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Genome-wide association study reveals
that different pathways contribute to grain
quality variation in sorghum (Sorghum
bicolor)
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Abstract

Background: In sorghum (Sorghum bicolor), one paramount breeding objective is to increase grain quality. The

nutritional quality and end use value of sorghum grains are primarily influenced by the proportions of tannins,

starch and proteins, but the genetic basis of these grain quality traits remains largely unknown. This study aimed to

dissect the natural variation of sorghum grain quality traits and identify the underpinning genetic loci by genome-

wide association study.

Results: Levels of starch, tannins and 17 amino acids were quantified in 196 diverse sorghum inbred lines, and 44

traits based on known metabolic pathways and biochemical interactions amongst the 17 amino acids calculated. A

Genome-wide association study (GWAS) with 3,512,517 SNPs from re-sequencing data identified 14, 15 and 711

significant SNPs which represented 14, 14, 492 genetic loci associated with levels of tannins, starch and amino acids

in sorghum grains, respectively. Amongst these significant SNPs, two SNPs were associated with tannin content on

chromosome 4 and colocalized with three previously identified loci for Tannin1, and orthologs of Zm1 and TT16

genes. One SNP associated with starch content colocalized with sucrose phosphate synthase gene. Furthermore,

homologues of opaque1 and opaque2 genes associated with amino acid content were identified. Using the KEGG

pathway database, six and three candidate genes of tannins and starch were mapped into 12 and 3 metabolism

pathways, respectively. Thirty-four candidate genes were mapped into 16 biosynthetic and catabolic pathways of

amino acids. We finally reconstructed the biosynthetic pathways for aspartate and branched-chain amino acids

based on 15 candidate genes identified in this study.

Conclusion: Promising candidate genes associated with grain quality traits have been identified in the present

study. Some of them colocalized with previously identified genetic regions, but novel candidate genes involved in

various metabolic pathways which influence grain quality traits have been dissected. Our study acts as an entry

point for further validation studies to elucidate the complex mechanisms controlling grain quality traits such as

tannins, starch and amino acids in sorghum.
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Background
With the increasing demand for healthy and nutritious

food, developing crop varieties with enhanced grain qual-

ity is an important target for many breeding programs.

Sorghum (Sorghum bicolor) is a major cereal crop which

provides food for over half a billion people in the arid and

semi-arid tropics of Africa and Asia, which manage to

produce high yield under drought and high-temperature

stress prevalent in these regions. Sorghum grain is a

source of carbohydrates, minerals, proteins, vitamins, and

antioxidants [1]. Understanding the natural variation and

genetic architecture of grain quality traits in sorghum is a

first step towards improvement of the nutritional quality

through conventional and molecular breeding.

Grain quality is determined by the biochemical and

physical characteristics of the grain. It varies among cereal

crops and diverse germplasm, but in general, cereal grains

mainly contain starch, protein and fat. Some sorghum

germplasms contain unique phenolic compounds, includ-

ing condensed tannins. Starch is the most important com-

ponent which provides energy to humans and livestock

and accounts for ∼70% of dry grain weight in cereals [2].

There are two types of starch in cereal grains, including

amylose and amylopectin. And the ratio of these two

starches plays an essential role in grain structure and qual-

ity. Starch biosynthesis and assembly in cereals are cata-

lyzed by various vital enzymes, including ADP-glucose

pyrophosphorylases (AGPase), soluble starch synthase

(SS), starch branching enzyme (SBE), starch debranching

enzyme (DBE) and granule-bound starch synthase (GBSS)

[3]. Mutations which cause changes in activities of these

enzymes and subsequent variation in starch quality and

quantity have been discovered. For instance, in maize,

shrunken1 and amylose extender1 affect the amylose con-

tent in starch granules [4]. The sugary mutants in maize

are used to produce sweet maize with increased sucrose

content and reduced concentration of amylopectin [5]. In

sorghum, mutants of waxy gene that encodes GBSS, have

little or no amylose, thus increased protein and starch di-

gestibility [6]. The sugary mutants which contain high

water-soluble carbohydrates in the endosperm have also

been characterized in sorghum [7].

Grain quality traits such as digestibility and nutritional

value depend heavily upon the content of the cereal pro-

teins, which are primarily attributed to their amino acid

composition. Cultivated sorghums have limited levels of

threonine (Thr) and lysine (Lys) [8], which are two of the

nine essential amino acids for humans and animals. Be-

sides the primary role of protein synthesis, amino acids

are precursors for osmolytes, hormones, major secondary

metabolites and alternative energy source [9]. Also, amino

acids are crucial for seed development and germination as

well as plant stress response. To date, the amino acid me-

tabolism pathways have been well studied, and key genes

regulating these pathways have been identified in Arabi-

dopsis [10, 11], tomato [12], soybeans [13], rice [14] and

maize [15]. Among the well characterized genes are

Opaque-2 (O2), floury-2 and high-lysine, whose mutants

have high lysine concentrations [15]. These mutations

could be used to enhance the nutritional value of cereal

grains. Although the lines with high lysine have continued

to be used in research, they are yet to be commercially

used except for quality protein maize (QPM) [16]. The

major setback of high lysine mutations in cereals is their

adverse effects on agronomic performance especially low

yield. Identification of alternative genes that would en-

hance the grain nutritional quality without compromising

on the yield and in-depth understanding of amino acids

metabolism are essential steps in the development of sor-

ghum grains with high-quality proteins.

Flavonoids including flavonols, anthocyanins and proantho-

cyanidins (also called condensed tannins), are secondary me-

tabolites in higher plants known for the pigmentation in

flowers, fruits and seeds [17]. Flavonoids significantly contrib-

ute to human health due to their antioxidant capacity and

radical scavenging functions [18]. In plants, condensed tan-

nins protect against insects, birds, herbivores, cold tolerance,

bacterial and fungal infections. Pharmacological studies have

shown that tannins have considerable health-promoting prop-

erties. Therefore, they may be potentially used as nutraceuti-

cals or dietary supplements [19].

The genetic control and biochemical pathways for con-

densed tannins have been extensively studied in maize and

Arabidopsis [20]. Recently, Tannin1, a gene underlying the

B2 locus in sorghum and encoding a WD40 protein, was

cloned [21]. It is a homologue to TRANSPARENT TESTA

GLABRA 1 (TTG1), a regulator of proanthocyanidins in

Arabidopsis. Furthermore, an MYB transcription factor,

Yellow seed1 (Y1) which controls pericarp pigmentation

and 3-deoxyanthocyanidins accumulation in sorghum peri-

carp, has been cloned [21]. However, there still exists a sig-

nificant gap in knowledge of the available diversity of

tannins and the underlying genetic mechanisms.

GWAS has been proven to be a powerful tool in deter-

mining the genetic basis of complex traits in plants, in-

cluding grain quality traits [7, 22–24]. It can evaluate

several alleles at a single locus from natural populations

to provide a higher mapping resolution as opposed to

the linkage mapping which can only assess limited loci

from biparental populations to capture narrow levels of

allelic diversity [25]. In sorghum, using genotyping-by-

sequencing data, GWAS has been used to identify QTLs

for several grain quality traits including polyphenols

[26], proteins and fat [7], minerals [27], amylose, starch,

crude protein, crude fat, and gross energy [28]. Here we

present the use of high-density re-sequencing data to

characterize the population structure of 196 diverse sor-

ghum accessions and to identify the genetic loci and
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candidate genes underlying natural variations of tannins,

starch and amino acids in sorghum.

