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Genome-wide associations and detection 
of potential candidate genes for direct genetic 
and maternal genetic e�ects in�uencing dairy 
cattle body weight at di�erent ages
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Abstract 

Background: Body weight (BW) at different ages are of increasing importance in dairy cattle breeding schemes, 

because of their strong correlation with energy efficiency traits, and their impact on cow health, longevity and farm 

economy. In total, 15,921 dairy cattle from 56 large-scale test-herds with BW records were genotyped for 45,613 

single nucleotide polymorphisms (SNPs). This dataset was used for genome-wide association studies (GWAS), in 

order to localize potential candidate genes for direct and maternal genetic effects on BW recorded at birth (BW0), at 

2 to 3 months of age (BW23), and at 13 to 14 months of age (BW1314).

Results: The first 20 principal components (PC) of the genomic relationship matrix ( G ) grouped the genotyped cattle 

into three clusters. In the statistical models used for GWAS, correction for population structure was done by including 

polygenic effects with various genetic similarity matrices, such as the pedigree-based relationship matrix ( A ), the G

-matrix, the reduced G-matrix LOCO (i.e. exclusion of the chromosome on which the candidate SNP is located), and 

LOCO plus chromosome-wide PC. Inflation factors for direct genetic effects using A and LOCO were larger than 1.17. 

For G and LOCO plus chromosome-wide PC, inflation factors were very close to 1.0. According to Bonferroni correc-

tion, ten, two and seven significant SNPs were detected for the direct genetic effect on BW0, BW23, and BW1314, 

respectively. Seventy-six candidate genes contributed to direct genetic effects on BW with four involved in growth 

and developmental processes: FGF6, FGF23, TNNT3, and OMD. For maternal genetic effects on BW0, only three signifi-

cant SNPs (according to Bonferroni correction), and four potential candidate genes, were identified. The most signifi-

cant SNP on chromosome 19 explained only 0.14% of the maternal de-regressed proof variance for BW0.

Conclusions: For correction of population structure in GWAS, we suggest a statistical model that considers LOCO 

plus chromosome-wide PC. Regarding direct genetic effects, several SNPs had a significant effect on BW at different 

ages, and only two SNPs on chromosome 5 had a significant effect on all three BW traits. Thus, different potential 

candidate genes regulate BW at different ages. Maternal genetic effects followed an infinitesimal model.
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Background
Some countries with pasture-based production systems 

consider dairy cow live weight in overall breeding goals or 

in selection indices [1, 2]. Positive genetic correlations of 

body weight (BW) with milk yield and protein yield have 

been reported [3–5]. Feed efficiency reflects the ability of 

dairy cows to produce more milk for a given feed con-

sumption [6]. Different traits are defined to measure 

feed efficiency, e.g. the ratio of milk to body weight, 

feed intake, residual feed intake [7], and feed saved [8]. 

Most of these definitions imply that BW or changes in 

BW are taken into account. Moreover, dry matter intake 

and energy balances are favourably correlated with BW 

[3]. In addition, BW influences dairy cow fertility and 

health. For example, survival of new-born calves and 

calving ease are moderately correlated with birth weight 
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of calves and BW of cows [9]. Berry et  al. [5] reported 

that heavier cows had a shorter interval between calv-

ing and first service, but conception rates decreased with 

increasing BW. In contrast, in heifers, increasing BW was 

associated with improved non-return rates after 56 and 

90  days [4]. Hence, we hypothesize that different genes 

are involved in BW at different ages, as indicated in quan-

titative genetic studies via random regression models [4].

On the genomic scale, GWAS for BW or BW indicators 

have considered only one time point per animal [10–12]. 

Zhang et al. [12] analysed longitudinal BW records in cat-

tle at 6, 12, 18 and 24 months of age, but BW was predicted 

from measurements for heart girth and hip height. �e 

aforementioned publications focussed only on the esti-

mation of direct additive genetic effects on BW. However, 

especially in early life, BW should be separated into direct 

genetic and maternal genetic effects [13]. Dams with high 

breeding values for maternal ability provide an improved 

nourishing environment, with an associated positive 

impact on survival rates and birth weight in offspring. For 

a deeper understanding of the mechanisms between direct 

and maternal effects, it is imperative to detect the func-

tional segments of the genome that contribute to maternal 

genetic effects on BW, and to study direct-maternal asso-

ciations on the genomic scale. To date, only a few studies 

[14–16] have addressed such topics.

�e power of GWAS contributes to the detection of 

significant markers, and, furthermore, has an impact 

on the identification of associated potential candidate 

genes. Linkage disequilibrium (LD) is one of the param-

eters that affects the power of GWAS. �e use of a dense 

50 K single nucleotide polymorphism (SNP) chip implies 

that it contains markers that are closely located to the 

functional mutation and contribute to acceptable LD 

between markers and causal loci [17]. Body weight is a 

trait with a moderate to high pedigree-based heritability 

[4, 5, 18], which is favourable for the detection of QTL. 

Furthermore, currently, the trend is to use large numbers 

of female observations for the estimation of SNP effects, 

which contributes to an increasing number of phenotypic 

records for GWAS [19], with a positive impact on the 

statistical power for the detection of SNP effects. Non-

causative rare alleles with high frequencies in large half-

sib daughter groups might contribute to false positive 

signals in GWAS. Usually, the first principal components 

and similarity matrices can be considered in statistical 

modelling to correct for population stratification [20]. In 

dairy cattle breeding, deep pedigree information is avail-

able, which enables the use of mixed models for GWAS 

with random polygenic effects based on pedigree [21] or 

on genomic relationship matrices [22].

