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Crops are often cultivated in regions where they will face environmental adversities;
resulting in substantial yield loss which can ultimately lead to food and societal problems.
Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt
to minimize these problems and to produce more stability with respect to crop yields
across broad geographies. Since stress tolerance is a complex and multi-genic trait,
advancements with classical breeding approaches have been challenging. On the other
hand, molecular breeding, which is based on transgenics, marker-assisted selection and
genome editing technologies; holds great promise to enable farmers to better cope with
these challenges. However, identification of the key genetic components underlying the
trait is critical and will serve as the foundation for future crop genetic improvement.
Recently, genome-wide association studies have made significant contributions to
facilitate the discovery of natural variation contributing to stress tolerance in crops. From
these studies, the identified loci can serve as targets for genomic selection or editing to
enable the molecular design of new cultivars. Here, we summarize research progress on
this issue and focus on the genetic basis of drought tolerance as revealed by genome-
wide association studies and quantitative trait loci mapping. Although many favorable
loci have been identified, elucidation of their molecular mechanisms contributing to
increased stress tolerance still remains a challenge. Thus, continuous efforts are still
required to functionally dissect this complex trait through comprehensive approaches,
such as system biological studies. It is expected that proper application of the acquired
knowledge will enable the development of stress tolerant cultivars; allowing agricultural
production to become more sustainable under dynamic environmental conditions.

Keywords: GWAS, drought tolerance, gene cloning, crops, natural variation

INTRODUCTION

In order to meet the demands of the ever-growing human population, it is predicted that world
food production will need to double by the year 2050 (Tilman et al., 2002). Unfortunately, crop
production is facing severe potential threats from changes within our global climate (Battisti and
Naylor, 2009; Boyer et al., 2013). For example, when crops suffer under abiotic stress conditions
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such as drought, salinity, and temperature extremes, primary
losses of crop productivity might occur worldwide with
an average yield loss of >50% for major crops (Boyer,
1982). Drought stress dramatically reduces agricultural harvests,
resulting in widespread risk of food insecurity and social
problems. Thus, given the unpredictable nature of drought
and climate variability over the years, breeding crops that
are tolerant to abiotic stresses, especially to drought, is one
of the most important approaches to maintain or increase
crop production (Gill and Tuteja, 2010; Tester and Langridge,
2010).

Due to the complex genetic basis of stress tolerance,
classical breeding strategies often fail to meet the needs for
stabilizing yield under variable conditions (Tester and Langridge,
2010), although these strategies have significantly impacted
the yield potential of crops during the past century, without
preexisting knowledge of the exact genetic factors controlling
the trait (Collins et al., 2008). On the other hand, molecular
breeding approaches, which include transgenic, genome-wide
marker-assisted selection and genome editing technologies,
are more accurate and rely on clear genetic information
of the favorable alleles contributing to the trait. As such,
transgenic approaches can insert or create novel alleles beyond
those that are available within naturally occurring populations.
However, there are limitations for the broad utility of these
products due to the requirements for passing environmental
safety and regulatory approvals prior to their acceptance
for cultivation. In contrast, marker-assisted selection (MAS),
which uses DNA markers to track specific chromosomal
regions carrying natural favorable alleles in sequential runs
of crossing and selection, is free from artificial genetic
modification and is widely considered to be natural and
safe. Although this approach is time-consuming, the products
generated from these breeding strategies have a greatly
accelerated path to market. By leveraging the knowledge
of biochemistry and genetics, the emerging genome editing
technology can efficiently introduce specific mutations into
target loci referring and can be considered as transgenic-free.
This technology enables direct functional studies of genes of
interest in the crop context and provides a suite of new
methodologies for crop improvement (Voytas and Gao, 2014;
Gao, 2015).

Due to their sessile nature, crops have evolved sophisticated
mechanisms to adapt to environmental changes. As a result, it is
likely that the functional mechanisms underlying environmental
stress responses in plants are probably more advanced and
prominent than in animals. The question of how plants survive
various environmental stresses is one of the most attractive
topics to plant biologists and agronomists. As a result, there
is tremendous interest in and demand for enhancing the stress
tolerance of crops through biotechnology with the knowledge
of how plants react and resist to drought stress. Thus, this
review describes advances in natural genetic variations detected
for drought tolerance, which may offer genomic selection targets
for molecular breeding to accelerate drought-resistance breeding
and sheds light into the mechanism of how plants react to
stress.