Results
Genetic structure and linkage disequilibrium of the

assembled association panel

Population structure was calculated with a filtered set of

841,038 SNPs. Six ancestral populations (later referred to as

Pop1 to Pop6) were identified based on the K value corre-

sponding to the lowest cross-validation error in the AD-

MIXTURE software [29] (Fig. 1a). Pop1 (n = 13) consisted

mostly of improved lines of African origin. Pop2 (n = 64)

and Pop3 (n = 19) showed a close relationship and con-

sisted mostly of improved lines from at least 25 countries/

regions. At least 80% of accessions in Pop4 (n = 41) were

landraces from China. Pop5 was comprised of 69 and 31%

improved lines and landraces, respectively, from USA (n =

11), Sudan (n = 8) and Ethiopia (n = 6). Pop 6 was com-

posed of 14 landraces and 6 improved lines, with majority

of Asian origin (Additional file 3: Table S1). We also per-

formed Principal Component Analysis (PCA) to investigate

the relationship amongst accessions in the diversity panel

(Fig. 1b, c). PC1 to PC3 captured ~ 34.25% of the genetic

variation. When the six sub-groups from ADMIXTURE

were integrated into the PCA biplots of PC1 vs PC2 and

PC2 vs PC3, three clusters consisting of two sub-

populations each were observed, i.e. Pop2 and Pop3, Pop1

and Pop5, and Pop4 and Pop6 (Fig. 1b, c).

We further inferred the relationships amongst the six sub-

populations by constructing a maximum likelihood tree

using unlinked SNP markers by running DNAML programs

in the PHYLIP integrated in SNPhylo [30] (Fig. 1d). The six

sub-groups were in three major clades. Majority of acces-

sions in Pop2 and Pop3 shared a clade, Pop4 and Pop6

shared another clade while Pop1 and Pop5 clustered into

one clade. This suggests high genetic relatedness amongst

genotypes within similar clades, resembling their differenti-

ation in structure analysis and PCA (Fig. 1a, b and c).

Another way of exploring the genome landscape of a

population for association mapping is the extent of LD

decay as a function of the physical distance for all chromo-

somes. We estimated the extent of LD decay within the six

sub-groups and the whole diversity panel using genome-

wide SNPs. The LD decay rate significantly varied amongst

the six sub-groups, and the LDs of Pop2, Pop4 and Pop5

decayed much faster than those of Pop1, Pop3 and Pop6

(Fig. 21d). The whole population showed a rapid decline in

average LD with the increase in distance, where it de-

creased to r2 = 0.2 at ~ 8 kb distance, and reached to the

optimum threshold value (r2 = 0.1) at ~ 40 kb (Fig. 21d).

Natural variation of grain quality traits

To assess the extent of natural variation in grain quality traits

in sorghum, we quantified tannin, starch and 17 amino acids

levels from the flour of dry, mature sorghum grains from

196 diverse sorghum accessions (Additional file 4: Table S2).

Tannin and starch levels were expressed as the percentage of

dry grain weight and ranged from 1.2 to 2.2%, and 38.6 to

75.8%, respectively. Amino acid levels were expressed as

nmolmg− 1 of dry grains flour. Among the 17 amino acids

detected, Glu and Cys were the most abundant amino acids,

and His and Met were the least abundant, with average rela-

tive compositions (absolute level/Total*100) of 16.15, 11.82,

and 1.15%, 1.15%, respectively (Table 1). The relationships

amongst amino acids were calculated using Spearman’s rank

correlation method, and the results were visualized using

PerformanceAnalytics package (Fig. 2). Amino acids domin-

antly showed positive correlations except only one weak

negative relationship between Cys and Thr. Amino acids

which are biologically related exhibited strong positive corre-

lations. For instance, branched-chain amino acids (BCAA),

Ile, Val and Leu, were highly correlated with rsp values ran-

ging from 0.6 to 0.82 for Ile vs Val and Ile vs Leu, respect-

ively. Additionally, to uncover the regulators of amino acids

in sorghum grains, we derived 44 more traits from absolute

amino acids levels (detailed in methods; Additional file 5:

Table S3) based on biological relationships amongst 17

amino acids and used them as phenotypes for GWAS.

Most of the grain quality traits exhibited an approximately

normal distribution of the frequency of phenotypic values as

indicated by the skew values (Table 1) and histograms (for

starch, see Fig. 4; for tannins see Fig. 3, and for amino acids

see the diagonal of Fig. 2). The distribution of grain quality

traits across the six sub-populations in our association panel

was further investigated (Additional file 7: Table S5), which

could provide fundamental knowledge for further germplasm

utilization and improvement. The tannin content was high-

est in Pop4 (1.62%) and lowest in Pop1 and Pop5 (1.3%).

Conspicuously, in Pop4, 83% (34/41) of the accessions were

collected from China, where red sorghum grains are pre-

ferred for the production of Chinese Baijiu which derives a

unique aroma from tannins [31]. Starch content showed no

significant difference in accessions across the six sub-

populations. Twelve amino acids showed significant differ-

ences in at least two populations whilst seven of them had

no significant difference across populations.

Next, we investigated the phenotypic diversity of our ac-

cessions based on their usage (Additional file 1: Figure

S1). The average tannin content was highest in the broom

sorghum while starch content was highest in grain sor-

ghum. Forage sorghum had the lowest level of starch in

the grains. Majority of the amino acids had the highest

levels in broom sorghum, while the highest levels of Met,

Cys, Gly and Thr were found in grain and sweet sorghum.

Association mapping and candidate genes identification

To dissect the genetic basis underlying the natural vari-

ation of grain quality traits in sorghum, we tested the
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association of each trait in 196 diverse accessions using 3,

512,517 re-sequencing genome-wide SNPs (MAF > 0.05)

based on FarmCPU model in MVP package of R [32]. The

quantile-quantile plots showed that the principal compo-

nents and relative kinships controlled the population

structure effectively and reduced false positives to some

extent, with no significant influence from the confounders.

Given the overall linkage disequilibrium (LD) decay across

the genome of this sorghum population at 40 kb (r2 = 2)

(Fig. 1e), the significant SNPs within an 80-kb region

flanking the left and right side of each significant SNP

were considered to represent a locus. Candidate genes re-

sponsible for the variation of grain quality traits were

scanned in the v3.1 of the Sorghum bicolor genome in

Phytozome v.10 [33] based on this definition of a locus

and listed in Additional file 8: Table S6.

Tannin content

Genome-wide association analysis of tannin content in

sorghum grains detected 14 SNPs representing 14 loci,

Fig. 1 Population structure analysis of 196 diverse sorghum accessions using genome-wide SNPs. a Hierarchical organization of genetic relatedness of

the 196 diverse sorghum lines. Each bar represents an individual accession. The six sub-populations were pre-determined as the optimum number

based on ADMIXTURE analysis with cross-validation for K value from K = 2 to K = 10 using 841,038 unlinked SNPs (r2 < 0.8), distributed across the

genome. Different colours represent different sub-populations. b A plot of the first two principal components (PCs) coloured by sub-populations. c

PC2 vs PC3 coloured by sub-populations. d Phylogenetic tree constructed using the maximum likelihood method in SNPhylo. The colours are based

on the six sub-populations from ADMIXTURE results. e Comparison of genome-wide average linkage disequilibrium (LD) decay estimated from the

whole population and six sub-populations. The horizontal broken grey and red lines show the LD threshold at r2 = 0.2 and r2 = 0.1, respectively
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and all of them were above the significance threshold

(P ≤ 2.93E-06) (Fig. 3). The SNP with the strongest

association with tannin content was 5:34971014 (P =

6.02E-12) which tagged Sobic.005G110600 (32.4 kb away;

similar to Glycosyl hydrolases family 18 protein). Also,

one associated SNP 4:62341358 which was in high LD

with previously cloned Tannin1 gene in sorghum was

included [21], although it was slightly below the signifi-

cance threshold (P = 5.23E-6) (Fig. 3b). In the region of

Tannin1 gene, seven more candidate genes were identi-

fied (Fig. 3d and f; Additional file 8: Table S6). One of

these 7 genes was a priori gene, Sobic.004G281000,

(similar to MADS-box protein; ~ 10.1 kb from the sig-

nificant SNP 4:62341358). It is a homologue to TRAN

SPARENT TESTA 16 (TT16), which plays a key role in

tannins biosynthesis [34]. Two SNPs hit directly into can-

didate genes, namely, 4:61736881 (P = 1.62E-08), which is

in the intron of Sobic.004G273600 (RNA recognition

motif) and a synonymous mutation 8:57291105 (P =

2.55E-08), in the exon of Sobic.008G141833 (no annota-

tion). Interestingly, 4:61736881 colocalized with a priori

candidate gene Sobic.004G273800 (~ 28.9 kb from the sig-

nificant SNP), a Myb-related protein Zm1 (Fig. 3d and e).