Consequently, the objectives of our study were: (1) 

to perform GWAS using phenotypes and de-regressed 

proofs for direct genetic and maternal genetic effects on 

BW at different ages; (2) to correct for population stratifi-

cation in GWAS when using pedigree-based or genomic 

relationship matrices, or a combination of relationship 

matrices with principal components; (3) to infer (co)vari-

ance components for/between direct genetic and mater-

nal genetic effects on different scales (pedigree-based 

genetic parameters, whole genome, and single chromo-

somes); and (4) to identify associated potential candidate 

genes for direct genetic and maternal genetic effects.

Methods
Phenotype data

Body weight records at birth (BW0), 2  to  3  months of 

age (BW23), and 13 to 14 months of age (BW1314) were 

available for 250,173, 42,632 and 54,768 female animals, 

respectively. �e number of animals with phenotypic 

records at all three age intervals was 15,234. Animals 

were born between 2004 and 2016, and kept in 56 large-

scale dairy cattle test-herds, which were located in the 

German federal states of Mecklenburg-Westpommer-

ania and Berlin-Brandenburg. For the 250,173 calves, 

the gestation length of their dams ranged from 265 to 

295  days (average: 279.4  days). For BW0, we discarded 

birth weights above 60 kg or below 20 kg. For the detec-

tion of outlier data for BW23 and BW1314, we followed 

the approach by Yin et al. [4] and calculated studentized 

residuals and corresponding Bonferroni p values (using 

the outlier test function in the R package “car” [23]). 

Records were excluded from further analyses when p val-

ues were lower than 0.05 or higher than 0.95. �e pedi-

gree file included 411,943 animals, born between 1948 

and 2016.

Genotype data

Among the Holstein cattle with BW records, 13,827 

calves with BW0 records, 4246 calves with BW23 

records, and 7920 heifers with BW1314 records, were 

genotyped. Genotyping was performed using the Illu-

mina Bovine 50 K SNP BeadChip V2 (4120 animals), or 

the Illumina Bovine Eurogenomics 10 K low-density chip 

(11,801 animals). Animals with low-density genotypes 

were imputed to the 50 K chip (according to the routine 

procedure for official national genetic evaluations [24]). 

Finally, for all the genotyped cattle, 45,613 SNPs were 

available that had a call rate higher than 95%, a minor 

allele frequency higher than 0.01, and did not deviate sig-

nificantly from Hardy–Weinberg equilibrium (p > 0.001). 

Only SNPs located on Bos taurus autosomes (BTA) were 

considered. Furthermore, we discarded animals with 

more than 95% identical genotypes. Quality control of 

SNP data was done by using the GenABEL package in R 

[25]. In order to verify the impact of LD between SNPs 
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on the inflation factors in GWAS, we applied the indep-

pairwise option in PLINK [26]. We eliminated one SNP 

from pairs of SNPs that had a LD coefficient (r2) higher 

than 0.25 [27]. �e remaining SNPs after this elimination 

procedure were defined as pruned SNPs. �e numbers 

of animals, numbers of the full SNPs, and numbers of 

pruned SNPs, are in Table 1.

Population strati�cation

�e genomic relationship matrix G was constructed as 

in [28] based on the full SNP dataset, and then used for 

principal component analysis, in order to visualise pos-

sible population stratification for the 15,921 genotyped 

animals. �e software package GCTA [29] generated the 

first 20 principal components (PC). �en, k-means clus-

tering was applied by including the first 10 PC, because 

the remaining 10 PC were not informative and over-

loaded k-means clustering.

Statistical models

Pedigree-based (co)variance components and breeding 

values

A multiple-trait animal model was defined, in order to infer 

the genetic components and to estimate breeding values for 

direct genetic and maternal genetic effects. In this regard, 

we applied restricted maximum likelihood (REML) via 

AIREMLf90 from the BLUPF90 software package [30]. �e 

statistical Model 1 for the three BW traits (BW0, BW23, 

BW1314) in matrix notation was:

where y is a vector of phenotypes for BW0, BW23, and 

BW1314 from 250,173, 42,632 and 54,768 female ani-

mals, respectively; b is a vector of fixed effects, including 

herd, birth year, birth month, and the covariate (linear 

regression) gestation length for BW0, and age (in days) 

of the calves/heifers for BW23 and BW1314; u is a vec-

tor of direct additive-genetic effects, with u ∼ N
(

0,Aσ
2
u

)

 , 

where A is the pedigree-based relationship matrix and 

σ
2
u is the direct-genetic variance; m is a vector of random 

maternal-genetic effects, with m ∼ N
(

0,Aσ
2
m

)

 , where σ2m 

is the maternal-genetic variance; pm is a vector of ran-

dom maternal permanent environmental effects; e is a 

vector of random residual effects; and X , Z , W , and S are 

incidence matrices for b , u , m , and pm , respectively.

Estimated breeding values from Model 1 for direct 

genetic and maternal genetic effects were used to cal-

culate de-regressed proofs (DRP) for the direct genetic 

(dDRP) and for the maternal genetic component (mDRP), 

respectively, according to Garrick et al. [31]. Only the ani-

mals with a DRP weight greater than 0.2 were considered 

in ongoing GWAS (see Model 3). �e number of DRP 

records for direct genetic and maternal genetic effects is 

in Table 1. Since animal models generate breeding values 

for all the animals from the pedigree database, all these ani-

mals, including the phenotyped and non-phenotyped ani-

mals, were considered for DRP calculations, which means 

that an increased number of genotyped animals for DRP is 

available.

