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Abstract

Cell-free DNA (cfDNA) in the blood provides a noninvasive diagnostic avenue for patients with 

cancer1. However, characteristics of the origins and molecular features of cfDNA are poorly 

understood. We developed an approach to evaluate fragmentation patterns of cfDNA across the 

genome and found that cfDNA profiles of healthy individuals reflected nucleosomal patterns of 

white blood cells, while patients with cancer had altered fragmentation profiles. We applied this 

method to analyze fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, 

pancreatic, gastric, or bile duct cancer and 245 healthy individuals. A machine learning model 

incorporating genome-wide fragmentation features had sensitivities of detection ranging from 57% 

to >99% among the seven cancer types at 98% specificity, with an overall AUC of 0.94. 

Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited 

number of sites in 75% of cases. Combining our approach with mutation based cfDNA analyses 

detected 91% of cancer patients. The results of these analyses highlight important properties of 

cfDNA and provide a proof of principle approach for screening, early detection, and monitoring of 

human cancer.

Much of the morbidity and mortality of human cancers worldwide results from late 

diagnosis where therapeutic intervention is less effective2,3. Unfortunately, clinically proven 

biomarkers that can be used to broadly diagnose and treat patients are not widely available4. 

Recent analyses of circulating cfDNA suggest that approaches using tumor-specific 

alterations may provide new avenues for early diagnosis but not all patients have detectable 

changes5–8. Whole genome sequencing (WGS) of cfDNA can identify chromosomal 

abnormalities in cancer patients but detecting such alterations may be challenging due to the 

small number of abnormal chromosomal changes9–12. Analyses of the size of cfDNA 

fragments have been contradictory, indicating both increases13–16 and decreases in the 

overall distribution of cfDNA12,17–19. Recent studies have suggested that size selection of 

small cfDNA can increase enrichment of circulating tumor DNA (ctDNA) in late-stage 

cancer patients17. Nucleosome positions18,20, patterns near transcription start sites20,21, and 

the end positions of cfDNA22 may be altered in cancer but the sequencing needed to identify 

nucleosomes is impractical for routine analyses.

Conceptually, the sensitivity of any cfDNA approach depends on the number of alterations 

examined as well as the technical and biological limitations of detecting such changes. As a 

typical blood sample contains ~2000 genome equivalents of cfDNA per milliliter of 

plasma5, the theoretical limit of detection of a single alteration can be no better than one in a 

few thousand mutant to wild-type molecules. We hypothesized that detection of a larger 

number of alterations in the genome may be more sensitive for detecting cancer in the 

circulation. Monte Carlo simulations showed that increasing the number of abnormalities 
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detected from a few to tens or hundreds can improve the limit of detection, similar to recent 

analyses of methylation changes in cfDNA23 (Extended Data Fig. 1a).

We developed an approach called DELFI (DNA evaluation of fragments for early 

interception, Fig. 1) to detect a large number of abnormalities in cfDNA through genome-

wide analysis of fragmentation patterns. The method is based on low coverage WGS of 

isolated cfDNA. Mapped sequences are analyzed in non-overlapping windows covering the 

genome. Conceptually, windows may range in size from thousands to millions of bases, 

resulting in hundreds to thousands of windows in the genome. We used 5 Mb windows for 

evaluating cfDNA fragmentation patterns as this provided >20,000 reads per window at 1–

2x genome coverage. Within each window, we examined coverage and size distribution of 

cfDNA fragments in healthy and cancer populations (Supplementary Table 1). The genome-

wide pattern from an individual can be compared to reference populations to determine if the 

pattern is likely healthy or cancer-derived. As genome-wide profiles may reveal differences 

associated with specific tissues, these patterns may also indicate the tissue source of cfDNA.