This is consistent with previous result [26], albeit with a

higher resolution. In future, evaluation of tannin content

in multiple years and locations coupled with an increase

in the sample size would further increase this resolution.

In addition, on chromosome 3 at ~ 57.7Mb, SNP 3:

57708223 (P = 1.08E-10) was in the region of the R

locus, which controls the base pericarp colour (red, yel-

low or white) together with the Y locus [26]. However,

the nearest gene Sobic.003G230900, and a putative

homologue of TRANSPARENT TESTA 3 (TT3; 68.8%

protein similarity) [35], was ~ 667.6 kb from the signifi-

cant SNP, outside our defined locus region.

Based on the KEGG online sorghum pathway database, at

least six candidate genes were mapped into various metabol-

ism pathways (Table 2). One of the candidate genes

(Sobic.009G072000; ATP-dependent 6-phosphofructokinase

6) was involved in six metabolism pathways including pen-

tose phosphate pathway, glycolysis/gluconeogenesis, RNA

degradation, biosynthesis of amino acids, fructose and

Fig. 2 Variations and spearman’s correlations among 17 amino acids. The lower panel left of the diagonal is the scatter plots containing

measured values of 196 accessions. The red line through the scatter plot represents the line of the best fit. Spearman’s correlation coefficients

between amino acids are shown on the upper panel on the right of the diagonal. The correlation significance levels are *p = 0.05, **p = 0.01 and

***p = 0.001, and the size of the coefficient values are proportional to the strength of the correlation
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mannose metabolism, and galactose metabolism. And an-

other intriguing candidate genes was Sobic.004G273900, en-

coding peroxidase 5, which was mapped on to the

phenylpropanoid biosynthesis pathway and is the starting

point for the production of flavonoids, including condensed

tannins [37].

Starch content

Using the starch content in sorghum grains of our diver-

sity panel, 15 significant associations representing 14 loci

were identified (Fig. 4). Significant loci were distributed

across chromosomes 2, 3, 4, 5, 8, 9 and 10, and 4:

56136753 was the most significant SNP (P = 3.66E-07).

According to the definition of a locus (40 kb right and

left of the significant SNP), 28 candidate genes in the LD

decay distance of 5 loci represented by 5 SNPs were

identified (Additional file 8: Table S6). Among the 5

SNPs, three hit directly on candidate genes. No candi-

date genes could be found within the locus region of 10

associated SNPs due to low density of genes in their re-

gions. However, with the development of sequencing

technologies, it is possible to identify candidate genes

around these SNPs. Based on the compiled list of a

priori candidate genes for starch content [7], at least one

candidate gene encoding sucrose phosphate synthase

(Sobic.005G089600) was identified ~ 22.8 kb away from

associated SNP 5:12830390 (P = 1.53E-06) (Fig. 4). Fur-

thermore, two candidate genes tagged by one SNP (4:

56136753) were mapped into three KEGG metabolism

pathways. These two genes included Sobic.004G211866

that encodes S-adenosylmethionine decarboxylase pro-

enzyme (involved in cysteine and methionine metabol-

ism and arginine and proline metabolism) and

Sobic.004G211833 that encodes cytochrome C oxidase

subunit 6B (involved in Oxidative phosphorylation).

Amino acid content

In the GWAS of 17 amino acids and 44 derived traits,

711 SNPs representing 492 loci were identified (Fig. 5,

Additional file 8: Table S6). Significant associations

ranged from 0 in Glu to 60 SNPs in Leu/Pyruvate family.

Furthermore, 47 SNPs representing 40 loci were de-

tected in at least two amino acid traits, possibly due to

tight gene linkages or pleiotropy of genes/loci (Fig. 5,

Additional file 2: Figure S2). This was supported by

strong correlations between several amino acid traits

(Fig. 2) and may implicate candidate genes involved in

the regulation of multiple amino acid traits. The full list

of significant SNPs and potential candidate genes are

presented in Additional file 8: Table S6, which could be

used for further validation and investigation.

Table 1 Summary statistics of tannins, starch and 17 amino acid contents measured in the association panel

Trait Units Absolute value (pmol ul− 1mg− 1) Relative
value
(% of
total)

Mean SD Minimum Maximum

Ala nmol mg−1 14.38 2.56 7.60 21.07 11.45

Arg nmol mg−1 2.84 0.69 1.09 4.96 2.26

Asp nmol mg−1 7.95 1.54 3.36 11.69 6.33

Cys nmol mg−1 14.83 13.56 0.05 70.56 11.82

Glu nmol mg−1 20.27 3.95 9.44 32.92 16.15

Gly nmol mg−1 6.49 1.44 0.05 11.49 5.17

His nmol mg−1 1.45 0.93 0.60 6.32 1.15

Ile nmol mg−1 4.48 1.02 2.40 7.42 3.57

Leu nmol mg−1 14.41 2.79 7.02 21.79 11.48

Lys nmol mg−1 2.09 0.59 1.16 4.60 1.67

Met nmol mg−1 1.45 0.48 0.05 3.03 1.15

Phe nmol mg−1 4.56 1.33 1.69 8.75 3.63

Pro nmol mg−1 11.06 3.97 0.05 20.60 8.81

Ser nmol mg−1 5.56 0.98 2.65 7.79 4.43

Thr nmol mg−1 4.49 1.30 0.05 9.23 3.57

Tyr nmol mg−1 2.81 0.72 0.42 5.08 2.24

Val nmol mg−1 5.72 1.28 1.87 9.16 4.56

Starch % dry grain weight 59.28 6.02 38.65 75.80 –

Tannin % dry grain weight 1.48 0.24 1.16 2.24 –
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Through the curation of a priori candidate gene involved

in amino acids biosynthesis and degradation from the gra-

mene database, 698 genes were identified (Additional file 6:

Table S4). Out of 698 a priori candidate genes, 34 were

identified through GWAS signals (Table 3), which were dis-

tributed across 10 pathways/superpathways. BCAA family

(Leu, Val, and Ile) and Aspartate family biosynthesis super-

pathways were overrepresented (17/34 genes). Interestingly,

five loci that were identified in multiple amino acid traits

hit directly into a priori candidate genes. For example, SNP

5:67881473, significantly associated with Ile/BCAA family,

Val/BCAA family, Val/Pyruvate family and Val/Total,

tagged Sobic.005G194900 (similar to Phosphoserine phos-

phatase gene), a gene involved in BCAA family biosynthesis

pathway. In addition, four direct hits of a priori candidate

genes by GWAS signals were involved in more than one

amino acid metabolism pathway. For example, at ~ 55.5

Mb on chromosome 10, SNP 10:55465480 significantly as-

sociated with Val/BCAA family tagged Sobic.010G212000

(similar to Putative uncharacterized protein), a candidate

gene involved in four pathways: arginine degradation I (ar-

ginase pathway), proline degradation I, proline degradation

II and valine degradation I, which shows the pleiotropic na-

ture of these candidate genes.

In conclusion, we integrated our GWAS results for a priori

candidate genes identified for aspartate (8 candidate genes)

and BCAA (9 candidate genes) family biosynthesis pathways

based on published results in Arabidopsis [39, 40] (Fig. 6).

Sobic.001G011700 encodes Aspartokinase, an enzyme that

catalyzes the conversion of Asp to β-aspartyl phosphate in

the first step of the biosynthesis of Met, Lys and Thr, was

identified. Six putative candidate genes (Table 3) were in-

volved in the phosphorylation of homoserine kinase that

converts homoserine to O-phospho-L-homoserine, a precur-

sor for Met and Thr biosynthesis [39]. Sobic.001G453100 en-

codes Homocysteine S-methyltransferase 1, an enzyme in

the last step of methionine biosynthesis pathway and cata-

lyzes transfer of methyl from S-methyl-L-methionine to L-

homocysteine to yield H+ and 2 L-methionine.

