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Abstract

Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass
and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat
distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The
purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan
(GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4
replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual
analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic
model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect
any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p,0.05)
in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not
identified any genome-wide significant signals and do not observe robust association of previously established obesity loci
with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.
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Introduction

Brachial circumference (BC) is a composite measure of muscle

mass, skeletal size and fat tissue [1,2]. BC has been widely used in

epidemiological and clinical studies as a proxy for body composition

[3]. Analysis of anthropometric measures of peripheral fat distribu-

tion like BC could help in understanding complex phenotypes such as

overweight and obesity that can lead to the development of chronic

diseases, for example type 2 diabetes (T2D) and cardiovascular

disease [4,5,6]. Research of upper and lower body fat association with

diabetes in families of African origin suggested that arm and leg fat

could be used as obesity-related phenotypes in association studies [7].

Obesity in children can also lead to development of chronic diseases

such as hyperlipidaemia, hyperinsulinemia, hypertension, and early

atherosclerosis later on in life [8]. It was shown that BC closely reflects

body fat mass in children and adolescents and its use was

recommended as a screening method for prediction of obesity and

overweight [3,8]. Moreover, BC has been used for decades for the

assessment of nutritional status of children in developing countries

and has also been proposed as a tool for monitoring nutritional status

and weight in the elderly [3,9,10,11]. Peripheral and overall fat

distribution, assessed through body mass index (BMI), is partly

modulated through different genetic effects [12].

There are differences in the amount and distribution pattern of

soft tissue between sexes. In general, men have higher total body

lean tissue and lower percent body fat whereas women have higher

total body fat and a lower proportion of lean tissue in the upper

body [1,13,14,15,16]. Women have more subcutaneous fat than

men over the buttocks and thighs and behind the upper arms [17].

In addition, it was recently shown that diabetic women of African

ancestry have a higher proportion of fat deposited in their arms

than diabetic men [7]. Due to the effects of sex hormones but also

due to heavier physical activity and involvement in more power

sports, men have larger muscle size/mass and larger BC compared

to women [17,18]. This may indicate that BC is a better measure

of muscularity in men and adipose tissue in women. Analysis of the

genetic contribution to BC in Belgian nuclear families indicated

that BC is influenced by additive genetic effects (h2 = 0.57) [19].

Miljkovic-Gacic et al also estimated high heritability of upper arm

body fat storage and also pointed that genetic factors play a role in

defining sexual dimorphism of lower body fat distribution in

individuals of African origin [7]. Genetic effects on fat distribution

can be related to sex and in this study we aimed to evaluate sex-

specific genetic associations with BC through analysis of men and

women separately, as well as common associations through the

analysis of a combined dataset.

Weight gain and redistribution of fat tissue, the main

characteristics of aging, influence body composition and conse-

quently affect BC [20]. The decrease in BC that is observed in

elderly men and women points to substantial subcutaneous fat loss

and redistribution of fat from extremity to trunk [4]. Additionally,

aging is also characterised by loss in skeletal muscle mass, known

as sarcopenia [21,22]. To account for these effects of aging on BC

we adjusted all our analyses for the age of individuals.

In summary, BC is a measure of both adiposity and muscularity

[1]. This study aimed to identify shared and sex-specific genetic

variants associated with BC through a large-scale genome-wide

association scan (GWAS) meta-analysis.

Materials and Methods

Discovery dataset: sample characteristics
We conducted genome-wide meta-analysis across 14 discovery

datasets, comprising a total of 18,753 individuals (8,961 men,

9,792 women) of European ancestry. BC measurement was taken

uniformly across studies; it was measured in mm using non-elastic

tape that was wrapped around the upper arm, at the medium of

the upper arm length i.e. at the midpoint between the acromion

and the olecranon. BC was normally distributed. Individuals that

had BC higher or lower than 3 standard deviations from the mean

were removed from each dataset prior to conducting association

analysis. Sample characteristics across all datasets are presented in

Table 1. Detailed sample characteristics on men and women

separately are presented in Table S1. A bar chart of BC measures

across studies is presented in Figure S1.