Genomic heritabilities and correlations

Variance components and correlations for the three BW 

traits explained by SNPs on all the chromosomes were esti-

mated via genomic REML (GREML), as implemented in 

GCTA [29]. Model 2 was defined as follows:

where, y is a vector of phenotypes for BW0, BW23, and 

BW1314, and b is a vector of fixed effects including the 

same effects as specified in Model 1. �e variance for 

additive genetic effects u was equal to Gσ
2
u , with G repre-

senting the genomic relationship, and σ2u representing the 

variance explained by SNPs from the full dataset. For the 

estimation of covariance components in bivariate mod-

els, GCTA requires that the fixed effects are the same for 

both traits. Hence, we ran bivariate models for pairwise 

combinations of pre-corrected phenotypes for BW0, 

BW23, and BW1314. �e pre-corrected phenotype for a 

specific genotyped animal was the sum of the estimated 

direct breeding value, the maternal breeding value, the 

maternal environmental effect, and the residual (i.e. out-

put from Model 1).

(1)y = Xb + Zu + Wm + Spm + e,

(2)y = Xb + Zu + e,

Table 1 Number of  animals and  SNPs for  the  genome-

wide association studies

BW0: body weight recorded at birth; BW23: body weight recorded at 

2 to 3 months of age; BW1314: body weight recorded at 13 to 14 months of age; 

dDRP: de-regressed proofs for the direct genetic e�ect; mDRP: de-regressed 

proofs for the maternal genetic e�ect

a Number of cows with genotypes

b Number of cows with genotypes after quality control

c Number of markers after quality control

d Number of markers after pruning

Trait Dependent 
variable

#animalsa #animalsb #markersc #markersd

BW0 Phen 13,827 13,714 42,468 11,955

dDRP 15,921 14,121 42,465 11,954

mDRP 16,455 16,022 42,540

BW23 Phen 4246 4219 42,388 11,908

dDRP 15,921 8017 42,421 11,933

mDRP 16,455 6803 42,498

BW1314 Phen 7920 7874 42,443 11,943

dDRP 15,921 7874 42,443 11,943

mDRP 16,455 6996 42,503
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Genome-wide association studies

�e software package GCTA [29] was also used to esti-

mate SNP effects via linear mixed models with a random 

polygenic effect. �e statistical Model 3 for single marker 

regression analysis was:

where y is a vector of phenotypes, dDRP or mDRP for 

BW0, BW23, and BW1314; b is a vector of fixed effects 

including the same effects as specified in Model 1 for 

phenotypes as dependent variables, but for DRP, b only 

considered the overall mean effect; g is the vector for 

SNP effects; u is a vector of polygenic effects with a vari-

ance–covariance structure of u ∼ N
(

0,Kσ
2
u

)

 , where K is 

the genetic similarity matrix between individuals, and σ2u 

is the polygenic variance; e is a vector of random resid-

ual effects with e ∼ N
(

0, Iσ2e

)

 ; and X , W , and Z are inci-

dence matrices for b , g , and u , respectively. According to 

the Bonferroni correction, the defined GWAS significant 

threshold was 0.05/N, where N refers to the number of 

SNPs. In addition to the Bonferroni correction, a less 

conservative adjusted p value, based on false discovery 

rate (FDR), was calculated for each SNP [32]. �e thresh-

old for FDR significance was 0.05.

�e genetic similarity matrix K was constructed with 

different information sources. First, we created K based 

on the pedigree relationship matrix A , as generated from 

AIREMLF90. Second, the construction of K was based on 

the genomic relationship matrix G . Due to possible unde-

sired effects of SNP double-counting [33], alternative G

-matrices excluded all SNPs from the chromosome on 

which the candidate SNP is located. �is strategy is defined 

as “leave-one-chromosome-out” (LOCO) [34]. Since the 

length of bovine chromosomes is not constant, many SNPs 

on the large chromosomes are excluded. Hence, SNPs 

located on the large chromosomes BTA1 to 11 (these chro-

mosomes contain more than 1500 SNPs) were separated 

into two segments per chromosome. �e modified LOCO 

approach (LOCO_SEG40, i.e. the 22 segments from chro-

mosomes 1–11 plus the remaining 18 chromosomes) con-

structed G-matrices using all SNPs, except those from the 

respective chromosome segment (for BTA1 to BTA11), 

or excluding all SNPs from the whole chromosome (for 

BTA12 to BTA30). In addition, chromosomes were sepa-

rated into smaller segments according to the number of 

SNPs with (a) segments including 90–100 SNPs (a total 

of 441 segments = LOCO_SEG441), and (b) segments 

including 47–50 SNPs (a total of 864 segments = LOCO_

SEG864). In order to account for the loss in similarity due 

to the deleted chromosome in LOCO, the first 20 PC were 

included as covariates (LOCO + PC20). However, consider-

ation of 20 PC combined with the LOCO G-matrix implies 

partial overlap of genomic information. Hence, as a further 

(3)y = Xb + Wg + Zu + e,

alternative, we focussed on principal component analyses 

for the G-matrix from each chromosome, and the first 3, 10 

or 20 PC were included as covariates (LOCO + CHR_PC3, 

LOCO + CHR_PC10, and LOCO + CHR_PC20, respec-

tively). All the similarity matrices ( G-matrix, LOCO G

-matrix, and G-matrix from each chromosome) as men-

tioned above were constructed based on the full SNP data-

set. An additional LOCO scenario using the pruned SNPs 

(LOCO_prune) was considered, in order to test the effect 

of LD between SNPs on inflation.

We used the inflation factor ( � ) as evaluation criterion 

for the different approaches, which was calculated based 

on the χ2

i
 statistic for the i-th SNP:

�e expected inflation factor of value 1 indicates suf-

ficient correction for population stratification. A value 

above 1.05 indicates inflation in the sample [35], and thus 

that the detected genome-wide associations might be false 

positives.