QUNATITATIVE TRAIT LOCI (QTL)
ANALYSIS FOR DROUGHT TOLERANCE

The mechanism of how plants respond to drought is
sophisticated, which includes processes such as the regulation
of genetic and metabolic pathways on molecular, physiological
and population levels (Chaves et al., 2003; Izanloo et al., 2008;
Xu et al., 2009). Overall, the adaptation to drought can be
split into different categories including: ‘drought avoidance’ by
escaping the water deficit, owing to inherent developmental
distinctions such as early/late flowering time and robust root
systems (Geber and Dawson, 1990); ‘water preservation’ of
specialized anatomic leaf structures (Schulze, 1986; Jackson
et al., 2000) and advanced leaf senescence (Hoffmann and
Merila, 1999; Chaves et al., 2003; Sherrard et al., 2009; Maherali
et al., 2010); and ‘cellular drought tolerance’ to dehydration
(Bartoli et al., 1999). The last aspect is often inferred as ‘drought
tolerance’ by researchers specialized in plant abiotic stress
response. With respect to the cellular drought tolerance, when
soil water potential is decreased, stress related signal transduction
networks involving ABA dependent or non-ABA dependent
pathways will be stimulated and transduced after these stress
signals are perceived by plant cells. Transcription factors, which
are master regulators of stress-responsive gene expression,
are then subsequently activated. The expression of stress-
responsive genes will result in biochemical and physiological
processes, including hormone biosynthesis and transport,
adjusted osmotic status, photosynthesis, stomatal regulation and
detoxification in plant cells. Thus, stress induced morphology
changes, including root growth enhancement and leaf area
reduction, will result in acquired tolerance and survival strategies
(Figure 1). All these categories, which can enhance plant
survival and growth under the stress, are referred as drought
resistance.

In order to dissect the genetic basis of plant drought
resistance, forward genetics strategies have been utilized to
identify QTLs underlying the trait. However, due to the
complexity and poor heritability of the crop yield trait,
individual trait components are more frequently identified
and characterized due to their better heritability in replicated
experiments (Meyer et al., 2007; Riedelsheimer et al., 2012).
For example, the trait components regarding maize drought
resistance are usually dissected into (1) seedling survival rate
under severe water deficits (Liu et al., 2013; Mao et al., 2015;
Wang et al., 2016); (2) yield loss which is often indexed by
ear length, kernel number per row, and hundred-kernel weight
(Lu et al., 2006; Vikram et al., 2012; Yadaw et al., 2013);
(3) anthesis and silking interval (ASI), which is an important
indicative trait for maize drought tolerance. Drought stress
often delays maize ear silk emergence and elongation, but
not tassel development and pollen shedding; which leads to
a significantly prolonged ASI. Thus, it dramatically reduces
pollination efficiency and yields (Lebreton et al., 1995; Ribaut
et al., 1996; Tuberosa et al., 2002a; Welcker et al., 2007; Lu
et al., 2010). When identifying QTLs for grain yield and ASI
across populations and under water stressed and well-watered
environments, 68 QTLs were discovered with each physical
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FIGURE 1 | (A) The physiological and morphological adaptations of plants grown under water-deficit conditions. (B) Cellular response to water stress, including
signaling transduction and physiological changes to achieve survival strategies.

interval of the QTL consisting of approximately five candidate
genes (Semagn et al., 2013).

In addition, ABA is regarded as a stress hormone which
can be significantly produced under drought and stimulates
the expression of a large number of stress responsive genes
and triggers stomatal closure (Bray, 1993; Close, 1996; And
and Bartels, 2003). Thus, many studies have focused on the
identification of QTLs that could enhance the concentration of
ABA under stress in an attempt to better understand drought
tolerance (Lebreton et al., 1995; Sanguineti et al., 1999; Landi
et al., 2005; Rahman et al., 2011; Iehisa et al., 2014; Barakat et al.,
2015). Specially, Landi et al. (2005) found a major maize QTL
for L-ABA in bin 2.04 which indicated that the QTL not only
enhances yield but also affects root architecture under drought
conditions.

In the mean time, root achitechure (e.g., seminal root number;
nodal root number; root pulling force; primary root diameter,
length and weight; and adventitious seminal root weight) also
play an important role in the process of drought resistance
(Guingo et al., 1998; Tuberosa et al., 2002b; Gowda et al.,
2011; Messmer et al., 2011; Sebastian et al., 2016). Tuberosa
and Salvi (2002) reported that a deep root system with higher
root density increased the survivability of plants under drought.
Furthermore, four QTLs for nodal root angle (qRA), three for
root dry weight, two for shoot dry weight, and three for plant leaf
area were reported in sorghum; of which nodal root angle QTL
presented new opportunities for improving drought adaptation
mechanisms (Mace et al., 2012). Specially, introducing DEEPER
ROOTING 1 (DRO1) into a shallow-rooting rice cultivar by
backcrossing enabled the resulting line to avoid drought via