We focused on fragmentation size of cfDNA as we found that cancer-derived cfDNA may be 

more variable in length than cfDNA from non-cancer cells. We initially examined cfDNA 

from targeted regions captured and sequenced at high coverage from patients with breast, 

colorectal, lung or ovarian cancer5 (Supplementary Tables 1, 2, 3). Analyses of loci 

containing 165 tumor-specific alterations from 81 patients revealed an average absolute 

difference of 6.5 bp (95% CI, 5.4–7.6 bp) between lengths of median mutant and wild-type 

cfDNA fragments, with mutant cfDNA fragments ranging from 30 bases smaller to 47 bases 

larger (Extended Data Fig. 1b, Supplementary Table 3). GC content was similar for mutated 

and non-mutated fragments, with no correlation between GC content and fragment length 

(Extended Data Fig. 1c, d). Analyses of 44 germline alterations from 38 patients identified 

median cfDNA size differences <1 bp between different alleles (Extended Data Fig. 2a, 

Supplementary Table 3). For 41 alterations related to clonal hematopoiesis5 there were no 

significant differences between cfDNA fragments containing such alterations and wild-type 

fragments (Extended Data Fig. 2b, Supplementary Table 3). Overall, cancer-derived cfDNA 

fragment lengths were more variable compared to non-cancer cfDNA (p<0.001, variance 

ratio test). We hypothesized that these differences may reflect changes in chromatin structure 

as well as other genomic and epigenomic abnormalities in cancer24,25 and that cfDNA 

fragmentation in a position-specific manner could serve as a biomarker for cancer detection.

As targeted sequencing analyzes a limited number of loci, we investigated whether genome-

wide analyses would detect additional abnormalities from cfDNA fragmentation. In a pilot 

analysis, we isolated cfDNA from ~4 ml of plasma from 8 stage I-III lung cancer patients 

and 30 healthy individuals (Supplementary Tables 1, 4, 5), and performed WGS at ~9x 

coverage (Supplementary Table 4). As expected12,18,19, median overall cfDNA fragment 

lengths of healthy individuals were larger than those of cancer patients (167.3 bp and 163.8, 

respectively, p<0.01, Welch’s t-test) (Supplementary Table 5). To examine differences in 

fragment size and coverage in a position-dependent manner across the genome, we mapped 

fragments to their genomic origin and evaluated fragment lengths in 504 windows of 5 Mb, 

covering ~2.6 Gb of the genome. For each window, we determined the fraction of small 
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cfDNA fragments (100 to 150 bp) to larger cfDNA fragments (151 to 220 bp) and overall 

coverage to obtain genome-wide fragmentation profiles for each sample.

We found that healthy individuals had similar genome-wide fragmentation profiles (Fig. 2a, 

b, Extended Data Fig. 3a). To examine the origins of cfDNA fragmentation patterns, we 

isolated and nuclease treated nuclei from lymphocytes of two healthy individuals to obtain 

nucleosomal DNA fragments. Healthy cfDNA patterns were highly correlated to lymphocyte 

nucleosomal DNA fragmentation profiles and nucleosome distances (Fig. 2b, c, Extended 

Data Fig. 3b, c). Median distances between nucleosomes in lymphocytes were correlated to 

Hi-C open (A) and closed (B) compartments of lymphoblastoid cells (Fig. 2c)26,27. These 

analyses suggest that fragmentation patterns of normal cfDNA are the result of nucleosomal 

DNA patterns that reflect the chromatin structure of normal blood cells.

In contrast to healthy cfDNA, patients with cancer had multiple distinct genomic differences 

with increases and decreases in fragment sizes at different regions (Fig. 2a, b). We 

performed genome-wide correlation analyses of the fraction of short to long cfDNA 

fragments for each sample compared to the median fragment length profile of healthy 

individuals and found that, while cfDNA fragment profiles were consistent among healthy 

individuals (median correlation of 0.99), the median correlation of fragment ratios among 

cancer patients was 0.84 (95% CI 0.07–0.50, p<0.001, Wilcoxon rank sum test, Fig. 2a, b, 

Extended Data Fig. 3d, Supplementary Table 5). Similar differences were observed 

comparing cfDNA fragmentation profiles of cancer patients to fragmentation profiles of 

healthy lymphocytes (Fig. 2c, Extended Data Fig. 3b, c). To account for potential biases 

attributable to GC content, we applied a locally weighted smoother and found that 

differences in fragmentation profiles between healthy individuals and cancer patients 

remained after this adjustment (median correlation of cancer patients to healthy = 0.83, 

Supplementary Table 5).