Chromosome-wide genomic parameters

Genetic variances for each chromosome were estimated via 

GREML using the full SNP dataset, and applying GCTA 

[29]. �e univariate Model 4 was:

where y and b are vectors of phenotypes and fixed 

effects, respectively, as introduced in Model 1; ui is the 

additive genetic effect with variance of Giσ
2
ui

 , where Gi 

is the genomic relationship matrix constructed from 

SNPs located on chromosome i , and σ2ui is the variance 

explained by SNPs on chromosome i ; uall_without_i is the 

additive genetic effect due to all the SNPs except those on 

chromosome i ; e is the residual effect; and X , Z1 , and Z2 

are incidence matrices for b , ui and uall_without_i , respec-

tively. �e heritability for each chromosome is equal to 

the ratio of σ2ui divided by the sum including the variance 

components from all SNPs on chromosome i plus the 

variance components from all other SNPs plus the resid-

ual variance.

Gene annotation

�e database (version UMD3.1) including gene loca-

tions, start positions and end sites for all bovine genes 

was downloaded from Ensembl [36]. Originally, 24,616 

gene ID entries were available in the database. How-

ever, only the 17,545 genes on BTA1 to 29 with valid 

evidences for gene ontology [37, 38] were considered in 

subsequent analyses. First, SNPs used for GWAS (i.e. the 

full SNP dataset) were mapped to the genes, by applying 

the MAGMA software [39], and considering a window 

�̂ =

Median
(
χ
2
i

)

0.4549
.

(4)y = Xb + Z1ui + Z2uall_without_i + e,
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100 kb upstream and downstream for each gene. In the 

next step, a test statistic for each gene was generated by 

summing − 2log(p values) from a set of SNPs within the 

aforementioned window. �is test followed a Chi square 

distribution [39]. Also, the p-value for each of the 17,545 

genes was calculated, and further adjusted according 

to the FDR [32]. Only the genes with a FDR lower than 

5% were considered as significantly associated with one 

of the BW traits. �en, functional classification analyses 

were conducted for the significant candidate genes, based 

on information from the PANTHER database [40].

Results and discussion
Genetic parameters

Direct pedigree-based heritabilities (i.e. using the A

-matrix) for BW traits were moderate to high: 0.46 for 

BW0, 0.37 for BW23, and 0.48 for BW1314 (Table  2). 

Similar heritabilities were reported in previous quantita-

tive genetic studies for BW [5, 18, 41]. Interestingly, the 

maternal genetic component had also a moderate contri-

bution, even for BW1314 recorded later in life. Maternal 

heritabilities of 0.14, 0.11 and 0.13 were found for BW0, 

BW23, and BW1314, respectively. Although the genomic 

relationship matrix ( G ) takes the Mendelian sampling 

term into account, direct genomic heritabilities (Model 

2) i.e. 0.33 for BW0, 0.19 for BW23, and 0.22 for BW1314 

were lower compared to the pedigree-based heritabilities 

estimated with the A-matrix (Model 1). �e lower her-

itabilities estimated with the G-matrix could be due to 

incomplete LD between SNPs on the 50 K SNP chip and/

or very different sample sizes used for the estimations. An 

explanation for the overestimated pedigree-based herit-

abilities could be the occurrence of confounding between 

environmental effects and pedigree relationships [42]. 

Direct genetic correlations between the three BW traits 

estimated from genomic relationships (0.51 between 

BW0 and BW23, 0.33 between BW0 and BW1314, 0.47 

between BW23 and BW1314) were slightly higher than 

those based on pedigree information.

Population strati�cation

�e k-means clustering approach (using the first 10 PC) 

created three clusters including 856 cows (cluster 1), 

14,305 cows (cluster 2) and 760 cows (cluster 3). Genetic 

distances between animals based on the two most impor-

tant PC (the first two PC that contribute to genetic vari-

ation) are shown in Fig. 1. Our study included Holstein 

dairy cattle from only two neighbouring German breed-

ing organizations. When tracing back to the ancestors of 

the calves and heifers from the three clusters, we found 

that animals in clusters 1, 2 and 3 were daughters from 

2, 890, and 11 sires, respectively. One specific influential 

sire (Gunnar) in cluster 1 had 855 daughters, whereas 

another sire (Raik) in cluster 1 had only one daugh-

ter in cluster 1 and one daughter in cluster 2 (i.e. the 

only black dot that overlaps with the red dot in Fig.  1). 

�e 760 calves and heifers in cluster 3 were daughters 

from 11 different sires. One specific sire (Guarini) had 

750 daughters in cluster 3, and the remaining 10 sires 

only had one daughter each. �e maternal grandsire of 

the nine daughters was Guarini. Sires in cluster 2 origi-

nated from various countries, but more than 75% calves 

and heifers had German and Dutch sires. �e remaining 

25% females were daughters of sires from 12 other coun-

tries. �e average number of daughters per sire in clus-

ter 2 was quite small (on average only 16.09). In contrast, 

the calves and heifers allocated to clusters 1 and 2 were 

mainly daughters from only two German sires. Conse-

quently, as expected from the pedigree structure, genetic 

distances between animals within clusters 1 and 2 were 

short. Hence, the stratification that was observed in the 

genotyped calves and heifers was mainly due to the size 

and structure of the half-sib groups. �e effect of breed-

ing organization (geographical location) on population 

Table 2 Genetic parameters for  body weight recorded at  di�erent ages based on  pedigree and  genomic relationship 

matrices

Standard errors in parentheses

BW0: body weight recorded at birth; BW23: body weight recorded at 2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age

Relationship matrix Trait Heritability Genetic correlation for direct 
e�ects

Direct Maternal Total BW23 BW1314

Pedigree BW0 0.46 (0.01) 0.14 (0.01) 0.40 (0.01) 0.46 (0.03) 0.39 (0.03)

BW23 0.37 (0.01) 0.11 (0.01) 0.23 (0.01) 0.46 (0.04)

BW1314 0.48 (0.02) 0.13 (0.01) 0.34 (0.01)

Genomic BW0 0.33 (0.01) 0.51 (0.05) 0.33 (0.04)

BW23 0.19 (0.02) 0.47 (0.07)

BW1314 0.22 (0.02)
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stratification was of minor importance, because geno-

typed animals in all clusters represented both breeding 

organisations quite equally.