Ethics Statement
Each study obtained ethical approval from their respective

research ethics committee and all participants gave signed

informed consent in accordance with the Declaration of Helsinki.

Genotyping, imputation and quality control
All samples were genotyped using commercially available

Illumina (Illumina, Inc., San Diego, CA, USA) or Affymetrix

(Affymetrix, Inc., Santa Clara, CA, USA) platforms. Imputation of

untyped variants was based on HapMap Phase II data for the

CEU population. Quality control (QC) of directly typed and

imputed variants was conducted separately in each study. Study-

specific information on genotyping platform, imputation method

and QC metrics is presented in Table S2.

Genome-wide association analysis in contributing studies
Association analysis was performed in each study separately.

Analyses were performed for directly typed and imputed

autosomal variants using linear regression and an additive genetic

model, adjusted for age and adjusted for age and BMI, in men and

women separately. Specifically, four types of analyses were carried

out: women – age adjusted, women – age and BMI adjusted, men

- age adjusted, men – age and BMI adjusted. By adjusting a set of

our analyses with BMI we aim to differentiate the effects of loci

solely influencing regional adiposity and/or muscularity. BC

changes throughout the life and by adjusting analyses for age we

aim to exclude the effect of age on BC. Association analyses of

imputed variants took genotype uncertainty into account. Where

necessary, the first three genotype-based principal components

were used as covariates. Studies with related individuals

additionally adjusted analyses for family relatedness using linear

mixed models. Association analysis software for each study is

presented in Table S2. Sensitivity analysis excluding the two

studies comprised of adolescent individuals (ALSPAC and

RAINE) was also carried out, to exclude potential effects of genes

that might be involved in body development and growth during

adolescence. We also investigated the effects of 54 previously

established genetic loci associated with overall adiposity, assessed

through BMI and other measures of fat distribution such as waist-

to-hip ratio, and peripheral adiposity, and of 64 previously

established T2D loci and 41 loci influencing glycaemic traits with

BC in discovery dataset.

GWAS meta-analysis
We performed six fixed-effects meta-analyses to synthesize

summary statistics across 14 datasets using GWAMA [23]. Meta-

analyses were performed separately in men and women but also in

the combined set. Prior to meta-analysis we excluded SNPs with

minor allele frequency (MAF) lower than 0.05 and SNPs with low

imputation accuracy scores. We used a cut-off of rsq_hat ,0.3 for

genotypes imputed with MACH [24] software and a cut-off of
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proper info score ,0.5 for IMPUTE [25] software. The number

of directly genotyped and imputed SNPs that passed QC criteria

across all studies and were subsequently meta-analysed is

presented for each meta-analysis in Table S3. The genomic

control (GC) inflation factor was calculated and applied to the

results for each study separately, prior to the meta-analysis. The

meta-analysis results were also corrected for overall GC. We

investigated evidence of heterogeneity using the I2 statistic [26].

We created quantile-quantile (QQ) and Manhattan plots to

visualise genome-wide association results.

Replication stage 1
On the basis of the GWAS meta-analysis results we conducted a

two-stage follow-up of prioritised SNPs in independent datasets.

The study design is presented in Figure 1.

We selected 31 SNPs for initial in silico replication: we focused

on SNPs with p-values below or close to 1025 and additionally

examined their genomic location, prioritising those within or near

biologically interesting genes. When there were many SNPs with

p-values below 1025 in the same genomic region we selected the

two most significant variants for follow-up. We visually inspected

cluster plots (in studies with available intensity data) for all selected

SNPs prior to replication.

Replication stage 1 samples included 967 subjects from the

Family Heart Study (FamHS) (Table 1 and Table S2) [27]. We

combined summary statistics for 31 directly typed and imputed

SNPs across the discovery and stage 1 replication studies using

fixed-effects meta-analysis. We performed the same sets of analyses

as described for the discovery dataset.