increased root depth; which ultimately resulted in maintenance
of high yield performance under drought conditions relative to
the recipient cultivar (Uga et al., 2013). The 1 bp deletion in
the open reading frame may be the causative site responsible for
the differentiating root morphology between IR64 and KP, two
rice varieties which differ in root architecture. The discovered
allelic variation of DRO1 not only reveals the possible mechanism
of how root morphology is modulated, but also suggests that
the control of root architecture will contribute to the drought
avoidance of crops. Over the last two decades, many studies
have focused on the aforementioned drought resistance trait
components in crops (Table 1). Thus, our knowledge pertaining
to the genetic loci controlling drought resistance has increased
substantially.

THE DEVELOPMENT OF POPULATION
DESIGN, GENOTYPING, AND VARIANCE
COMPONENTS ESTIMATION
APPROACHES FOR GENOME-WIDE
ASSOCIATION STUDY (GWAS)

In plants, linkage mapping and genome-wide association study
(GWAS) are the two major adopted methods to identify the
QTLs for complex traits. The fundamental basis for linkage
mapping and association mapping is genetic recombination.
Linkage mapping exploits the functional polymorphisms and
adjacent markers within families or pedigrees with known
ancestry, whereas, association mapping exploits historical
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TABLE 1 | Genetic dissction for drought resistance and related traits.

Trait Species Mapping population Closest marker to
major locus

Candidate gene Reference

Components of grain yield Maize B73 × Mo17 piol0005 None Beavis et al., 1994

Maize SD3 × SD35 umc76 None Agrama and Moussa, 1996

Maize Ac7643S5 × Ac7729/TZSRWS5 umc119 None Ribaut et al., 1997

Maize Zong 3 × 87-1 umc1042–bnlg2144 None Lu et al., 2006

Maize X178 × B73 bins 9.03-9.05 None Hao et al., 2008

Rice Basmati334 × Swarna and N22 × MTU1010 RM11943–RM12091 None Vikram et al., 2012

Maize Association mapping panel PZE-104036909 GRMZM2G125777 Xue et al., 2013

Rice IR77298-5-6-18/2 × Sabitri RM231 None Yadaw et al., 2013

Anther-silk interval Maize SD34 × SD35 umc140 None Agrama and Moussa, 1996

Maize Ac7643S5 × Ac7729/TZSRWS5 umc174 None Ribaut et al., 1996

Maize X178 × B73 bin 1.03 None Hao et al., 2008

Maize Integrated linkage–LD mapping population bin2.03 GRMZM2G164400 Lu et al., 2010

Maize Association mapping panel PZE-103179220 GRMZM2G137961 Xue et al., 2013

Maize 25 MARS populations 19,226,000-
22,594,000

112 candidate genes Semagn et al., 2013

Abscisic acid Maize Polj17 × F-2 UMC39b None Lebreton et al., 1995

Maize Os420 × IABO78 csu133 None Tuberosa et al., 1998

Maize Os420 × IABO78 umc128, csu133,
csu109a and
umc193d

None Sanguineti et al., 1999

Maize Os420 × IABO78 bin2.04 None Landi et al., 2005

Maize DTP79 × B73 csul29-csu81 None Rahman et al., 2011

Maize Association mapping panel PZB01403.4 GRMZM2G124260 Setter et al., 2011

Wheat Chinese Spring (CS) × Hope5A Xbarc186-Xgwm617 None Iehisa et al., 2014

Wheat Yecora Rojo × Pavon 76 Wmc161-Wmc96 None Barakat et al., 2015

Sucrose Maize Association mapping panel PZB02017.1 GRMZM2G173784 Setter et al., 2011

Maize Association mapping panel PZA03635.1 GRMZM2G021044 Setter et al., 2011

Phaseic acid Maize Association mapping panel PZD00027.3 GRMZM2G110153 Setter et al., 2011

Maize Association mapping panel PZD00027.3 GRMZM2G110153 Setter et al., 2011

Maize Association mapping panel PZA03569.2 GRMZM2G125023 Setter et al., 2011

Total sugar Maize Association mapping panel PZA03368.1 GRMZM2G064848 Setter et al., 2011

Maize Association mapping panel PZA03573.1 GRMZM2G092497 Setter et al., 2011

Seedling survival rate Maize Association mapping panel S9_94178074 ZmVPP1 Wang et al., 2016