PC1 and PC2 only explained 1.53 and 1.13% of the 

total genetic variation, respectively. Consequently, we 

observed several overlaps between the three clusters, 

especially for animals allocated to clusters 2 and 3. In 

other studies, population stratification occurred when 

various breeds were pooled in the same GWAS [43], or 

because of obvious differences in breeding and selection 

strategies [44]. In addition, family structure, especially 

in large families with many closely related paternal half-

sibs, generated false positive SNP effects. In this regard, 

in a preliminary GWAS without considering any poly-

genic effects, we detected a large number of more than 

2000 significant SNPs (after Bonferroni correction), and 

the inflation factor was equal to 6.04.

GWAS for body weights

Direct genetic e�ects

�e number of significant SNPs that contributed to 

direct genetic effects for the three BW traits (results from 

Model 3) are listed in Table 3. Evaluation criteria for all 

similarity matrices are provided for BW0 only. �e gen-

eral trend in terms of number of significant SNPs and 

inflation factors for BW23 and BW1314 was in agreement 

with corresponding similarity matrices for BW0. Inflation 

factors were largest when using LOCO for the construc-

tion of the genetic similarity matrix. �is was the case for 

both types of dependent variables, i.e. phenotypes (infla-

tion factor = 2.22) and dDRP (inflation factor = 2.19). 

�e number of significant SNPs and inflation factors 

decreased slightly when SNPs on BTA1 to BTA11 were 

partitioned into two segments (LOCO_SEG40). A further 

decrease in inflation factor was observed when the num-

ber of segments (LOCO_SEG441 and LOCO_SEG864) 

increased, associated with a reduction of significant 

SNPs. LOCO plus the first 20 PC of the overall G-matrix 

as covariates identified a quite fairly large number of 

73 significant SNPs, and contributed to large inflation 

factors (1.90 for phenotypes and 1.87 for dDRP). �e 

inclusion of 20 PC of chromosome-wide G-matrices as 

fixed regressions in the model (LOCO + CHR_PC20) 

decreased the number of significant SNPs, and the infla-

tion factor was close to 1. Inflation factors and number 

of detected significant SNPs were substantially larger for 

A (phenotype: 1213 SNPs according to FDR, λ = 1.92) 

compared to G (phenotype: 7 SNPs according to FDR, 

λ = 0.96). Such obvious differences were not expected, 

because G is the realized relationship matrix and A is 

the expected relationship matrix. Models with G and 

LOCO + CHR_PC produced inflation factors that were 

equal to 1.0 or slightly lower than 1.0. Generally, a near 

identical number of significant SNPs was found in the G

-matrix scenario and LOCO + CHR_PC scenarios. �e 

number of significant SNPs was larger for BW0 than for 

BW1314 or BW23. Pruning the SNPs according to low 

LD decreased inflation factors slightly. �is was the case 

for all three BW traits, regardless of whether phenotypes 

or dDRP were used as dependent variables. For example, 

when the phenotype of BW0 was the dependent variable, 

inflation factors decreased from 2.22 (LOCO) to 1.97 

(LOCO_prune). �e decrease in inflation factor was even 

smaller for BW23 and BW1314, which indicated that 

high LD between SNPs was not the main reason for the 

large number of false positive SNPs in our dataset.

Based on our results, it is imperative to correct for 

population stratification in the German Holstein popula-

tion via G or G-similarities (i.e. the LOCO_CHR_PC-sce-

narios). GWAS that include multiple breeds and ignore 

population structure, increased spurious LD, which led 

to an inflation of false positive signals [43, 45, 46]. �ere-

fore, PC and genetic relationships [15] were included in 

the GWAS to prevent spurious associations. Yang et  al. 

[34] compared linear mixed models by including or not 

candidate markers and recommended exclusion of can-

didate markers from the G-matrix because this improved 

statistical power. However, for the German Holstein pop-

ulation with many closely related animals, LOCO over-

estimated SNP effects, which indicated that the G-matrix 

from LOCO cannot capture all of the family relatedness. 

Correlations between the off-diagonal elements from the 

“full” G-matrix and the LOCO G-matrix ranged from 

0.98 to 1.0, but the LOCO G-matrix slightly underesti-

mated the genomic relationships between animals. �is 

underestimation was identified because the regression 

coefficients were always smaller than 1.0 when regressing 

relationships from the “full G ” on relationships from the 

“LOCO-G”.

Fig. 1 Plot of principal components (PC) 1 and 2 for 15,921 

genotyped cows
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Most of the significant SNPs for direct genetic effects 

on the three BW traits were located on BTA5 (Table 4). 

Manhattan and Q–Q plots for direct genetic effects 

for the three BW traits based on different similarity 

matrices are presented in Additional file  1. For dDRP 

of BW23, only two SNPs on BTA5 were significant. 

Both SNPs were detected using the G-matrix. SNP 

Hapmap60480-ss46526970 was also significant when 

applying LOCO + CHR_PC. Only two SNPs (Hap-

map60480-ss46526970 and Hapmap57466-rs29018274) 

on BTA5 significantly contributed to the three BW 

traits. SNP Hapmap60480-ss46526970 was significant, 

regardless of the approach applied. However, SNP Hap-

map57466-rs29018274 was significant only when the 

G-matrix was considered. �e pleiotropic SNP (Hap-

map60480-ss46526970) on BTA5, and the significant 

SNP on BTA18 (ARS-BFGL-NGS-109285), also contrib-

uted significantly to BW changes in genotyped Holstein 

dairy cows in the US [47]. On BTA18, SNP ARS-BFGL-

NGS-109285 was significantly associated with body 

shape, body size, dystocia, longevity, lifetime economic 

merit [48], and calving difficulty [15]. �e four signifi-

cant SNPs, i.e. ARS-BFGL-NGS-39379 for BW0 and 

BW1314, ARS-BFGL-NGS-5139 for BW0, ARS-BFGL-

NGS-107035 for BW0, and ARS-BFGL-NGS-109317 for 

BW0, had a significant impact on BW [49], live weight 

[50], carcass retail beef yield [43], and hot carcass weight 

[51] in beef and crossbred beef cattle.