Acetolactate synthase (ALS) catalyzes the first step of

BCAA family biosynthesis pathway. ALS is involved in the

conversion of two pyruvate molecules to 2-Acetolactate in

the Val and Leu biosynthesis pathways or one pyruvate

molecule and one 2-oxobutanoate molecule into 2-aceto-

2-hydroxybutyrate in Ile biosynthesis pathway [40]. Seven

of our GWAS candidate genes were homologues of ALS.

Furthermore, 2-keto-isovalerate can be converted into 2-

isopropylmalate with the help of Isopropylmalate synthase

Fig. 3 GWAS for Tannin levels in sorghum seed and direct hits to a priori candidate gene region. a Distribution of tannin content in 196 diverse

accessions. b Manhattan plot for tannin content GWAS. Black arrows show associated SNPs located close to candidate genes. c Quantile-quantile plot

for tannin content GWAS. d A close up of the significant association on chromosome 4. The broken red line represents the significance threshold. e

and f LD blocks showing pairwise r2 values among all polymorphic sites in candidate genes region, where the intensity of the colour corresponds to

the r2 value as indicated on the legend. Candidate genes Zm1 (~ 61.7Mb region), Tannin1, TT16 and SCL8 (~ 62.3 Mb region) are shown
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(IPMS) in the Leu biosynthesis pathway. We identified

Sobic.008G012400 (Tagged by SNP 8:1074094; P = 1.79E-

06) in association with Leu/Pyruvate family (Table 3) that

encodes 2-isopropylmalate synthase 1.

Discussion
The success of a GWAS depends on the genetic variation

in assembled association panel. The higher the diversity of

the association panel, the higher the resolution of an associ-

ation study in mining novel alleles [25]. Structure analysis

of our association panel reflected classification of genotypes

based on their geographical origin and type (i.e. landraces

vs improved). Previous reports showed that the major gen-

etic structure in sorghum was mainly according to racial

and geographical origin classification [41]. However, botan-

ical race information of the accessions in our association

panel was limited. Furthermore, the PCA biplots showed

similar clustering where PC1 to PC3 explained at least 34%

of genetic variation, which was consistent with structure

analysis for natural populations [41]. The decay rate in the

average LD reflected the genetic variability among the ac-

cessions in different sub-populations of the association

panel. Although the sub-populations with rapid LD decay

rate (Pop2, Pop4 and Pop5) might be diverse based on type

(landraces vs improved) and geographical origin, the small

sample size in sub-populations with slow LD decay rate

(Pop1, Pop3 and Pop6) may cause severe bias in LD decay

estimation [42]. A decrease in LD to r2 = 0.2 at 40 kb for

the whole population was within the range of previous

studies which showed that the average LD decay rate in

sorghum was between 15 kb and 150 kb [41, 43].

Sorghum is one of the major cereal crops with extensive

genetic and phenotypic variations among existing germ-

plasms. In this study, variations in tannins, starch and

amino acids were investigated and most of these traits var-

ied widely across our association panel, indicating the

complexity of their respective biosynthetic processes. This

variation in grain quality traits may be useful for further

Table 2 Candidate genes for tannins and starch content that mapped into various KEGG pathways

Trait SNP Chr Position (bp)a P-value candidate gene Distance
(kb)b

Annotation Pathwayc

Tannins 4:3635914 4 3,635,914 2.45E-06 Sobic.004G044200 1.01 1,4-dihydroxy-2-naphthoyl-CoA
synthase, peroxisomal

Ubiquinone and other
terpenoid-quinone
biosynthesis

4:61736881 4 61,736,881 1.62E-08 Sobic.004G273900 33.72 peroxidase 5 Phenylpropanoid
biosynthesis

5:34971014 5 34,971,014 6.02E-12 Sobic.005G110600 32.00 chitinase-3-like protein 1 Amino sugar and
nucleotide sugar
metabolism

8:57291105 8 57,291,105 2.55E-08 Sobic.008G141700 2.38 heparanase-like protein 1 Glycosaminoglycan
degradation

9:8660880 9 8,660,880 1.22E-08 Sobic.009G072000 −26.21 phosphoribosylformylglycinamidine
cyclo-ligase, chloroplastic/mitochondrial

Purine metabolism

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 Pentose phosphate
pathway

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 Glycolysis/
gluconeogenesis

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 RNA degradation

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 Biosynthesis of amino
acids

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 Fructose and mannose
metabolism

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 Carbon metabolism

9:8660880 9 8,660,880 1.22E-08 Sobic.009G071800 −36.11 ATP-dependent 6-phosphofructokinase 6 Galactose metabolism

Starch 4:56136753 4 56,136,753 3.66E-07 Sobic.004G211866 15.24 S-adenosylmethionine decarboxylase
proenzyme

Cysteine and
methionine
metabolism

4:56136753 4 56,136,753 3.66E-07 Sobic.004G211866 15.24 S-adenosylmethionine decarboxylase
proenzyme

Arginine and proline
metabolism

4:56136753 4 56,136,753 3.66E-07 Sobic.004G211833 8.31 cytochrome c oxidase subunit 6b-2 Oxidative
phosphorylation

a Physical position in base pairs for the peak SNP according to v3.1 of the sorghum genome
b Distance of the gene from the significant SNP
c Pathway of the candidate gene according to Kyoto Encyclopedia of Genes and Genomes (KEGG) database [36]
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sorghum breeding. Our results showed that the levels of

different amino acids were highly correlated, which may

be due to the high interconnection of the metabolic clus-

ters formed by amino acids, especially in the seed [11].

Furthermore, these correlations provided confidence in

using extra traits derived from the absolute levels of amino

acids. Previous GWAS on metabolites including amino

acids showed that analyses of ratios derived from known

biochemical interactions and correlation-based networks

may result in stronger associations and more clear bio-

logical relevance compared to their absolute levels [11, 15].

In addition, human selection for different usage can influ-

ence the patterns of grain quality traits of different germ-

plasms. For instance, our association panel, starch content

was highest in grain and sweet sorghums. These materials

are a potential source of genetic material for starch im-

provement in sorghum. Also, the environmental adapta-

tions could lead to variations in grain quality traits, like in

the case of tannins [41].

Genetic control of tannins in sorghum

Flavonoid biosynthesis is mostly regulated at the transcrip-

tional level [44]. The commonly identified transcriptional

factors (TFs) that regulate flavonoid structural genes across

plant species are those with MYB, basic helix-loop-helix

(BHLH) domains and a WD40 protein (reviewed by [45]),

known to work as an MYB-bHLH-WD40 (MBW) ternary

transcriptional complex. However, by analyzing Arabidopsis

mutants, more TFs with MADS-box [34], Zinc-finger [17],

WRKY [46] domains, or homeodomain (HD) [47] and

WD40 proteins [48], have been reported. Indeed, we identi-

fied potential candidates that encode TFs with these domains.

For example, SNPs 2:2532818 tagged Sobic.002G027401 and

Sobic.002G027300, which encode a MADS-box protein and a

C2H2-type zinc finger, respectively. On chromosome 4 at ~

61.7Mb, we identified a homologue of an MYB transcrip-

tion factor Zm1, which is homologous to C1 maize grain

pigmentation gene [26]. Tannin1 (Sobic.004G280800)

gene that encodes a WD40 domain protein was identified

at ~ 62.3Mb on chromosome 4. Sobic.004G281200, colo-

calized with Tannin1 gene and encodes a protein similar

to scarecrow transcriptional regulator-like protein. Re-

cently, SCARECROW-LIKE gene family TFs were re-

ported to have an impact on several transcripts within the

flavonoid pathway [49]. We propose further studies on the

~ 61.7Mb and ~ 62.3Mb QTL regions of chromosome 4

Fig. 4 GWAS for starch content in sorghum grains (a) Manhattan plot for starch content GWAS. The red arrow shows significant SNP located

close to candidate genes. (b) Distribution of starch content in 196 diverse accessions. (c) A close up of the significant association on chromosome

5. The broken red line represents the significance threshold. (d) LD block showing pairwise r2 values among all polymorphic sites in a candidate

genes region, where the intensity of the colour corresponds to the r2 value as indicated on the legend
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to elucidate potential genes and possible alternative tern-

ary transcriptional complexes which contribute to tannin

content variation in sorghum and plants species in

general.