Maize Association mapping panel S10_2680244 ZmNAC111 Mao et al., 2015

Maize Association mapping panel S1_201957243 ZmDREB2.7 Liu et al., 2013

Maize Association mapping panel allele-338 ZmPP2C-A10 Xiang et al., 2017

Root traits Maize Lo964 × Lo1016 PGAMCTA205 None Tuberosa and Salvi, 2002

Sorghum B923296 × SC170-6-8 SPb-6287/SPb-9490 None Mace et al., 2012

Rice IR64 × KP ID07_14 ID07_17 DRO1 Uga et al., 2013

and evolutionary recombinations at a natural population
level. Populations adopted for linkage mapping are usually
derived from a bi-parental cross with a clear ancestry, while
a collection of cultivars with unobserved ancestry are often
adopted for association mapping (Cockram et al., 2010; Zhao
et al., 2011; Hung et al., 2012; Riedelsheimer et al., 2012; Zhang
et al., 2015; Zhou et al., 2015). Thus, biased association may
occur due to the population structure and imbalanced familial
relatedness among cultivars. In order to break the population
structure and improve the statistic power for detecting rare
variations, the creation and usage of newly designed populations
in plants has emerged. In 2008, nested association mapping
(NAM) and multi-parent advanced generation inter-cross

(MAGIC) were used (Cavanagh et al., 2008; Yu et al., 2008) as
methodologies to enable the functional identification of loci of
interest. The NAM approach benefits from the historical and
recent recombination events with clear population structure,
whereas, MAGIC can examine the effect of loci unbiased
due to the balanced contributions from all founders. In
addition to these approaches, an additional population design
is the random open-parents association mapping (ROAM)
population which improves genetic resolution and statistical
power for detecting rare variations (Pan et al., 2016; Xiao
et al., 2016). Collectively, the recently designed populations
have demonstrated their capacity to reveal the genetic
components underlying complicated traits such as heterosis
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(Huang et al., 2016), leaf architecture (Tian et al., 2011) and
flowering time (Huang et al., 2011).

However, no matter which mapping population is chosen for
a study, a large number of molecular markers, which record the
level of genetic diversity between two parental lines or amongst
different cultivars, are needed for the mapping of QTLs. For
example, it was estimated that more than 10 million markers
were required for an efficient GWAS in maize, not taking
into account of epigenetic variations (Myles et al., 2009). In
brief, the development of molecular marker methodologies has
undergone three major stages. The earliest type of molecular
markers, such as restriction fragment length polymorphisms
(Botstein et al., 1980), random amplified polymorphism DNA
(Williams et al., 1990), sequence characterized amplified regions
(Paran and Michelmore, 1993), cleaved amplified polymorphic
sequences (Konieczny and Ausubel, 1993), simple sequence
repeats (Litt and Luty, 1989) and amplified fragment length
polymorphisms (Vos et al., 1995) rely on DNA hybridization or
polymerase chain reaction (PCR) techniques; which are either
too expensive or inefficient. As genomic and expression sequence
tag information began to accumulate (Adams et al., 1991), the
primary molecular markers tools changed from DNA fragment
lengths to the single nucleotide polymorphism (SNP) level (Wang
et al., 1998); since SNP consists of the largest amount of variations
in different genomes (Rafalski, 2002; Zhu et al., 2003). However,
SNP detection methods, such as Taqman and molecular beacons,
were still time-consuming and expensive (Tapp et al., 2000).
Lately, a high-throughput sequencing technology by massively
parallel sequencing and image recognition, such as Roche454
FLX Titanium (Thudi et al., 2012), HiSeq2500 (Bentley et al.,
2008), Ion Torrent PGM (Rothberg et al., 2011), could obtain
more than 100 million nucleotide sequences that could offer
millions of SNP markers at a comparatively low cost for a
mapping population (Shendure and Ji, 2008; Edwards and Batley,
2010). This is especially true for genotyping-by-sequencing
(GBS), which focuses on sequencing the ends of DNA restriction
fragments rather than the whole genome. As a result, GBS
provides scientists an alternative genotyping method to quickly
identify the genomic variations from an unprecedented number
of samples; especially for species with large genomes (Altshuler
et al., 2000; Narum et al., 2013). Due to the advantages of its
efficiency, speed, simplicity and cost-effectiveness (Davey et al.,
2011); GBS is an ideal marker acquisition technology (Poland
and Rife, 2012). Notably, the GBS method was used for QTL
mapping and genome diversity studies (Fu and Peterson, 2011;
Deschamps et al., 2012; Fu Y. B. et al., 2013; Lu et al., 2013). For
example, 140 million SNP and 200 thousand Insertion/Deletion
(InDel) markers amongst 5000 recombinant maize inbred lines
(Gore et al., 2009), 680 thousand SNP markers in 2815 maize
inbred lines (Romay et al., 2013), 200 thousand SNP markers
between wild and cultivated soybeans (Lam et al., 2010) were
identified by GBS. Thus, high-throughput sequencing technology
undoubtedly provides a revolutionary tool for offering a large
amount of whole genome-coverage genetic markers for gene
mapping either through linkage and/or association analyses
to dissect the genetic loci underlying any interested traits in
crops.