Maternal genetic e�ects

For maternal genetic effects, only three significant SNPs 

according to the FDR threshold were identified when 

using LOCO plus chromosome-wide PC (Table 5). Two 

SNPs located on BTA4 and one SNP on BTA19 influ-

enced BW0 significantly (Table  6). Regarding maternal 

genetic effects at later age points for BW23 and BW1314, 

no significant SNP was detected. �e Manhattan plots for 

maternal genetic effects on BW0 are in Fig. 2. In a study 

conducted in crossbred beef cattle [51], the significant 

SNP ARS-BFGL-NGS-61198 on BTA4 explained 2.67% 

of the phenotypic variation for lean rate. �e significant 

SNP Hapmap53086-rs29025958 on BTA19 was identi-

fied as a marker for a QTL that controls fat percentage 

[52]. According to the infinitesimal model for maternal 

effects on calving performance [15], many genes with 

small effects influenced the maternal effect on BW. In this 

regard, the most significant SNP on BTA 19 explained 

only 0.14% of the mDRP variance for BW0.

Correlations between SNP effects (using DRP and 

the G-matrix in Model 3) for direct genetic and mater-

nal genetic effects were − 0.15 for BW0, − 0.27 for 

BW23, and − 0.62 for BW1314. Antagonistic correla-

tions between SNP effects for direct genetic and mater-

nal genetic effects for each chromosome were identified 

for all three BW traits, except for BW0 (0.01) on BTA16 

(Fig.  3). In agreement with correlations that take the 

SNPs on all the chromosomes into account, and in agree-

ment with pedigree-based correlations, antagonistic 

Table 3 Number of  signi�cant SNPs in�uencing direct 

genetic e�ects and  in�ation factor for  body weight 

recorded at di�erent ages

FDR: false discovery rate; Bonferroni: Bonferroni correction; λ: in�ation 

factor; BW0: body weight recorded at birth; BW23: body weight recorded at 

2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age; 

dDRP: de-regressed proofs for the direct genetic e�ect; mDRP: de-regressed 

proofs for the maternal genetic e�ect; LOCO_pruned: LOCO based on pruned 

SNPs

a Number of signi�cant SNPs according to false discovery rate

b Number of signi�cant SNPs according to Bonferroni-correction

Trait Dependent 
variable

Polygenic e�ect FDRa Bonferronib λ

BW0 Phen A 1213 64 1.92

G 7 3 0.96

LOCO 2268 125 2.22

LOCO_pruned 394 43 1.97

LOCO_SEG40 1811 103 2.06

LOCO_SEG441 80 17 1.29

LOCO_SEG864 41 12 1.18

LOCO + PC20 1132 73 1.90

LOCO + CHR_PC20 16 7 0.93

dDRP A 1463 104 1.96

G 15 6 0.96

LOCO 2212 163 2.19

LOCO_pruned 414 54 1.91

LOCO_SEG40 1802 143 2.07

LOCO_SEG441 103 23 1.28

LOCO_SEG864 57 15 1.17

LOCO + PC20 1180 108 1.87

LOCO + CHR_PC20 13 8 0.90

BW23 Phen A 11 0 1.17

G 0 0 0.99

LOCO + CHR_PC20 0 0 0.66

LOCO + CHR_PC10 0 0 0.93

dDRP A 22 5 1.33

G 3 2 1.00

LOCO + CHR_PC20 0 0 0.70

LOCO + CHR_PC10 1 1 0.96

BW1314 Phen A 47 14 1.46

G 5 3 0.97

LOCO + CHR_PC20 2 2 0.72

LOCO + CHR_PC10 7 4 0.98

dDRP A 50 17 1.45

G 7 6 0.97

LOCO + CHR_PC20 3 3 0.72

LOCO + CHR_PC10 12 6 0.97
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relationships between direct genetic and maternal genetic 

effects were most obvious for BW1314. If we focus on the 

functional region on BTA5 (i.e. between 105,445,909 and 

107,612,671  bp), the direct-maternal correlations based 

on the effects of 46 SNPs were equal to − 0.04 for BW0, 

0.06 for BW23, and − 0.87 for BW1314.

Genomic heritability for each chromosome

Genomic heritabilities for the three BW traits across the 

29 bovine autosomes (results from Model 4) are in Fig. 4. 

For BW0, genomic heritability was highest (0.03) when 

the SNPs on BTA5 were considered and decreased to 

0.001 when those on BTA26 were considered. BTA5 and 

BTA26 explained 9.92 and 0.31% of the total genomic 

variance for BW0, respectively. Genomic heritabili-

ties higher than 0.015 were estimated for BTA2, 4, 5, 7, 

11, and 25. When comparing chromosomal genomic 

variances with GWAS results for BW0 (see Additional 

file 1a and c), the proportion of explained genomic vari-

ance increased as the number of significant SNPs per 

chromosome increased. For BW23, genomic heritabili-

ties were lower than 0.001 for BTA2, 15, and 28, higher 

than 0.015 for BTA3, 9, 19 and 21, but significant SNPs 

were detected only on BTA5 (see Additional file 1e). For 

BW1314, the highest genomic heritability (0.02) was 

found for BTA7, but significant SNPs were detected on 

BTA3, 5, 8, 16, and 18 (see Additional file 1g), for which 

genomic heritabilities were higher than 0.012 for BTA3, 

5, 8, and 18 and only 0.007 for BTA16.