Using KEGG pathways, Sobic.009G071800 that encodes

ATP-dependent 6-phosphofructokinase 6 was mapped

into multiple metabolism pathways, which include the

pentose phosphate and glycolysis/gluconeogenesis path-

ways. The pentose phosphate and glycolytic pathways pro-

vide erythrose-4-phosphate and phosphoenolpyruvate,

respectively, which are precursors to the shikimate path-

way that provides phenylalanine. Phenylalanine is a pre-

cursor to phenylpropanoid metabolism that feeds various

flavonoid pathways [50]. This putative candidate gene

could be further studied to reveal its exact relevance in

the flavonoid pathway.

Candidate genes associated with grain starch as revealed

by GWAS

In the current GWAS, 14 loci were associated with starch

content. Identification of multiple loci shows the quantita-

tive nature of starch content metabolism [39]. A peak at ~

12.8Mb of chromosome 5 tagged Sobic.005G089600, which

encodes a sucrose phosphate synthase (SPS). SPS regulates

the synthesis of sucrose and plays a significant role as a lim-

iting factor in the export of sucrose out of the leaf [51]. SPS

together with vacuolar acid invertases were shown to regu-

late sucrose fluxes in the sink tissues [52]. Also, high ex-

pression of SPS1 in germinating seeds of rice suggested its

role in conversion of starch or fatty acids into sucrose [53].

This candidate gene could be further used to study carbon

partitioning which influences starch content in grains.

Based on the KEGG pathways, Sobic.004G211866 (S-ade-

nosylmethionine decarboxylase proenzyme) was mapped

into four pathways of amino acids metabolism (cysteine,

methionine, arginine and proline). S-adenosylmethionine

decarboxylase is also known to be an essential enzyme of

polyamine biosynthesis in plants, animals and microorgan-

isms [54]. Polyamines include spermidine, spermine, and

putrescine, which are considered as endogenous growth

regulators involved in multiple processes of plant develop-

ment such as grain filling and responses to biotic and abi-

otic stresses [55]. Polyamines were also found to mediate

the effects of post-anthesis water deficiency on starch bio-

synthesis by regulating activities of soluble starch synthase

(SS), granule-bound starch synthase (GBSS) and key en-

zymes in starch biosynthesis [56]. Sobic.004G211866 is a

proper candidate for genetic characterization to understand

the importance of polyamines in determination of starch

content in sorghum grains and their interaction with genes

encoding mainstream starch biosynthesis enzymes

(AGPase, SS, SBE, DBE, and GBSS).

Fig. 5 Chromosomal distribution of significant SNPs identified in amino acids content GWAS. SNP positions are represented by black circles. The

size of the circle proportional to the significance level. Different amino acid families are represented by each colour as shown on the left of the y-

axis. The x-Axis represents the physical position across the 10 sorghum chromosomes. The density map on the x-xis represents the number of

amino acids significant loci identified across the genome. The red arrows show the association hotspots
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Table 3 Candidate genes for amino acid traits as identified by a priori candidate genes from amino acid biosynthesis and

degradation pathways

Trait SNP Chr Position
(bp)a

candidate gene Distance
(kb)b

Annotation Pathwayc

Asp family 1:10068032 1 10,068,032 Sobic.001G127700 −25.64 similar to Lysine Decarboxylase, putative lysine degradation I

Leu/BCAA 1:1014946 1 1,014,946 Sobic.001G011700 −4.06 similar to Aspartokinase superpathway of lysine,
threonine and methionine
biosynthesis II

Val/BCAA 1:24852243 1 24,852,243 Sobic.001G241200 −21.77 similar to EDR1 threonine degradation III
(to methylglyoxal)

Ile/BCAA 1:69010559 1 69,010,559 Sobic.001G405500 4.08 similar to Pyruvate decarboxylase isozyme 2 superpathway of leucine,
valine, and isoleucine
biosynthesis

Phe/
Shikimate
family

1:69010559 1 69,010,559 Sobic.001G405500 4.08 similar to Pyruvate decarboxylase isozyme 2 superpathway of leucine,
valine, and isoleucine
biosynthesis

Tyr/
Shikimate

1:69010559 1 69,010,559 Sobic.001G405500 4.08 similar to Pyruvate decarboxylase isozyme 2 superpathway of leucine,
valine, and isoleucine
biosynthesis

Leu/BCAA 1:72963758 1 72,963,758 Sobic.001G453100 −10.87 similar to Homocysteine S-methyltransferase 1 superpathway of lysine,
threonine and methionine
biosynthesis II

Lys 2:13818293 2 13,818,293 Sobic.002G113600 15.98 similar to Rac GTPase activating protein 3-like
protein

superpathway of lysine,
threonine and methionine
biosynthesis II

Ile/Asp
family

2:4671226 2 4,671,226 Sobic.002G049200 −15.65 weakly similar to PHD finger transcription
factor-like

superpathway of leucine,
valine, and isoleucine
biosynthesis

Thr/Asp
family

2:58060555 2 58,060,555 Sobic.002G193800 15.95 GLUCOSE TRANSPORTER TYPE 1 superpathway of lysine,
threonine and methionine
biosynthesis II

Leu/
Pyruvate

3:11583493 3 11,583,493 Sobic.003G126500 17.82 similar to Os01g0269000 protein leucine degradation I

Ala/Pyruvate 3:3063590 3 3,063,590 Sobic.003G033900 26.43 similar to 1-aminocyclopropane-1-carboxylic
acid synthase

phenylalanine
degradation III

Ala/total 3:5411028 3 5,411,028 Sobic.003G061300 −17.63 Thiamine pyrophosphate dependent pyruvate
decarboxylase family protein

superpathway of leucine,
valine, and isoleucine
biosynthesis

Leu/
Pyruvate

3:57321213 3 57,321,213 Sobic.003G234701 12.80 similar to Pectin-glucuronyltransferase-like arginine degradation I
(arginase pathway)

Gly 3:70271670 3 70,271,670 Sobic.003G391600 9.40 similar to Putative 4-coumarate:coenzyme A
ligase

superpathway of lysine,
threonine and methionine
biosynthesis II

Lys 4:11594929 4 11,594,929 Sobic.004G114500 −18.26 Core-2/I-branching beta-1,6-N-acetylglucosa-
minyltransferase family protein

glycine cleavage complex

Ser 4:1351183 4 1,351,183 Sobic.004G016800 −22.65 similar to Putative serine/threonine protein
kinase

threonine degradation III
(to methylglyoxal)

Thr/total 4:49321838 4 49,321,838 Sobic.004G156000 10.33 similar to Putative steroleosin lysine degradation II

Leu/
Pyruvate
family

4:65472831 4 65,472,831 Sobic.004G319400 −16.93 similar to DNA helicase RECQE-like superpathway of leucine,
valine, and isoleucine
biosynthesis

Val/BCAA 4:65472831 4 65,472,831 Sobic.004G319400 −16.93 similar to DNA helicase RECQE-like superpathway of leucine,
valine, and isoleucine
biosynthesis

Glu/
Glutamate
family

5:3605534 5 3,605,534 Sobic.005G039700 10.91 similar to Rac GTPase activating protein 1 superpathway of lysine,
threonine and methionine
biosynthesis II

Pro 5:3605534 5 3,605,534 Sobic.005G039700 10.91 similar to Rac GTPase activating protein 1 superpathway of lysine,
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Table 3 Candidate genes for amino acid traits as identified by a priori candidate genes from amino acid biosynthesis and

degradation pathways (Continued)