In addition to the sufficient amount of molecular markers,
the fast and accurate variance component estimation method
is also one of the prerequisites to perform a GWAS. In the
early stage of GWAS, the general linear model was employed
which included genome control (Henderson, 1975), family test
(Abecasis et al., 2000) and structural correlation (Pritchard et al.,
2000) to control possible false positive associations. Later, Yu et al.
(2006) proposed a method based on a mixed linear model (MLM)
for better control of the population structure and the imbalance
correlation among various materials; of which the population
structure (Pritchard et al., 2000) and the familial relatedness
among the different genotypes were treated as fixed effects and
random effects, respectively. However, no matter which statistical
method is applied, a large amount of samples is needed to obtain
sufficient statistical power (Balding, 2006). This is especially
important to detect the associations of a complex trait to loci
with small effects (Buckler et al., 2009). Since the computational
burden is proportional to the cube of the sample number fitted
as random effects, massive computational time is demanded
by the MLM. Especially, when associations are analyzed for a
large number of markers with the phenotypic information from
thousands of individuals, heavy computational burden occurs.
In order to solve this problem, the sire model was first used
in animal association studies to enhance the computational
speed by reducing random effects (Henderson, 1975; Thompson,
1979; Quaas and Pollak, 1980; Pollak and Quaas, 1983). After
that, genome-wide rapid association analysis using mixed model
and regression (GRAMMER) built in GenABLE software was
developed to approximately estimate the random effects via a
two-step residuals approach. It estimates the residuals from the
linear mixed model by removing the marker effects first, and
then the residuals are treated as a phenotype for each marker
under a standard linear regression model (Aulchenko et al.,
2007). This method significantly reduced the computational time
for each marker association calculation. Unlike the approximate
estimation, efficient mixed-model association (EMMA) matrix
is a method for an accurate estimation of variance component,
including the genetic variance and residual variance, which can
speed up the iterative process (Kang et al., 2008). However, for a
GWAS of a population consisting of a few thousand individuals
and a half million SNPs, it is probable that several years of
central processing unit time would be necessary to complete
the computing when using the EMMA method (Kang et al.,
2010; Zhang et al., 2010). Population parameters previously
determined (P3D) (Zhang et al., 2010) and EMMA eXpedited
(EMMAX) (Kang et al., 2010) were the other two complex
approximate estimation methods to reduce the computational
processing. The two calculation methods made it possible for
a personal desktop computer to perform GWAS; which adopts
1000 samples with 500 thousand markers or more. Although
in most cases, the approximate variance estimation method
would generate a nearly identical estimation as compared to
the accurate method (Kang et al., 2010; Zhang et al., 2010).
The accuracy of approximate estimation would be unknown in
the absence of accurate estimation for variance components.
Thus, factored spectrally transformed linear mixed models
(FaST-LMM) (Lippert et al., 2011) and genome-wide efficient
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mixed-model association (GEMMA) (Zhou and Stephens, 2012)
were developed. These approaches had advantages to directly
estimate variance components including fixed effects in MLM
and reduce the calculation burden for the single maker analysis.
Benefitting from continuous efforts, with the massively reduced
computational time and effective statistics method, the GWAS
strategy became computationally practical the enable the genetic
dissection for a trait of interest.

GWAS FACILITATES QTL CLONING FOR
DROUGHT TOLERANCE

Although several QTLs for drought resistance have been
identified through traditional linkage analysis, to date, no QTLs
responsible for drought resistance have been cloned; despite the
reports of their mapping information (Hao et al., 2009; Messmer
et al., 2009; Almeida et al., 2013; Semagn et al., 2013). In order
to clone a stress resistant QTL through traditional segregation
and linkage analysis, not only do the different recombinants in
the identified QTL region need to be screened, but the resistance
of their progenies also need to be phenotyped and compared to
determine which genetic region co-segregates with the resistance.
In order to narrow down the QTL region to candidate genes,
it usually takes several rounds of the fine mapping step;
which makes QTL cloning time-consuming and laborious. As a
result, the identification of the genetic components underlying
drought resistance has been considered and proven to be very
challenging. Nevertheless, owing to the advantage of a rapid
life cycle and less space requirements for the cultivation of
the model plant compared with crops; significant achievements
have been made in Arabidopsis thaliana to study the molecular
mechanisms for drought tolerance. Although, the genetic basis
of quantitative variation for drought resistance in crops remains
poorly understood, a complex gene network involving various
kinds of genes has been conceived (Li et al., 2005; Qin et al., 2011;
Osakabe et al., 2014).