Replication stage 2
On the basis of meta-analysis results across the discovery and

replication stage 1 datasets, and taking into account the results of

our sensitivity analyses, we prioritised a subset of 22 SNPs for the

second round of replication. SNPs were selected primarily on the

basis of their overall statistical significance. We also selected the

established obesity variant rs9939609 in FTO to assess its

association with BC in a larger sample size. Overall, 23 SNPs

were taken forward for de novo genotyping in the Greek TEENs of

Attica: Genes & Environment (TEENAGE) study and in silico

replication in two studies, the Nord-Trøndelag Health Study

(HUNT) [28] and TwinFat [29,30]. The main reason for

conducting two stage replication was to refine significance of

initially prioritised SNPs using in silico data (replication stage 1) and

to select a subset of SNPs with greater evidence of association to fit

one genotyping multiplex (iPLEXTM Gold Assay) for de novo

genotyping in the TEENAGE cohort (replication stage 2). Two

studies with in silico data (HUNT and TwinFat) joined the analysis

at the advanced stage of replication stage 2.

TEENAGE cohort. The TEENAGE cohort consists of 819

adolescent students attending all three classes of public secondary

schools in the Attica region of Greece (Table 1). Genotyping of the

23 prioritised SNPs was performed using the iPLEXTM Gold

Assay (SequenomH Inc.). Assays for two SNPs (rs7837164 and

rs4833582) could not be designed, therefore their proxies

(rs4831616 and rs10018120 with r2 = 1 and r2 = 1, respectively)

were genotyped instead. Assays for all SNPs were designed using

the eXTEND suite and MassARRAY Assay Design software

version 3.1 (SequenomH Inc.). Amplification was performed in a

total volume of 5 mL containing ,0.06–0.4 ng genomic DNA,

100 nM of each PCR primer, 500 mM of each dNTP, 1.256PCR

buffer (Qiagen), 1.625 mM MgCl2 and 1 U HotStar TaqH
(Qiagen). Reactions were heated to 94uC for 15 min followed by

45 cycles at 94uC for 20 s, 56uC for 30 s and 72uC for 1 min, then

a final extension at 72uC for 3 min. Unincorporated dNTPs were

SAP digested prior to iPLEXTM Gold allele specific extension with

mass-modified ddNTPs using an iPLEX Gold reagent kit

(SequenomH Inc.). SAP digestion and extension were performed

according to the manufacturer’s instructions with reaction

extension primer concentrations adjusted to between 0.7–

1.8 mM, dependent upon primer mass. Extension products were

desalted and dispensed onto a SpectroCHIP using a MassARRAY

Nanodispenser prior to MALDI-TOF analysis with a MassAR-

RAY Analyzer Compact mass spectrometer. Genotypes were

automatically assigned and manually confirmed using MassAR-

RAY TyperAnalyzer software version 4.0 (SequenomH Inc.).

We applied the following sample/SNP QC exclusions for these

de novo genotype data: sex inconsistencies, sample call rate ,98%

and exact HWE p-value,0.0001. The average assay call rate was

0.993. Overall, 806 samples and 23 SNPs passed our QC criteria

in the TEENAGE replication cohort. Linear regression analysis

under an additive genetic model, taking into account age and age

and BMI in each stratum (men, women and combined set), was

carried out using Plink [31].

HUNT and TwinFat studies: The HUNT study consisted of 1626

[28] and TwinFat consisted of 216 individuals [29,30] (Table 1

and Table S2).

Global meta-analysis
We performed meta-analysis for the 23 prioritised SNPs across

the discovery and all replication datasets, comprising a total of

22,376 individuals (12,031 women and 10,345 men). We

performed the same six sets of analyses as described for the

Figure 1. Study design. Each step includes non-overlapping,
independent datasets.
doi:10.1371/journal.pone.0031369.g001
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discovery dataset. Power for the global meta-analysis was

calculated using Quanto [32].

Results

We did not observe an excess of signals in the six meta-analyses

that were carried out. QQ and Manhattan plots for combined

analysis (adjusted for age and adjusted for age and BMI) are shown

in Figure 2. QQ and Manhattan plots for men and women are

shown in Figure S2.