Heterogeneous chromosomal contributions were also 

reported for BW in Korean beef cattle [53]. Consistent 

with the latter study, we found variations in chromo-

some-wise BW variances for the same chromosomes 

at different ages. Hence, such changes in genomic 

Table 4 Signi�cant SNPs according to  Bonferroni correction for  direct genetic e�ects on  body weight recorded 

at di�erent ages

BW0: body weight recorded at birth; BW23: body weight recorded at 2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age

The indicated signi�cant SNPs are from runs that consider the following similarity matrices: athe genomic relationship matrix G , bLOCO + CHR_PC20 and 
cLOCO + CHR_PC10

SNP Chr Position Ref allele E�ect BW0 BW23 BW1314

Phen dDRP Phen dDRP Phen dDRP

INRA-658 3 29627982 A − Xc

BTB-01695573 4 10794285 C + Xb Xb

ARS-BFGL-NGS-3933 5 105695909 G − Xa

Hapmap47397-BTA-74925 5 105744830 A − Xab Xab Xac

Hapmap60480-ss46526970 5 105870613 C − Xab Xab Xac Xac Xac

ARS-BFGL-NGS-39379 5 106269362 G − Xab Xab Xc Xac

ARS-BFGL-NGS-10732 5 106780606 G − Xac Xac

Hapmap57466-rs29018274 5 107362671 A + Xa Xa Xa

ARS-BFGL-NGS-5139 7 92474466 A + Xb

ARS-BFGL-NGS-107035 7 93007435 A + Xb Xab

ARS-BFGL-NGS-109285 18 57589121 A + Xb Xac Xac

ARS-BFGL-NGS-109317 29 49906123 A + Xb

ARS-BFGL-NGS-40378 29 50296573 A + Xb Xb

Table 5 Number of  signi�cant SNPs in�uencing maternal 

genetic e�ects and  in�ation factor for  body weight 

recorded at di�erent ages

FDR: false discovery rate; Bonferroni: Bonferroni correction; λ: in�ation 

factor; BW0: body weight recorded at birth; BW23: body weight recorded at 

2 to 3 months of age; BW1314: body weight recorded at 13 to 14 months of age; 

dDRP: de-regressed proofs for the direct genetic e�ect; mDRP: de-regressed 

proofs for the maternal genetic e�ect

a Number of signi�cant SNPs according to false discovery rate

b Number of signi�cant SNPs according to Bonferroni-correction

Trait Dependent 
variable

Polygenic e�ect FDRa Bonferronib λ

BW0 mDRP A 26 6 1.12

G 0 0 0.99

LOCO + CHR_PC20 0 0 0.64

LOCO + CHR_PC3 3 0 1.00

BW23 mDRP A 0 0 1.04

G 0 0 0.99

LOCO + CHR_PC20 0 0 0.59

LOCO + CHR_PC3 0 0 0.91

BW1314 mDRP A 0 0 1.08

G 0 0 1.00

LOCO + CHR_PC20 0 0 0.56

LOCO + CHR_PC3 0 0 0.91
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variances indicate that the genetic mechanisms under-

lying BW differ with age, i.e. that different genes are 

“switched on or off” during the growth period. We have 

identified some chromosomes that explain more than 

0.015% of the total genomic variance, although no sig-

nificant SNP was detected (BTA9 for BW23 and BTA7 

for BW1314), which indicates polygenic contribution to 

BW on these chromosomes.

In contrast to [54], we found weak negative covari-

ances between chromosome-wise genomic effects 

in our data, because the proportions of the sum of 

chromosome-wise variances to total genomic vari-

ances reached 100.81% for BW0, 106.56% for BW23, 

and 101.41% for BW1314. Linear associations between 

chromosome length and chromosomal genomic vari-

ances were weak for BW0 and BW1314, with  R2 val-

ues of 0.20 and 0.21, respectively, and null for BW23 

 (R2 = 0.02). Weak associations between chromosome 

length and chromosomal genomic variances indicate 

that the QTL for BW are not evenly distributed across 

the genome [54].

Gene annotation

Direct genetic e�ect

�e identified potential candidate genes that significantly 

influence direct genetic effects on BW are in Additional 

file  2. �ese candidate genes are located on 12 chro-

mosomes: BTA3, 4, 5, 7, 8, 11, 13, 18, 19, 23, 25 and 29, 

Table 6 Signi�cant SNPs according to  false discover rate for  maternal-genetic e�ects on  body weight recorded 

at di�erent ages

BW0: body weight recorded at birth; BW23: body weight recorded at 2 to 3 month of age; BW1314: body weight recorded at 13 to 14 months of age

The indicated signi�cant SNPs are from the run that consider the similarity matrix: LOCO + CHR_PC3

SNP Chr Position Ref. allele E�ect BW0 mDRP BW23 mDRP BW1314 mDRP

ARS-BFGL-NGS-61198 4 112474006 A + X

ARS-BFGL-NGS-107181 4 114464406 A + X

Hapmap53086-rs29025958 19 37626478 G + X

Fig. 2 Manhattan plot from GWAS for maternal genetic effects on birth weight. G : Genomic relationship matrix; LOCO + CHR_PC3: 

leave-one-chromosome-out plus 3 principal components based on the chromosomal genomic relationship matrix. The red line is the significance 

threshold line for the Bonferroni correction of 5%, and the green dots represent significant SNPs according to a false discovery rate of 5%
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which BTA5 and BTA18 carrying more than ten. Over-

all, for the three BW traits, 76 potential candidate genes 

had adjusted p values lower than 0.05 (according to FDR), 

with 51 significant genes for BW0, 12 for BW23, and 38 

for BW1314; these figures reflect the smaller number of 

significant SNPs detected in the GWAS for BW at later 

ages. Six genes contributed significantly to the three 

BW traits and 12 more contributed to both BW0 and 

BW1314, but only one more gene, i.e. fast skeletal mus-

cle troponin T (TNNT3) had a significant effect on both 

BW0 and BW23. Low to moderate genetic correlations 

between BW traits at different age points, but with some 

overlapping between significant genes, could indicate 

pleiotropic effects of the candidate genes.