Based on linkage disequilibrium (LD), the GWAS method
enabled researchers to greatly increase the knowledge base of the
genetic architecture and it also facilitated the cloning of genes
underlying complex traits in crops. For example, the genetic basis
of heterosis (Huang et al., 2016) and some important agronomic
traits (Cockram et al., 2010; Tian et al., 2011; Sukumaran et al.,
2014; Zhang et al., 2015; Si et al., 2016) were investigated through
GWAS in a large amount of collected or constructed populations.
However, it was estimated that for self-pollinating species, such as
rice and soybean, the LD decay of cultivated rice had a long-range
from about 100 kb to over 200 kb (McNally et al., 2009; Huang
et al., 2010); whereas those of soybean landraces and improved
cultivars were approximately 83 and 133 kb, respectively (Zhou
et al., 2015). Whereas, for maize, which is an out-pollination
species, the LD decay was estimated to be ≤2 kb among 26
founder genotypes of a nested association mapping population
(Gore et al., 2009); whereas the LD decay was∼500 bp in a maize
natural variation population (Fu J. J. et al., 2013). Therefore,
the rapid LD decay in the maize genome with above 1 million
high-quality SNPs (Fu J. J. et al., 2013; Li et al., 2013) could

make the resolution of GWAS reach the single gene level (Fu
J. J. et al., 2013; Li et al., 2013; Wang et al., 2016). As a result,
GWAS facilitated the gene cloning of ZmCCT which controls
maize photoperiod sensitivity (Hung et al., 2012; Yang et al., 2013)
and the investigatigation of evolutionary ZmWAK locus which
controls the resistance to Sporisorium reilianum, a soil-borne
fungus causing head smut disease in maize (Zuo et al., 2015).