Of the 31 SNPs initially taken forward, 4 showed association

with p,0.05 in replication set 1. Twenty one of 31 signals had

effects in the same direction as the discovery GWAS meta-analysis

(binomial p-value = 0.07, given we expect 50% of signals to be in

the same direction by chance) (Table S4). Of the 23 SNPs

prioritised for stage 2 replication, 12 had effects in the same

direction as the GWAS meta-analysis (binomial p-value = 1) and 1

SNP achieved p,0.05 in replication set 2 (Table S4).

There were no genome-wide significant findings in the global

meta-analysis of prioritised SNPs across all discovery and

replication samples (Table S4). Global meta-analysis results with

the greatest evidence of association (p#0.001) are displayed in

Table 2. We created forest plots for SNPs with p-value#0.001

with studies ordered by increasing age (Figure S3). Our study had

90% power at the genome-wide significance level (p = 561028) to

detect SNPs that explain 0.5% of the genetic variance in men (total

n = 10,345), 0.4% in women (total n = 12,031) and 0.2% in the

combined set (total n = 22,376).

We compared the effect sizes of the initially prioritised 31 SNPs

between sexes in the discovery dataset. The effect sizes of loci

arising from the combined analyses across men and women are

comparable. However, we found heterogeneity in the effect

estimates between sexes for the loci prioritized on the basis of

the male-only or female-only analyses (Table S5).

The rs9939609 FTO SNP showed nominal evidence for

association in the age adjusted strata in men and in the combined

set across both sexes (Table 3). The adjustment for BMI almost

totally eliminates the effect of FTO on BC which is visible through

a ten-fold decrease of beta values (Table 3). If the FTO BC effect

were of the same magnitude as the rs9939609 FTO SNP effect on

Figure 2. Manhattan and QQ plots based on meta-analyses results of the discovery panel: a) combined set - age adjusted, b)
combined set - age and BMI adjusted.
doi:10.1371/journal.pone.0031369.g002
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BMI [33] our study would have .90% power at the genome-wide

significance level to detect it in the combined set, 57% power in

women and 40% power in men. We additionally examined 53

previously associated obesity (BMI, waist to hip ratio, weight)

SNPs with BC and found 20 SNPs showing p,0.05, across six

different strata in the discovery panel (binomial p = 0.175). The

most associated SNP was rs6548238 from the TMEM18 gene with

p = 8.1561024 in the age adjusted stratum across both sexes.

Association analysis results for all 53 SNPs are presented in Table

S6.

We examined the association of 64 previously established T2D

loci with BC in our discovery cohort and found 25 SNPs showing

p,0.05, across six different strata in the discovery panel (binomial

p = 0.11) (Table S7). We also examined 41 previously established

SNPs that influence glycaemic traits (fasting glucose, fasting

insulin, glycated haemoglobin, 2 h glucose test) and found 12

SNPs with p,0.05, across six different strata in the discovery

panel (binomial p = 0.576) (Table S8).

Discussion

In this large-scale GWAS meta-analysis of BC we analysed a

total of 22,376 individuals (12,031 women and 10,345 men) of

European ancestry across 14 GWAS discovery datasets and 4

replication cohorts. We followed-up signals from various strata in a

two stage replication effort but found no signals reaching genome-

wide significance.

Our study had 90% power to detect SNPs that explain 0.2% of

the genetic variance in the combined set i.e. our study is well

powered to detect modest effects at common loci at the genome-

wide significance level (e.g. a risk allele with frequency 0.35 and

per-allele increase of 2 mm of BC). One of the weaknesses of this

study is that BC is not a clearly-characterised phenotype because it

is essentially a composite of muscle mass, skeletal size and fat

tissue, traits with distribution differences between sexes [1,2]. In

order to decrease potential misclassification of the phenotype and

to search for sex-specific BC effects we conducted analyses in men

and women separately. We also analysed the more powerful,

combined dataset in the search for shared loci underlying BC. Our

study focused on common variants only and has not examined the

effect of low frequency and rare variants on BC.