We subsampled WGS data at 9x coverage to ~2x, ~1x, ~0.5x, ~0.2x, and ~0.1x genome 

coverage, and determined that altered fragmentation profiles from cancer patients were 

identified even at 0.5x coverage (Extended Data Fig. 3e, f). Based on these observations, we 

performed WGS at 1–2x coverage to evaluate whether fragmentation profiles may change 

during the course of therapy28,29. We evaluated cfDNA from 19 non-small cell lung cancer 

patients during anti-EGFR or anti-ERBB2 therapy (Supplementary Table 6). The degree of 

abnormality in the fragmentation profiles during therapy closely matched levels of EGFR or 

ERBB2 mutant allele fractions (Extended Data Fig. 4, Spearman correlation of mutant allele 

fractions to fragmentation profiles = 0.74)29. These results demonstrate that fragmentation 

analyses may be useful for detecting tumor-derived cfDNA and monitoring patients during 

treatment.

As cfDNA fragmentation profiles would be expected to reflect both epigenomic and 

genomic alterations, we examined these in a patient with known tumor copy number 

changes. Altered fragmentation profiles were present in regions of the genome that were 

copy-neutral and were further affected in regions with copy number changes (Fig. 3a, 

Extended Data Fig. 5a). Position-dependent differences in fragmentation patterns 
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distinguished cancer-derived cfDNA from healthy cfDNA, while overall cfDNA fragment 

size analyses would have missed such differences (Extended Data Fig. 5a, b).

We performed WGS at 1–2x coverage of cfDNA from 208 patients with cancer, including 

breast (n=54), colorectal (n=27), lung (n=12), ovarian (n=28), pancreatic (n=34), gastric 

(n=27), or bile duct cancer (n=26), as well as 215 healthy individuals (Supplementary Tables 

1, 4). All cancer patients were treatment naïve and the majority had resectable disease 

(n=183). After GC adjustment of short and long cfDNA fragment coverage (Extended Data 

Fig. 6a, b), we examined coverage and size characteristics of fragments in windows 

throughout the genome (Fig. 3b, Supplementary Tables 4, 7). Healthy individuals had 

concordant fragmentation profiles while patients with cancer had variability with decreased 

correlation to the median healthy profile (Supplementary Table 7). An analysis of commonly 

altered genomic windows revealed a median of 60 affected windows across the cancer types 

analyzed, highlighting position-dependent alterations in fragmentation of cfDNA (Fig. 3c).

We implemented a gradient tree boosting machine learning model to examine whether 

cfDNA has characteristics of a cancer patient or healthy individual and estimated 

performance characteristics of this approach by ten-fold cross-validation repeated ten times 

(Extended Data Fig. 7a, b). The machine learning model included GC-adjusted short and 

long fragment coverage characteristics in windows throughout the genome. We also 

developed a machine learning classifier for copy number changes from chromosomal arm 

features 10,11 (Extended Data Fig. 8a, Supplementary Table 8) and included mitochondrial 

copy number changes12 (Extended Data Fig. 8b). Using this implementation of DELFI, we 

obtained a score that could be used to classify patients as healthy or having cancer. We 

detected 152 of 208 cancer patients (73% sensitivity, 95% CI 67%−79%) while 

misclassifying four of 215 healthy individuals (98% specificity) (Table 1). At a threshold of 

95% specificity, we detected 80% of patients with cancer (95% CI, 74%−85%), including 

79% of resectable (stage I – III) patients (145 of 183) and 82% of stage IV patients (18 of 

22) (Table 1). Receiver operator characteristic analyses for detection of cancer patients had 

an AUC of 0.94 (95% CI 0.92 – 0.96), ranging from 0.86 for pancreatic cancer to ≥0.93 for 

breast, bile duct, colorectal, gastric, lung and ovarian cancers (Fig. 4, Extended Data Fig. 