Drought resistance is a complex and intrinsic trait, and the
improvement of plant drought resistance through molecular
breeding strategy is an ever growing hotspot for both basic and
applied research areas. By leveraging knowledge gained from
model plants, plant drought tolerance has been enhanced by
manipulating the expression of drought-responsive genes (Li
et al., 2005; Qin et al., 2011; Osakabe et al., 2014). In crops,
however, limited allelic variation underlying drought tolerance
has been identified. Recently, GWAS has contributed to the
identification of favorable alleles for drought tolerance, especially
in maize. Setter et al. (2011) reported that a candidate gene
association analysis identified loci involved in the accumulation
of carbohydrates and ABA metabolites under drought; of
which eight candidate SNPs were confirmed to be significantly
associated with the tolerance. Later, each genotype of this
association panel was crossed with a common tester (CML312)
and the generated F1 plants were phenotyped for nine traits
under well-watered and water-stressed conditions in seven
environments. As a result of this analysis, an additional 42
associated SNPs were identified (Xue et al., 2013). Liu et al. (2013)
analyzed all the functional (Dehydration Responsive Element
Binding protein) DREB genes in maize and examined their
associations with the natural variation in drought tolerance
among 368 maize varieties collected from tropical/subtropical
and temperate regions (Fu J. J. et al., 2013; Li et al., 2013).
A significant association of the natural variation in ZmDREB2.7
gene with drought tolerance was detected which locates in the
gene promoter region and most likely enables an early induction
of stress responsive gene expression. Thirunavukkarasu et al.
(2014) reported that by using 240 accessions of subtropical maize
with a high density marker set, 61 significant SNPs were identified
under water stress condition; 48% of which were stress tolerance
related genes. Moreover, the genetic basis of drought resistance
in Hordeum vulgare, Cicer arietinum, A. thaliana, Medicago
truncatula were also investigated by GWAS (Thudi et al., 2014;
Verslues et al., 2014; Kang et al., 2015; Wehner et al., 2015).
Recently, combined data from 15 bi-parental populations of
maize were developed under the Water-Efficient Maize for Africa
(WEMA) project to identify drought resistance genes by GWAS.
The study identified several hundred genetic variants that are
associated with plant height and flowering time under various
water deficit conditions (Wallace et al., 2016). By adopting a
global maize diversity panel (Yang et al., 2010; Fu J. J. et al.,
2013; Li et al., 2013), Wang et al. (2016) reported a GWAS of
maize drought resistance at the seedling stage and identified
83 genetic variants, which were resolved to 42 candidate genes.
The peak GWAS signal overlapped with a previously reported
drought related QTL9.3 (Semagn et al., 2013), and is directly
located in the ZmVPP1 gene on Chromosome 9 which encodes
a vacuolar-type H+-pyrophosphatase (H+-PPase). The ZmVPP1
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gene is a homolog of AVP1 which encodes an Arabidopsis H+-
PPase. The AVP1 gene was shown to confer drought and salt
resistance when over-expressed in Arabidopsis (Gaxiola et al.,
2001). Yeast and E. coli H+-pyrophosphatases can establish a
proton gradient across the vacuolar membrane by means of
pyrophosphate (PPi) hydrolysis (Maeshima, 2000; Rea and Poole,
2003) and acidify the vacuole (Lin et al., 2012). Other studies
also found that transgenic plants expressing the H+-PPase from
Arabidopsis or other species developed larger root systems and
were more resistant to salt, drought stress, and phosphorous
deficiency (Gaxiola et al., 2001; Park et al., 2005; Zhao et al., 2006;
Li et al., 2008; Lv et al., 2008; Bao et al., 2009; Pasapula et al.,
2011; Pei et al., 2012; Schilling et al., 2014). The GWAS study
demonstrated that the natural variation in ZmVPP1, had the most
significant impact to the drought resistance of young seedlings
on a genome-wide scale. In the tolerant allele of ZmVPP1
containing three MYB recognition sequences (WAACCA, W: A
or T), a 366-bp insertion was found as the causative variation
that conferred the drought inducible expression of ZmVPP1
(Wang et al., 2016). Moreover, an additional natural variation in
ZmNAC111 located on maize Chromosome 10, which encodes
a NAM, ATAF, CUC2 (NAC) type transcription factor, was
also found to contribute to the tolerance. ZmNAC111 belongs
to a plant-specific transcription factor superfamily which is
comprised of members that participate in various biological
processes, including plant development, stress response, leaf
senescence, and ion re-location (Uauy et al., 2006; Jeong et al.,
2010; Nakashima et al., 2012; Liang et al., 2014). An 82-bp
miniature inverted-repeat transposable element, forming a stem-
loop structure, inserts in the gene promoter. It represses the gene
expression most likely through RNA-directed DNA and histone
methylation (Mao et al., 2015). Further transgenic data suggested
that the biological function of ZmNAC111 and ZmVPP1 were
different and are most likely functionally involved in the
reduction of water loss under water deficit or the enhancement
of water uptake and leaf photosynthesis (Mao et al., 2015; Wang
et al., 2016). Notably, in Arabidopsis it is found that clade A
protein phosphatase 2C genes (PP2C-As) negatively function in
ABA signaling and plant drought response (Ma et al., 2009; Park
et al., 2009). In order to find the natural variations of ZmPP2C-
As that are directly associated with maize drought tolerance, a
candidate gene association analysis was conducted. Among this
gene family, ZmPP2C-A10 was found to be tightly associated
with drought tolerance. Furthermore, a causal natural variation
of this gene was identified, lacking an endoplasmic reticulum
stress response element (ERSE) in the gene promoter due to a
14-bp deletion, could lead to increased plant drought tolerance
(Xiang et al., 2017).

Furthermore, the adoption of global natural varieties which
originate from different regions and periods of time, GWAS can
infer the trend of evolution and/or the artificial selection of an
important trait. Crops have been subjected to cultivation and
extensive selection for grain productivity and quality to meet
with human demand. For example, the ZmWAK locus, which
conferred resistance to head smut, was lost from the teosinte wild
ancestry during the domestication of maize (Zuo et al., 2015).
Thus, a GWAS population consisting of the ancestral varieties of

a species and those from adverse environments would be of great
value to identify genetic loci contributing to the stress tolerance
or help to understand the domestication history of an important
trait by utilization of a superior allele (Hung et al., 2012; Yang
et al., 2013; Zhou et al., 2015).