All association analyses were adjusted for age since BC varies

throughout the life of individuals. In young individuals BC may be

particularly different since it may reflect body development and

growth during adolescence. To avoid associations that may arise

because BC in adolescents might not be comparable with the

phenotypic measure of middle-aged and elder individuals, we

performed a sensitivity analysis by excluding studies with

adolescent participants. The results of our sensitivity analysis were

qualitatively similar to the results from the full-set discovery meta-

analysis (data not shown).

We have also examined the effects of top loci across all strata in

the discovery dataset in order to compare effect sizes between

sexes (Table S5). As expected, the effect sizes of loci prioritized

based on the combined male and female analyses are comparable

between men and women. However, when we examined the effect

estimates of loci prioritised on the basis of a specific sex analysis in

the opposite sex, we mainly observe heterogeneity i.e. effect sizes

from one sex analyses greatly differ in size or direction in the other

sex. This is corroborated with statistical evidence for heterogeneity

as evaluated through the I2 measure. This may explain why the

combined analyses of these loci did not result in improved or

genome-wide significance. This additionally confirms that the BC

measure has different properties in men and women.

One of the aims of this study was to investigate if established

obesity and other fat distribution-associated loci also regulate

peripheral adiposity. We expected to see some overlap, since BC is

correlated with BMI (Table 1), but also to potentially detect new

loci that may explain the properties of peripheral adiposity since

fat is disproportionally distributed over the body. We examined

the well-established BMI-associated FTO gene variant [33,34] in

Table 2. Global meta-analysis results with p#0.001.

STRATUM SNP GENE EA EAF BETA SE P I2 N

WOMEN (age adjusted) rs13097456 BDH1 T 0.304 0.152 0.043 4.21E-04 0.479 12108

WOMEN (age adjusted) rs9997081 LEF1 (37 kb away) T 0.133 20.195 0.061 0.001 0.348 12094

WOMEN (age &
BMI adjusted)

rs17665125 C2orf43, GDF7 (93 kb away) T 0.723 20.084 0.025 9.24E-04 0.559 12079

MEN (age adjusted) rs11908586 KCNG1 (130 kb away), NFATC2
(239 kb away)

G 0.848 20.422 0.111 1.48E-04 0.099 10219

MEN (age & BMI adjusted) rs7176881 EIF2AK4 T 0.153 20.221 0.057 1.07E-04 0.430 10203

COMBINED (age & BMI
adjusted)

rs1476587 DMTF1 (85 kb away), GRM3
(203 kb away)

G 0.141 0.283 0.063 6.50E-06 0.321 20674

EA - effect allele; EAF - effect allele frequency; SE - standard error; P - p-value; I2- measure of heterogeneity; N - total number of samples.
doi:10.1371/journal.pone.0031369.t002

Table 3. Global meta-analysis results for the rs9939609 FTO
SNP.

STRATUM EA EAF BETA SE P I2 N

WOMEN (age
adjusted)

T 0.565 20.052 0.035 0.137 0.552 11600

WOMEN (age &
BMI adjusted)

T 0.565 20.006 0.021 0.769 0.120 11493

MEN (age
adjusted)

T 0.575 20.113 0.054 0.036 0.545 9734

MEN (age & BMI
adjusted)

T 0.575 20.014 0.033 0.656 0.413 9719

COMBINED (age
adjusted)

T 0.570 20.073 0.029 0.013 0.605 21334

COMBINED (age
& BMI adjusted)

T 0.570 20.011 0.019 0.571 0.321 21306

EA - effect allele; EAF - effect allele frequency; SE - standard error; P - p-value; I2-
measure of heterogeneity; N - total number of samples.
doi:10.1371/journal.pone.0031369.t003
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our dataset consisting of 21,414 individuals and did not find strong

evidence for association with BC. On the basis of anthropometric

and animal model research it is shown that the FTO gene is

primarily associated with fat mass [34,35]. This may explain the

fact that we observe only nominal association with BC, since BC is

a composite measure of, both lean and fat mass. Of the 53

previously established obesity/adiposity loci we examined in the

discovery dataset, only one had p,0.001 (rs6548238 SNP in the

TMEM18, p = 8.1561024 in the combined-age adjusted set).