Trait SNP Chr Position
(bp)a

candidate gene Distance
(kb)b

Annotation Pathwayc

threonine and methionine
biosynthesis II

Pro/
Glutamate
family

5:3605534 5 3,605,534 Sobic.005G039700 10.91 similar to Rac GTPase activating protein 1 superpathway of lysine,
threonine and methionine
biosynthesis II

Lys 5:5579891 5 5,579,891 Sobic.005G055300 – similar to Tropinone reductase lysine degradation II

Lys 5:5579891 5 5,579,891 Sobic.005G055300 – similar to Tropinone reductase phenylalanine
degradation III

Lys 5:5579891 5 5,579,891 Sobic.005G055400 1.07 similar to Amidase family protein arginine degradation X
(arginine monooxygenase
pathway)

Val/BCAA 5:63968450 5 63,968,450 Sobic.005G164200 2.49 similar to Putative uncharacterized protein superpathway of leucine,
valine, and isoleucine
biosynthesis

Val/BCAA 5:63968450 5 63,968,450 Sobic.005G164300 6.84 similar to Putative uncharacterized protein superpathway of leucine,
valine, and isoleucine
biosynthesis

Ile/BCAA 5:67881473 5 67,881,473 Sobic.005G194900 −22.93 similar to Phosphoserine phosphatase superpathway of serine
and glycine biosynthesis I

Val/Pyruvate 5:67881473 5 67,881,473 Sobic.005G194900 −22.93 similar to Phosphoserine phosphatase superpathway of serine
and glycine biosynthesis I

Val/BCAA 5:67881473 5 67,881,473 Sobic.005G194900 −22.93 similar to Phosphoserine phosphatase superpathway of serine
and glycine biosynthesis I

Val/total 5:67881473 5 67,881,473 Sobic.005G194900 −22.93 similar to Phosphoserine phosphatase superpathway of serine
and glycine biosynthesis I

Met/Asp
family

5:69690963 5 69,690,963 Sobic.005G210500 20.74 similar to ATP-dependent DNA helicase,
RecQ family protein, expressed

superpathway of leucine,
valine, and isoleucine
biosynthesis

Leu/BCAA 6:54237869 6 54,237,869 Sobic.006G187900 −0.29 similar to Acc synthase phenylalanine
degradation III

Leu/BCAA 6:54237869 6 54,237,869 Sobic.006G187900 −0.29 similar to Acc synthase tyrosine degradation I

Tyr/total 7:60330803 7 60,330,803 Sobic.007G168200 −14.06 similar to Peptidyl-prolyl cis-trans
isomerase

phenylalanine
degradation III

Tyr/total 7:60330803 7 60,330,803 Sobic.007G168200 −14.06 similar to Peptidyl-prolyl cis-trans
isomerase

tyrosine degradation I

Leu/
Pyruvate

8:1074094 8 1,074,094 Sobic.008G012400 −27.01 similar to Os11g0142500 protein superpathway of leucine,
valine, and isoleucine
biosynthesis

Ala/total 8:51569085 8 51,569,085 Sobic.008G111100 1.99 Predicted transporter (major facilitator
superfamily)

superpathway of lysine,
threonine and methionine
biosynthesis II

Leu/
Pyruvate

8:52368227 8 52,368,227 Sobic.008G114900 18.62 similar to Rac GTPase activating protein
3, putative, expressed

superpathway of lysine,
threonine and methionine
biosynthesis II

Leu/
Pyruvate

8:59438201 8 59,438,201 Sobic.008G160700 −28.52 similar to Methylcrotonoyl-CoA
carboxylase subunit alpha,
mitochondrial precursor

leucine degradation I

Glu/
Glutamate
family

8:5993722 8 5,993,722 Sobic.008G057500 1.10 similar to Aldehyde dehydrogenase
family protein

arginine degradation I
(arginase pathway)

Pro/Glu
family

8:5993722 8 5,993,722 Sobic.008G057500 1.10 similar to Aldehyde dehydrogenase
family protein

arginine degradation I
(arginase pathway)

Hist/total 10:6862967 10 6,862,967 Sobic.010G080300 −16.74 similar to Putative aminoacylase superpathway of lysine,
threonine and methionine
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Candidate genes for amino acids in the sorghum

association panel

Besides their importance as building blocks for proteins,

amino acids as secondary metabolites also act as molecu-

lar signals during germination, growth, development and

reproduction [12]. Genetic control of amino acids biosyn-

thesis and degradation remains poorly understood in

higher plants. We identified 492 loci associated with 17

amino acids and their derived traits (Additional file 8:

Table S6). Numerous candidate genes identified did not

directly associate with known amino acid traits. Although

a number of them are likely to be false positive associa-

tions, several of them may be novel associations that are

yet to be discovered as causal genes for amino acids vari-

ation, making our GWAS results an entry point for fur-

ther studies. However, previously characterized genes

were identified. For instance, two putative homologs of

opaque1 [57], Sobic.001G257800 and Sobic.002G339300

colocalized with significantly associated SNPs, 1:30450051

(Cys and Serine family) and 2:70633375 (Val/Total), re-

spectively. Opaque1 encodes a myosin XI protein which

plays an important role in endoplasmic reticulum motility

and protein body formation in the endosperm [57]. A

homolog of Opaque2 (O2) gene [58], Sobic.001G056700

was ~ 12 kb from SNP 1:4291408, significantly associated

with Leu/Pyruvate (P = 1.07E-06). O2 encodes a bZIP

transcription factor whose mutant (o2) is characterized

with almost two-fold increase in essential amino acids, es-

pecially Lys and Trp.

Using a compiled list of a priori candidate genes involved

in amino acid biosynthesis and degradation, 8 candidate

genes encode 3 enzymes in the aspartate pathway were iden-

tified. They included one aspartokinase gene, six homoserine

kinase genes, and one homocysteine S-methyltransferase

gene. Animals and humans cannot synthesize aspartate-

derived amino acids, so they are called essential amino acids

and must be obtained through dietary intake. However, ce-

reals that make majority of the diet worldwide are deficient

in aspartate-derived amino acids [15]. Manipulation of the

aspartate-derived amino acids biosynthetic pathway may be

an alternative approach for plant breeders and agricultural

biotechnologists to increase essential amino acids content in

cereals, including sorghum.

Branched-chain amino acids (BCAA) is comprised of three

essential amino acids, including Val, Leu and Ile that are bio-

chemically related, with branched hydrocarbon side chains

responsible for their aliphatic nature [40]. BCAA can act as

signaling molecules, and their supplementation in animals

prevents oxidative damage and skeletal muscle mitochon-

drial biogenesis [10]. Our GWAS identified eight candidate

genes associated with BCAA biosynthetic pathway, seven of

which were involved in the acetolactate synthase (ALS) reac-

tion. ALS is a target site for five herbicide chemical groups:

sulfonylurea, imidazolinone, triazolopyrimidine, pyrimidinyl-

thiobenzotes, and sulfonyl-aminocarbonyl-triazolinone. A

significant SNP 3:5411028 was identified in the vicinity of

one of ALS encoding homologs -Sobic.003G061300 (~ 17.6

kb from the SNP), which encodes a thiamine pyrophosphate

dependent pyruvate decarboxylase family protein. Binding of

the herbicide was shown to induce progressive damage or

modification to Thiamine diphosphate (ThDP), a cofactor

for ALS activity [59]. Therefore, Sobic.003G061300 could

potentially be used for further studies on the role of amino

acids in herbicide development. Perhaps the most intri-

guing candidate gene in BCAA biosynthetic pathway is

Sobic.008G012400 (encodes 2-isopropylmalate synthase),

tagged by SNP 8:1074094 (P = 1.79E-06, ~ 27 kb down-

stream of significant SNP), associated with Leu/Pyruvate

Table 3 Candidate genes for amino acid traits as identified by a priori candidate genes from amino acid biosynthesis and

degradation pathways (Continued)

Trait SNP Chr Position
(bp)a

candidate gene Distance
(kb)b

Annotation Pathwayc

biosynthesis II

Cys 10:8489698 10 8,489,698 Sobic.010G094900 9.71 similar to Putative uncharacterized
protein