Some of the potential candidate genes on BTA18 for 

BW traits are known to be involved in calving perfor-

mance and conformation traits. For example, Abo-Ismail 

et al. [16] reported that cytosolic thiouridylase subunit 1 

(CTU1) and ENSBTAG00000037537 are highly associ-

ated with body conformation traits and kallikrein related 

peptidase 4 (KLK4), CTU1 and ENSBTAG00000004608 

contributes to calving ease. Purfield et  al. [15] showed 

that CTU1 and ENSBTAG00000037537 contain one 

and two significant missense variants, respectively, that 

are associated with calving difficulty in a mixed bull 

population including Holstein–Friesian, Charolais and 

Limousin. Since the above-mentioned six genes also 

influence birth weight, the calving difficulties in these 

breeds are mainly due to increased BW of the newborn 

[55].

Our analyses revealed that the identified potential can-

didate genes were involved in 12 biological processes 

(Fig. 5): cellular processes (30 genes), metabolic mecha-

nisms (14 genes), biological regulations and responses to 

stimuli (10 genes), growth (one gene), and body devel-

opmental processes (four genes). �e latter four genes 

were fibroblast growth factors 6 (FGF6) and fibroblast 

growth factors 23 (FGF23), fast skeletal muscle troponin 

T (TNNT3), and osteomodulin (OMD). FGF6 and FGF23 

belong to the fibroblast growth factor family, which plays 

an important role in a variety of biological processes, 

including angiogenesis, morphogenesis, tissue regen-

eration, and oncogenesis [40]. Another significant gene, 

i.e. cathepsin D (CTSD) is involved in the activation and 

degradation of polypeptide hormones and growth factors 

[56]. TNNT3 produces troponin T protein in the mam-

malian fast skeletal muscle, with causal effects on  Ca2+ 

muscle contractions [57]. OMD regulates the diameter 

and shape of collagen fibrils, which suggest an effect on 

bone formation [58].
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Fig. 3 Correlations between direct genetic and maternal genetic marker effects for body weight recorded at birth (BW0), at 2 to 3 months of age 

(BW23) and at 13 to 14 months of age (BW1314)
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Fig. 4 Chromosomal genomic heritabilities for direct genetic effects of body weights recorded at birth (BW0), at 2 to 3 months of age (BW23) and 

at 13 to 14 months of age (BW1314). The red bars represent chromosomes with genomic heritabilities higher than 0.015
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Maternal genetic e�ect

Four potential candidate genes on BTA19, i.e. solute car-

rier family 35 member B1 (SLC35B1), speckle-type POZ 

protein (SPOP), neurexophilin 3 (NXPH3), and nerve 

growth factor receptor (NGFR), were significantly asso-

ciated with birth weight (see Additional file 3), although 

only one significant SNP was detected on BTA19. �e 

biological functions of SLC35B1 and NXPH3 remain 

unknown. SPOP is an important regulator of luminal epi-

thelial cell proliferation [59] and is associated with vari-

ous cancers. NGFR affects cell growth and survival [60]. 

None of these four genes overlapped with the candidate 

genes identified for direct genetic effects.

Conclusions
Ignoring the population structure of Holstein–Friesian in 

the GWAS increased the number of false positive SNPs. 

Population structure was corrected properly when using 

G and LOCO plus chromosome-wide PC in the statistical 

models for the GWAS. �e number of significant SNPs 

increased when DRP instead of phenotypes were used 

as dependent variables. Two SNPs on BTA5 influenced 

direct genetic effects significantly for BW at the three 

ages measured. Chromosomes with a larger number of 

significant SNPs had higher direct chromosomal herit-

abilities. Gene annotation analysis identified 76 poten-

tial candidate genes that are involved in 12 biological 

processes, which indicates that weight development is a 

very complex biological process. Regarding birth weight, 

only a limited number of significant SNPs and candidate 

genes were identified for the maternal genetic effects, 

which suggests an infinitesimal model for these effects. 

Antagonistic associations between direct genetic and 

maternal genetic effects were observed both when SNPs 

on all bovine chromosomes or on single chromosomes 

were considered, and for potential functional regions on 

BTA5.

Additional �les

Additional �le 1. Manhattan plots and Q–Q plots from GWAS for birth 

weight phenotypes (a and b), for birth weight de-regressed proofs (c 

and d), for BW23 phenotypes and de-regressed proofs (e and f ), and for 

BW1314 phenotypes and de-regressed proofs (g and h). Description: A 

is the pedigree-based relationship matrix; G is the genomic relationship 

matrix; LOCO is leave-one-chromosome-out (LOCO); LOCO_SEG864 is 

leave one segment out; LOCO + PC20 is LOCO plus 20 principal compo-

nents; LOCO + CHR_PC20 is LOCO plus 20 principal components based 

on the chromosomal genomic relationship matrix. The red line is the sig-

nificance threshold line for the Bonferroni correction of 5%, and the green 

dots represent significant SNPs according to ae false discovery rate of 5%.

Additional �le 2. Potential candidate genes for direct genetic effects on 

body weight recorded at birth (BW0), at 2 to 3 months of age (BW23) and 

at 13 to 14 months of age (BW1314).

Additional �le 3. Potential candidate genes for maternal genetic effects 

on body weights recorded at birth (BW0), at 2 to 3 months of age (BW23) 

and at 13 to 14 months of age (BW1314).
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