9a), with AUCs ≥0.92 for each stage (Extended Data Fig. 9b). To assess the contribution of 

fragment size and coverage across the genome, chromosome arm copy number, or 

mitochondrial copy number to the predictive accuracy of the model, we implemented the 

cross-validation procedure to assess performance characteristics of these features in 

isolation. Fragment coverage features alone (AUC = 0.94) were nearly identical to the 

classifier that combined all features (AUC = 0.94). In contrast, machine learning analyses of 

chromosomal copy number changes had lower performance (AUC = 0.88) but were still 

more predictive than copy number using individual scores (AUC=0.78) or mitochondrial 

copy number (AUC = 0.72) (Fig. 4). These results suggest that fragment coverage is the 

major contributor to our classifier, but we have included all features in our prediction model 

as they can be obtained from the same WGS data and may contribute in a complementary 

fashion for cancer detection.

As fragmentation profiles reveal regional differences between tissues, we used machine 

learning to identify the tissue of origin of ctDNA. These analyses had a 61% accuracy (95% 
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CI 53%−67%) that increased to 75% (95% CI 69%−81%) when assigning ctDNA to one of 

two sites of origin (Table 2, Extended Data Fig. 9c, d). For all tumor types the tissue of 

origin classification by DELFI was higher than random assignment (p<0.01, binomial test, 

Extended Data Fig. 9d).

We evaluated whether combining DELFI with mutation detection in cfDNA5 could increase 

the sensitivity of cancer detection (Extended Data Fig. 10). An evaluation of cases analyzed 

using both approaches revealed that 82% (103 of 126) of patients were detected using 

DELFI while 66% (83 of 126) had sequence alterations. For cases with mutant allele 

fractions <1% DELFI detected 80% of cases, including those that were undetectable using 

targeted sequencing (Supplementary Table 7). When these approaches were used together 

the combined sensitivity increased to 91% (115 of 126 patients) with a specificity of 98% 

(Extended Data Fig. 10).

Overall, we have determined that genome-wide cfDNA fragmentation profiles are different 

between cancer patients and healthy individuals. In cancer patients, fragmentation patterns 

in cfDNA appear to result from mixtures of nucleosomal DNA from both blood and 

neoplastic cells. Our approach could be further improved through recovery of smaller 

fragments17,30, evaluation of single-stranded libraries18,30,31, or use of alternative 

technologies. Additionally, PCR-free libraries could reduce GC bias and sequencing 

artifacts18,30,31.

These observations have important implications for noninvasive detection of human cancer. 

DELFI simultaneously analyzes tens to hundreds of tumor-specific abnormalities from 

minute cfDNA amounts, overcoming a limitation that has precluded the possibility of more 

sensitive analyses of cfDNA. These analyses detected a higher fraction of cancer patients 

than previous methods5–7,12,17, and combining DELFI with detection of cfDNA sequence 

alterations further increased the sensitivity of detection. As fragmentation profiles appear 

related to nucleosomal patterns, DELFI may be useful for determining the source of tumor-

derived cfDNA, an aspect that could be further improved using clinical characteristics, 

methylation changes23, and additional diagnostic approaches6. DELFI requires only a small 

amount of whole genome sequencing, suggesting that this approach could be broadly 

applied for screening and management of patients with cancer.