Tryptophan degradation
III (eukaryotic)

Cys/total 10:8489698 10 8,489,698 Sobic.010G094900 9.71 similar to Putative uncharacterized
protein

Tryptophan degradation
III (eukaryotic)

Val/BCAA 10:
55465480

10 55,465,480 Sobic.010G212000 25.56 similar to Putative uncharacterized
protein

arginine degradation
I (arginase pathway)

Val/BCAA 10:
55465480

10 55,465,480 Sobic.010G212000 25.56 similar to Putative uncharacterized
protein

proline degradation I

Val/BCAA 10:
55465480

10 55,465,480 Sobic.010G212000 25.56 similar to Putative uncharacterized
protein

proline degradation II

Val/BCAA 10:
55465480

10 55,465,480 Sobic.010G212000 25.56 similar to Putative uncharacterized
protein

valine degradation I

a Physical position in base pairs for the peak SNP according to v3.1 of the sorghum genome
b Distance of the gene from the significant SNP
c Biosynthesis or degradation pathway of the candidate gene as curated from the Gramene pathway tool [38]
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family. Isopropylmalate synthase (IPMS, EC 2.2.3.13) cata-

lyzes condensation of 3-methyl-2-oxobutanoate and

acetyl-CoA, resulting in 2-isopropylmalate [40]. ALS and

IPMS work together to maintain homeostasis of Val and

Leu [60]. While ALS affects the flux of Val and Leu into

their pathways, IPMS regulates their partitioning. Candi-

date genes for ALS and IPMS could be further studied to

manipulate BCAA metabolism.

Degradation of amino acids contributes to the mainten-

ance of energy state of the cell during stress tolerance as

well as regulates their levels in plants [39, 40]. For in-

stance, BCAA catabolism supports respiration, acts as an

energy source during oxidative phosphorylation and a de-

toxification pathway during plant stress, donates electrons

to the electron transport chain in the mitochondria and

synthesize aroma volatiles in fruits [10]. In our GWAS,

homologues of two enzymes involved in Leu degradation:

Sobic.003G126500 (encoding Hydroxymethylglutaryl-CoA

lyase) and Sobic.008G160700 (encoding Methylcrotonoyl-

CoA carboxylase subunit alpha, mitochondrial precursor)

were identified. Hydroxymethylglutaryl-CoA lyase is a

vital enzyme in the last step of leucine catabolism, keto-

genesis, and mitochondrial Methylcrotonoyl-CoA carb-

oxylase catalyzes the fourth step of Leu catabolism in

mammals and higher plants [40]. In Arabidopsis, mutants

of Hydroxymethylglutaryl-CoA lyase (hml1–1, and hml1–

2) and Methylcrotonoyl-CoA carboxylase (mcca1–1 and

mccb1–1), showed elevated accumulation of Ile, Leu and

Val in mature seeds despite the presumptive specific role

of the two enzymes to Leu degradation [61]. Surprisingly,

Fig. 6 Biosynthesis of aspartate family and branched-chain amino acids. The blue and black arrows represent the aspartate family and branched-

chain amino acid pathways, respectively. The candidate genes identified in this GWAS are shown in red text and surrounded by a textbox with

broken red lines. AK, Aspartokinase; AK-HSDH, Aspartate kinase-homoserine dehydrogenase; ALS, Acetolactate synthase; ASD, Aspartate

semialdehyde dehydrogenase; BCAT, branched-chain aminotransferases; CBL, cystathionine β-lyase; CGS, cystathionine γ-synthase; DAPAT,

diaminopimelate aminotransferase; DAPDC, diaminopimelate decarboxylase; DAPE, diaminopimelate epimerase; DHAD, dihydroxylacid

dehydratase; DHDPR, dihydrodipicolinate reductase; HMT, homocysteine S-methyltransferase; HSK, homo-Ser kinase; IPMDH, isopropylmalate

dehydrogenase; IPMI, isopropylmalate isomerase; KARI, ketol-acid reductoisomerase; MS, Methionine synthase; TD, Threonine deaminase; TS,

Threonine synthase
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the mutants also accumulated biosynthetically unrelated

amino acids such as His and Arg in the seeds, more than

the wild type, hence a proof of complex interconnection

of amino acid networks.

Conclusion
Based on high-density re-sequencing data and robust stat-

istical analysis, we were able to identify genetic regions

previously associated with grain quality traits including

homologs of Tannin1, Zm1 and TT16 for tannins content,

sucrose phosphate synthase (SPS) for starch content and

opaque1 and opaque2 for amino acids. We also identified

novel candidate genes that mapped into various metabolic

pathways associated with tannins, starch and amino acids.

For amino acids, we reconstructed aspartate and BCAA

biosynthesis pathways which contribute to six essential

amino acids using 15 candidate genes identified in this

GWAS. These identified candidate genes could be further

verified and fine mapped using biparental populations.

Furthermore, the putative candidate genes will be the gen-

esis of genomics-assisted breeding for improvement of

sorghum grain nutritional quality.

Methods
Plant materials

A total of 196 diverse sorghum accessions were collected

for the evaluation of grain quality traits based on their

stem characteristics (dry, pithy or juicy), type (landraces

or improved), usage (sweet, grain, forage or broom sor-

ghums), and geographical centres of collection and local-

ities (Additional file 3: Table S1). All the 196 inbred

lines were planted in the experimental field of Institute

of Botany, Chinese Academy of Sciences (IBCAS)

(Beijing; N40°, E116°, altitude 112.07 m) in late April of

2015. The standard agricultural practice was followed

for optimum plants growth and development, including

irrigation, fertilizer application and pest control. Mature

grains of each inbred line were harvested and bulked for

tannins, starch and amino acid levels analysis.

Measurement of amino acids

The amino acid contents of mature sorghum grains from

each of the 196 diverse inbred lines were determined by hy-

drolysis/high-performance liquid chromatography and

ultraviolet spectrophotometry (HPLC-UV) method. 20mg

of grain flour of each sample was used for amino contents

determination. 1mL of 6M HCl was added to each sample

and hydrolyzed at 110 °C for 24 h. The suspension was

centrifuged at 12000×g for 10min and 100μLof the super-

natant decanted and dried in vacuum. The dried hydrolys-

ate was re-dissolved in 1mL 0.1M HCl and centrifuged at

12000×g. Subsequently, 1 μL liquid supernatant was sepa-

rated by analytical column ZORBAX Eclipse-AAA (Agilent,

5 μm, 4.6 × 250mm) and analyzed by HPLC-UV System

(1260, Agilent Technologies, USA). The content of each of

the 17 amino acids in every sample was expressed as nmol

mg− 1 of dry grain flour. The amino acid data used for asso-

ciation analysis were the mean values of three biological

replicates. The absolute levels of amino acids determined

included those of Ala =Alanine, Arg =Arginine, Asp =As-

partate, Cys = Cysteine, Glu =Glutamate, Gly =Glycine,

His =Histidine, Ile = Isoleucine, Leu = Leucine, Lys = Ly-

sine, Met =Methionine, Phe = Phenylalanine, Pro = Proline,

Ser = Serine, Thr = Threonine and Val = Valine. Relative

levels of amino acids were calculated from the absolute

levels as follows: (a) The sum of absolute levels of amino

acids (Total), (b) The relative level of each amino acid as a

percentage of the Total; e.g. Ile/Total, (c) The sum of amino

acids in the same biochemical family (For instance,

branched-chain amino acids (BCAA include, Ile, Leu and

Val)), (d) Ratio of each absolute amino acid to sum of its

biochemical family; e.g. Ile/BCAA.