Variants in the TMEM18 gene were previously associated with

BMI, body weight and increased risk of childhood obesity

[33,34,36]. Willer et al showed that associations of the TMEM18

gene with BMI are, similarly as for the FTO gene, driven by

increased fat mass [33].

We have also investigated if established T2D loci and loci

implicated in glycaemic traits are associated with BC. We did not

detect strong evidence for association with BC. Only one

previously established T2D variant (rs11899863 in the THADA

gene) had p = 0.001 in the men age-and-BMI adjusted set. This

gene was previously associated with thyroid adenomas [37] and

recently with gestational weight gain [38].

Within the power constraints of our study, the data suggest that

BC is not a good surrogate measure for overall adiposity genetics.

To get a better measure of muscularity we employed BMI

adjustments for a subset of our analyses, assuming that BMI is an

indirect measure of overall adiposity. This interpretation may not

be straightforward because BMI is stature-dependent and may

reflect lean tissue as well [13,34]. No genome-wide replicating

associations were identified.

In this large-scale GWAS meta-analysis for BC we have not

identified any signals reaching genome-wide significance and do

not observe robust association of previously established obesity loci

with BC. This may indicate that peripheral adiposity, measured

through BC, does not share similar biological patterns with overall

adiposity, measured through BMI, and that BC is not a good

measure of peripheral adiposity but mainly reflects muscularity.

We have also carried out six stratified analyses, which although

non-independent give rise to multiplicity issues. Any significant or

nominal associations would therefore need to be interpreted with

added caution. Large-scale collaborative efforts will be required to

achieve the necessary power to detect loci underpinning BC, and

detailed anthropometry will help deconvolute the determinants of

muscularity, adiposity and their distributions.
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adjusted, d) men – age and BMI adjusted.
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Figure S3 Forest plots for global meta-analysis SNPs
with p-value#0.001 with studies ordered by increasing
age (the top study contains the youngest individuals).
This comparison can indicate the presence of age effects on

associations with BC. We have not found clear evidence of age

effects on BC. Box areas are proportional to study sample size.

(PDF)
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Table S2 Study-specific information on genotyping
platform, imputation method and QC metrics.
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Table S3 The number of directly genotyped and
imputed meta-analysed SNPs.
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Table S4 Discovery dataset, replication stage 1 and 2
and global-meta-analysis results of prioritised SNPs.
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non-effect allele; EAF - effect allele frequency; SE - standard error;

P - p-value; I2- measure of heterogeneity; N - total number of

samples (22 stage 2 replication SNPs are shown in bold).

(PDF)

Table S5 Comparison of effect sizes of top results
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Table S6 Association of established obesity SNPs with
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error; P - p-value; I2- measure of heterogeneity; N - total number

of samples (p-values,0.05 in bold).

(PDF)

Table S7 Association of established T2D loci. CHR -

chromosome; POS - position; EA - effect allele; NEA - non-effect

allele; EAF - effect allele frequency; SE- standard error; P - p-

value; I2- measure of heterogeneity; N - total number of samples

(p-values,0.05 in bold).* SNP rs7564886 is a proxy for originally

associated T2D SNP rs7578597 (r2 = 1).

(PDF)

Table S8 Association of loci influencing glycemic traits.
CHR - chromosome; POS - position; EA - effect allele; NEA -

non-effect allele; EAF - effect allele frequency; SE- standard error;

P - p-value; I2- measure of heterogeneity; N - total number of
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(PDF)

Acknowledgments

The authors are grateful to Mark McCarthy, Loukas Moutsianas, Inês

Barroso and Katherine I Morley for their helpful contribution.

ALSPAC: We are extremely grateful to all the families who took part in

this study, the midwives for their help in recruiting them, and the whole

ALSPAC team, which includes interviewers, computer and laboratory

technicians, clerical workers, research scientists, volunteers, managers,

receptionists and nurses. This publication is the work of the authors

(Nicholas Timpson, David M. Evans, Beate St Pourcain, George Davey

Smith, Debbie A. Lawlor, Sue Ring) and will serve as guarantors for the

contents of this paper.

