most compellingly, we found suicide death was strongly associated with polygenic 

scores for multiple psychiatric and psychological traits. These included alcohol use, autism spectrum 

disorder, child IQ, depressive symptoms, behavioral disinhibition, and loneliness. These results were 

notably consistent with expectations, as the strongest associations were to behavioral disinhibition and 

major depressive disorder, arguably the two most critical antecedents of suicide death.
35

 

Genetic overlap of actual suicide death with suicidal behaviors remains unclear to date. More 

common suicidal behaviors are difficult to quantify, do not effectively predict suicide mortality, and 

represent individuals with a range of risk for later suicide.
36

 Moving closer to developing objective risk 

measures of suicide risk, future modeling of the shared genetic covariance of suicide death and suicide 

behaviors may isolate important genetic and environmental moderators of risk of death. Further, as 

genomic prediction will likely improve in the near term, as a function of increased sample sizes in suicide 
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death cohorts, we will soon face both technical opportunities and ethical challenges associated with 

integrating genomic risk prediction with machine learning predictive models of suicide risk.
37,38

  

Importantly, moving forward we must prioritize study genetic risk in other ancestry groups to 

address the potential for increasing health disparities stemming from polygenic risk research that relies 

only on European ancestry summary statistics.
39

 To this end, the authors are working toward cross-

ancestry replication of results in individuals of Mexican American ancestry with ongoing collection of 

population-based cases. Future priorities also include analyses of structural variation, methylation, and 

predicted gene expression in suicide, investigation of the potential mediating role of substance/alcohol 

use in suicide, and use of genetic risk metrics to enhance predictive models of suicide.   
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TABLES 

 

Table 1. Genome-wide significant loci from GWAS of death by suicide. 

Chr Position SNP A1 A2 AF β SE p value q value 
Nearest 

Gene 
Function CADD 

13 71,538,274 rs35502061 G A 0.016 0.089 0.0153 5.97x10
-9

 5.63x10
-3

 SOGA2P1 Intergenic 2.69 

13 71,547,393 rs34053895 A C 0.016 0.091 0.0154 3.51x10
-9

 3.78x10
-3

 LINC00348 Intergenic 0.39 

13 71,550,518 rs35518298 T C 0.016 0.092 0.0154 1.92x10
-9

 2.42x10
-3

 LINC00348 Intergenic 0.33 

13 71,553,748 rs34399104 T C 0.017 0.098 0.0147 3.54x10
-11

 6.67x10
-5

 LINC00348 Intergenic 19.86 

13 71,567,365 rs66828456 A C 0.017 0.086 0.0150 8.63x10
-9

 7.24x10
-3

 LINC00348 Intergenic 4.24 

15 25,962,209 rs35256367 G A 0.016 0.088 0.0155 1.10x10
-8

 8.33x10
-3

 ATP10A Intronic 4.41 

 

Note: SNP = single nucleotide polymorphism, CHR = chromosome, A1, A2 = alleles 1 (minor) and 2, AF = allele 1 frequency, 

CADD
40,41

 = combined annotation dependent depletion score. 
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FIGURES 

 

Figure 1. GWAS Results. (a) QQ and Manhattan plots from GWAS of suicide death. Y-axes for both 

plots reflect observed p-values. The x-axis on the qq-plot is the number of significant p-values expected 

under H0, and the x-axis on the Manhattan plot maps each chromosome. The purple dashed line 

indicates threshold for false discovery rate (FDR) corrected nominal statistical significance, the green 

dotted line representing the threshold for genome-wide significance after multiple testing (Bonferroni) 

correction. 57 SNPs met threshold for nominal significance and 6 met genome-wide significance. (b) 

Regional plot of genome-wide significant loci on chromosome 13. 
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Figure 2. GWAS Gene-Based Results. FUMA gene-based test results: qq plot and Manhattan plot of 

>18,000 genes. Y-axes for both plots are identical and reflect observed p-values. The x-axis on the qq-

plot is the number of significant p-values expected under H0, and the x-axis on the Manhattan plot maps 

each chromosome. The purple dashed line indicates threshold for FDR-corrected nominal statistical 

significance; 10 genes met this threshold for nominal significance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/234674doi: bioRxiv preprint 

https://doi.org/10.1101/234674
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Cross Validation of Suicide Polygenic Case-Control Prediction. Polygenic prediction of 

suicide death case status across two independent cohorts of cases and controls. Training GWAS 

summary statistics are used to score the test set for suicide polygenic risk. P-value thresholds are plotted 

on the x-axis from 0.1-1.0, reflecting the top 10% to 100% of the common variants from the training 

GWAS. Standardized suicide PS scores are plotted on the y-axis. 95% confidence intervals around the 

scores are pictured for each cohort across all p-value thresholds. 
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Figure 4. Notable Elevations of Psychiatric Polygenic Risk in Suicide Cases. Standardized polygenic 

scores for eight phenotypes hypothesized to be relevant to suicide (y-axis) plotted for suicide death case, 

and GS and UK10k control groups across a broad spectrum of PS p-value thresholding. P-value 

thresholds are plotted on the x-axis from 0.1-1.0. 95% confidence intervals around the scores are pictured 

for each cohort across p-value thresholds. Largest effect sizes, and significance levels, were observed for 

behavioral disinhibition and major depressive disorder.   
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