Tannins content determination

A modified International Standardization Organization

[62] method was used to determine the tannin content

in sorghum grains. Milled 200 mg of sorghum grain flour

was dissolved in 10mL 75% dimethylformamide (DMF)

solution for 1 h at room temperature, with vortex mixing

at 5 min interval. The solution was centrifuged, the

supernatant removed and preserved in the dark. The

supernatant was divided into two aliquots: test tube 1

and 2. In test tube 1, distilled water and ammonia solu-

tion were added and thoroughly mixed on a vortex be-

fore incubation at 25–30 °C for 10 min. The absorbance

value A1 of the sample solution was measured with a

spectrophotometer at a wavelength of 525 nm. In test

tube 2, distilled water, ferric ammonium citrate solution

and ammonia solution were added, thoroughly mixed,

and then incubated at 25–30 °C for 10 min. The absorb-

ance value A2 of the sample solution in test tube 2 was

measured at 525 nm with water as a blank. The tannin

content was determined using a calibration curve pre-

pared using tannic acid on dry weight basis:

Tannin content %ð Þ ¼
0:671 A2−A1ð Þ þ 0:131

W

In the formula, W was the dry weight of each sample

(0.2 g), 0.131 was a conversion factor generated from the

tannic acid standard curve.

Determination of starch content in sorghum grains

Starch content of each of the 196 diverse accessions was

estimated in triplicate through Amylogulosidase-α-

amylase technique of Association of Official Agricultural

Chemists [63] with some modifications. 30 mg of milled

sorghum sample was weighed into centrifuge tubes, 0.7
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mL 80% ethanol added and mixed, incubated in a water

bath at 70 °C for 2 h with frequent mixing every 15 min,

then centrifuged at 12000×g for 10 min. The super-

natant was discarded and the precipitate mixed with

80% ethanol and thoroughly stirred on a vortex mixer.

1 mL of thermostable α-amylase was added and incu-

bated in boiling water for 10 min, and glucosidase was

subsequently added after cooling, then incubated at

50 °C for 30 min, centrifuged at 3000 g for 10 min and

then the supernatant was collected into a new tube.

Glucose oxidase-peroxidase-aminoantipyrine buffer

mixture was added to the supernatant and incubated at

50 °C for 30 min. The optical density (OD) was

measured on a spectrophotometer (Beckman Coulter)

as absorbance at 510 nm. The starch content was

expressed as starch % w/w (dry weight basis) and the

starch content used for GWAS was the average value

from three biological replicates.

Genotype data

To identify nucleotide polymorphisms for diversity evalu-

ation and GWAS, whole-genome re-sequencing of 196 ac-

cessions was performed. The re-sequencing and SNP

detection pipeline were as described in our previous study

[64]. In brief, sequencing was done on the Illumina Hiseq

X Ten platform by pair-end sequencing at an average

depth of approximately 5.67×. Adapters were trimmed,

and low quality reads filtered before mapping the clean

reads to BTx623 (v3.1) reference genome using Burrows-

Wheeler Alignment software (BWA, v.0.7.8) [65]. SNPs

were called independently using the Genome Analysis

Toolkit (GATK, Ver. 3.1, HaplotypeCaller) [66] and SAM-

tools (Ver. 1.3) package [67]. A set of common variations

detected by both tools were extracted with a strict filtra-

tion procedure then used as known sites following BQSR

(recalibrating the base quality score) method embedded in

GATK. HaplotypeCaller in GATK was used to detect vari-

ations, and then a VQSR (variant quality score recalibra-

tion) procedure was followed. In total, 40,315,415 SNP

markers were identified across 196 diverse accessions.

Before performing GWAS, the SNPs were further

filtered according to the following criteria: (a) deleted

SNPs in the scaffolds, (b) removed SNPs with > 20%

missing rate, (c) retained SNPs with at least 5% minor

allele frequency (MAF).

Population structure, phylogeny and linkage

disequilibrium

Population structure was estimated using the ADMIX-

TURE program, a high-performance tool for estimation of

ancestry in unrelated individuals using a maximum likeli-

hood method [29]. A total of 841,038 SNPs (r2 < 0.2) dis-

tributed across the genome were identified after filtration

with PLINK [68] to minimize LD and used in the analysis

of population structure. To choose the actual number of

ancestral populations, ADMIXTURE was run with a 10-

fold cross-validation procedure for K = 2 to K = 10 and the

K value with the lowest standard error was selected [29].

Further, to summarize the genome-wide variation in the

association panel, principal component analysis (PCA)

was performed in GCTA software [69]. The first two prin-

cipal components were plotted in R software [70] based

on the six subpopulations identified in ADMIXTURE, to

visualize the population stratification.

The phylogenetic analysis was conducted based on the

SNP data in SNPhylo (Ver. 20,140,701) [30]. In SNPhylo,

an automated Bash shell script snphylo.sh was imple-

mented with additional options: -p 5 -c 2 -l 0.2 -m 0.05

-M 0.5 -A -b -B 1000. Where, p 5 is the percentage of

low coverage samples (5%); c 2 is the minimum depth of

coverage [2], l 0.2 is the linkage disequilibrium (LD)

(0.2); m 0.05 is the minor allele frequency (MAF) of

0.05; M 0.5 is the maximum missing rate of 50%; A is

for performing multiple alignments by MUSCLE; −b –B

1000 is a command to perform non-parametric 1000

bootstrap analysis. The phylogenetic tree was visualized

and annotated using the Interactive Tree of life [71].

The extent of LD decay in the association panel was cal-

culated for all SNPs using Haploview [72], where pairwise

comparisons among all SNP markers (MAF > 0.05) were

calculated in an intra-chromosomal maximum distance of

500 kb to obtain the r2 values. The averages of r2 values for

the whole population and all the six sub-populations, across

each of the 10 sorghum chromosomes were plotted against

the distance of the polymorphisms using an in-house R

script. The smooth.spline function was integrated into the

R-script to estimate the LD decay simulation curves.

Association mapping and candidate gene selection

Genome-wide association analysis on tannins, starch con-

tent and amino acids in sorghum grains, was performed

with FarmCPU model [32] implemented in the R-package

MVP (A Memory-efficient, Visualization-enhanced, and

Parallel-accelerated Tool for Genome-Wide Association

Study)(https://zzlab.net/FarmCPU). The top three principal

components were fitted as covariates to account for popula-

tion structure. The kinship matrix was internally calculated

within the MVP package using VanRaden method [73] and

then combined with the population structure to control for

Type I error. A Bonferroni-like multiple test correction, as

described by [74], was used to determine the threshold for

detecting significant associations. In brief, instead of 3,512,

517 independent tests equivalent to the number of SNPs

used for GWAS, the average extent of LD across the gen-

ome was used to estimate the total number of tests. Inde-

pendent tests were estimated as: Total chromosomes’

length (683,645,045 bp) divided by the average LD decay

distance of our association panel (40,000 bp) to get 17,
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091.13 tests. With 0.05 as the desired probability of type I

error, a significance threshold was calculated as 0.05/17,

091.13 = 2.93E-06.

Candidate genes were identified and annotated from

v3.1 of the sorghum genome in Phytozome v.10 [33]. All

the genes within an 80 kb window (40 kb upstream and

40 kb downstream of significant SNP), were identified as

potential candidate genes based on the average LD decay

distance of our diversity panel.

Co-localization of GWAS candidate genes with genes

related to grain quality traits

Sets of potential candidate genes that were previously char-

acterized or associated with grain quality traits were com-

piled. For tannin and starch sets, we used the prior

compiled lists by [26] and [7], respectively. In brief, based

on the fact that most of the flavonoid genes are conserved

across diverse plant species, orthologs of Arabidopsis were

compiled as a priori genes for tannin content. Two cloned

flavonoid genes in sorghum, Yellow seed1 [75] and Tannin1

[21], were also included. The list of a priori genes for starch

content was compiled based on candidate genes involved in

grain composition, grain maturation, and grain filling [7].

We curated a priori candidate genes involved in sorghum

amino acids metabolism using the Gramene pathway tool

[38] (Additional file 6: Table S4). During the curation

process, genes in the pathways and superpathways of amino

acids biosynthesis and degradation were included. Further-

more, for the identification of genes encoding starch and

tannin metabolism-related enzymes, candidate genes were

mapped into the Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) pathways database [36].
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