BUSSELTON: The Busselton Health Study acknowledges the

numerous Busselton community volunteers who assisted with data

collection and the study participants from the Shire of Busselton. The

study gratefully acknowledges the assistance of the Western Australian

DNA Bank (NHMRC Enabling Facility) with DNA samples.

CoLaus-Hercules: The authors express their gratitude to the

participants in the Lausanne CoLaus study and to the investigators who

have contributed to the recruitment. The authors thank Peter Vollenwei-

der, Gerard Waeber, Vincent Mooser and Dawn Waterworth, Co-PIs of

the CoLaus study. Special thanks to Yolande Barreau, Mathieu Firmann,

Vladimir Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville,

Genome-Wide Analysis of Brachial Circumference

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e31369



Martine Baumer, Marcy Sagette, Jeanne Ecoffey, Sylvie Mermoud, Gilles

Wandeler, Jerome Jaunin and Heba Alwan for data collection.

CROATIA-Korcula: We would like to acknowledge the staff of several

institutions in Croatia that helped with the field work, including but not

limited to The University of Split and Zagreb Medical Schools and

Croatian Institute for Public Health.

CROATIA-Split: We would like to acknowledge the staff of several

institutions in Croatia that helped with the field work, including but not

limited to The University of Split and Zagreb Medical Schools and

Croatian Institute for Public Health.

CROATIA-Vis: We would like to acknowledge the staff of several

institutions in Croatia that helped with the field work, including but not

limited to The University of Split and Zagreb Medical Schools, Institute for

Anthropological Research in Zagreb and Croatian Institute for Public

Health.

HUNT: The Nord-Trøndelag Health Study (HUNT) is a collaboration

between HUNT Research Centre, Faculty of Medicine, Norwegian

University of Science and Technology (NTNU, Verdal), Norwegian

Institute of Public Health and Nord-Trøndelag County Council.

HYPERGENES: To HYPERGENES consortium took part: HYPER-

GENES Steering Committee with Daniele Cusi (project coordinator), Jacques

Beckmann, Fabio Macciardi, Amnon Shabo, Jan A. Staessen, Paolo Vineis

and Enrico Rosario Alessi. HYPERGENES ethical steering group with Gilberto

Corbellini, Aldona Dembinska-Kiec, Jantina de Vries, Alex Mauron and

Guido Pennings (1) University of Milano and Fondazione Filarete with

Daniele Cusi, Fabio Macciardi, Andrea Stucchi, Cristina Barlassina, Erika

Salvi, Francesca Frau, Sara Lupoli, Federica Rizzi, Andrea Calabria,

Maurizio Marconi, Gianna Petrini, Vincenzo Toschi, Giancarlo Mariotti,

Maurizio Turiel; (2) University of Leuven, Division of Hypertension and

Cardiovascular Rehabilitation, Department of Cardiovascular Diseases,

with Robert Fagard, Yu Jin, Tatiana Kuznetsova, Tom Richart, Jan A.

Staessen, and Lutgarde Thijs; (3) Jagiellonian University Medical College,

Krakow, with Kalina Kawecka-Jaszcz, Katarzyna Stolarz-Skrzypek,

Agnieszka Olszanecka, Wiktoria Wojciechowska, Małgorzata Kloch-

Badełek; (4) IBM Israel – Science and Technology LTD, with Amnon

Shabo, Ariel Frakash, Simona Cohen, Boaz Carmeli, Dan Pelleg, Michal

Rosen-Zvi, Hani Neuvrith-Telem; (5) I.M.S. – Istituto di Management

Sanitario S.r.l., Milan, with Pietro Conti, Costanza Conti, Mariella

D’Alessio; (6) Institute of Internal Medicine, Siberian Branch of Russian

Academy of Medical Science, Novosibirsk, with Yuri Nikitin, Galina

Simonova, Sofia Malyutina, Elena Pello; (7) Imperial College of Science,

Technology and Medicine, with Paolo Vineis and Clive J Hoggart; (8)

INSERM – Institut National de la Santé et de la Recherche Médicale
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