NETWORK ANALYSIS OFFERS A NEW
TOOL TO REVEAL THE MECHANISM
FOR DROUGHT TOLERANCE

Despite the fact that stress responsive genes are often studied
in a one by one manner to undercover their roles in stress
tolerance, coordinated expression of related genes has also
been identified. For example, microarray and RNA gel blot
analyses confirmed that a drought-inducible transcription factor
(DREB2A) can regulate the expression of many stress-responsive
genes (Sakuma et al., 2006). Findings such as this support the
strategy for enhancing stress tolerance by manipulating a single
regulatory gene and systematically altering the expression of
a large number of genes involved in the drought-responsive
network. Despite a large number of genes that are involved
in the co-expression network, based on the integrative large
scale data acquisition and analysis, systems biology offers a
new and integrated tool to dissect the network. Sulpice et al.
(2010) found that by profiling maximum catalytic activities of
37 enzymes from central metabolism, a matrix was generated
to investigate species-wide connectivity among metabolites,
enzymes, and biomass. The results showed that biomass can be
predicted by two independent integrative metabolic biomarkers
that could result in the preferential investment in photosynthetic
machinery and optimization of carbon use. The genetic loci
controlling differential gene expression in maize kernels were
investigated through GWAS, which revealed a comprehensive
gene regulatory network consisting of 31 zein and 16 key
kernel genes (Fu J. J. et al., 2013). A comprehensive study of
maize kernel metabolites, in relation to genetic variations and
gene expressions, identified biomarkers associated with kernel
weight which may facilitate the genetic improvement of maize
(Wen et al., 2014). Undoubtedly, stress resistance consists of a
combination of dynamic networks that contain many correlated
genes. The potential for the expression of a specific gene to
enhance stress tolerance or not depends on multiple factors
such as its position, branch point, direction, and redundant
reactions in the network. Recently, network analysis has provided
a framework for understanding and modulating plant responses
to salt stress and abscisic acid application, through chromatin
immuno-precipitation sequencing. Genome-wide targets of
21 ABA-related transcription factors were identified and a
comprehensive regulatory network was constructed. Moreover,
a new family of transcriptional regulators was discovered
to be functionally involved in ABA and salt responsiveness,
and shown to modulate plant tolerance to osmotic stress in
Arabidopsis (Song et al., 2016). Taken together, knowledge
derived from network analyses will provide us with new
strategies to cope with the ongoing challenges of drought
stress.
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STACKING OR COMBINING FAVORABLE
ALLELES TO IMPROVE DROUGHT
TOLERANCE

The key to meet the ever-growing demand for crops yield,
and to relieve the threat on crop productivity imposed by
environmental stress, is to cultivate high-yield and high-
resistance varieties. As a result, it is very important that
breeders can have access to tools and technologies that will
enable them to improve their selection efficiency. Molecular
breeding, which includes MAS, genome editing, genome-
wide selection and transgenics, is based on the knowledge
of QTL/gene mapping and cloning and is considered as an
innovative approach for precision breeding in the 21st century
to meet growing demand for food sources (Collard and
Mackill, 2008; Voytas and Gao, 2014; Gao, 2015). A favorable
allele from wild soybean was used to increase seed protein
content in soybean by MAS (Sebolt et al., 2000). Merchuk-
Ovnat et al. (2016) generated a near isogenic line (NIL-7A-
B-2) by introgressing a drought-related QTL on chromosome
7A from wild emmer wheat into a cultivated wheat variety;
resulting in enhanced grain yield and biomass production
across environments. Notably, by using the (CRISPR)-Cas9
genome editing technology (Cong et al., 2013; Mali et al.,
2013), targeted mutations were successfully introduced into the
three homoeoalleles encoding MILDEW-RESISTANCE LOCUS
(MLO) proteins; which conferred heritable resistance to powdery
mildew in hexaploid bread wheat (Wang et al., 2014). The
reported natural allele variation of DRO1 (Uga et al., 2013),
ZmDREB2.7 (Liu et al., 2013), ZmNAC111 (Mao et al., 2015),
and ZmVPP1 (Wang et al., 2016) shed novel insight into
how natural variation factors into improving crop drought
tolerance or resistance. Moreover, the cumulative effects of
multiple quantitative resistance loci could be exploited to
produce high tolerance (Miedaner et al., 2006; Richardson
et al., 2006). Thus, it is plausible that several favorable
alleles, not restricted to ZmDREB2.7, ZmNAC111, and ZmVPP1,
can be stacked to improve drought tolerance in maize and
other crops by marker-assisted selection or genome editing
technology.

PERSPECTIVES

Global climate change threatens crop production worldwide.
Unexpected changes in weather patterns, such as high
temperature and drought have dramatically affected crop yield
which in turn could result in food and societal crises. It is
plausible that molecular breeding strategies may speed up
the traditional breeding processes to increase stress resistance
in cultivars; enabling them to better cope with the changing
environment. Along with the development of high-throughput
DNA sequencing technology, whole genome covered markers
can be produced more cost-effectively with unprecedented
increases of accuracy. Meanwhile, the advances of statistical
analyses for quantitative genetics provide new methodologies
to dissect the genetic basis of complex traits. It can be anticipated
that systematic network analyses, consisting of genomics,
transcriptomics, proteomics, metabolomics, and phenomics, will
provide integrative information for increase our understanding
of the balance between stress response and grain yield and quality.
Undoubtedly, this acquired knowledge will be of great value to
put us in a better position to enable the precise molecular design
of new cultivars with desired stress resistance and yields.
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