Methods

Patient and sample characteristics

Plasma samples from healthy individuals and plasma and tissue samples from patients with 

breast, lung, ovarian, colorectal, bile duct, or gastric cancer were obtained from ILSBio/

Bioreclamation, Aarhus University, Herlev Hospital of the University of Copenhagen, 

Hvidovre Hospital, the University Medical Center of the University of Utrecht, the 

Academic Medical Center of the University of Amsterdam, the Netherlands Cancer Institute, 

and the University of California, San Diego. All samples were obtained under Institutional 

Review Board approved protocols with informed consent from all participants for research 

use at participating institutions. Plasma samples from healthy individuals were obtained at 
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the time of routine screening, including for colonoscopies or Pap smears. Individuals were 

considered healthy if they had no previous history of cancer and negative screening results.

Plasma samples from individuals with breast, colorectal, gastric, lung, ovarian, pancreatic 

and bile duct cancer were obtained at the time of diagnosis, prior to tumor resection or 

therapy. Nineteen lung cancer patients analyzed for change in cfDNA fragmentation profiles 

across multiple time points were undergoing treatment with anti-EGFR or anti-ERBB2 

therapy 29. Clinical data for all patients included in this study are listed in table S1. Sex was 

confirmed through genomic analyses of X and Y chromosome representation. Pathologic 

staging of gastric cancer patients was performed after neoadjuvant therapy. Samples where 

the tumor stage was unknown were indicated as stage X or unknown.

Nucleosomal DNA purification

Viably frozen lymphocytes were elutriated from leukocytes obtained from a healthy male 

(C0618) and female (D0808-L) (Advanced Biotechnologies Inc., Eldersburg, MD). Aliquots 

of 1 × 106 cells were used for nucleosomal DNA purification using EZ Nucleosomal DNA 

Prep Kit (Zymo Research, Irvine, CA). Cells were initially treated with 100μl of Nuclei Prep 

Buffer and incubated on ice for 5 minutes. After centrifugation at 200g for 5 minutes, 

supernatant was discarded and pelleted nuclei were treated twice with 100μl of Atlantis 

Digestion Buffer or with 100μl of micrococcal nuclease (MN) Digestion Buffer. Finally, 

cellular nucleic DNA was fragmented with 0.5U of Atlantis dsDNase at 42oC for 20 minutes 

or 1.5U of MNase at 37oC for 20 minutes. Reactions were stopped using 5X MN Stop 

Buffer and DNA was purified using Zymo-Spin™ IIC Columns. Concentration and quality 

of eluted cellular nucleic DNA were analyzed using the Bioanalyzer 2100 (Agilent 

Technologies, Santa Clara, CA).

Sample preparation and sequencing of cfDNA

Whole blood was collected in EDTA tubes and processed immediately or within one day 

after storage at 4°C, or was collected in Streck tubes and processed within two days of 

collection for three cancer patients who were part of the monitoring analysis. Plasma and 

cellular components were separated by centrifugation at 800g for 10 min at 4°C. Plasma was 

centrifuged a second time at 18,000g at room temperature to remove any remaining cellular 

debris and stored at −80°C until the time of DNA extraction. DNA was isolated from plasma 

using the Qiagen Circulating Nucleic Acids Kit (Qiagen GmbH) and eluted in LoBind tubes 

(Eppendorf AG). Concentration and quality of cfDNA were assessed using the Bioanalyzer 

2100 (Agilent Technologies).

NGS cfDNA libraries were prepared for whole genome sequencing and targeted sequencing 

using 5 to 250 ng of cfDNA as previously described5. Briefly, genomic libraries were 

prepared using the NEBNext DNA Library Prep Kit for Illumina [New England Biolabs 

(NEB)] with four main modifications to the manufacturer’s guidelines: (i) The library 

purification steps used the on-bead AMPure XP approach to minimize sample loss during 

elution and tube transfer steps32; (ii) NEBNext End Repair, A-tailing, and adapter ligation 

enzyme and buffer volumes were adjusted as appropriate to accommodate the on-bead 

AMPure XP purification strategy; (iii) a pool of eight unique Illumina dual index adapters 
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with 8–base pair (bp) barcodes was used in the ligation reaction; and (iv) cfDNA libraries 

were amplified with Phusion Hot Start Polymerase. Whole genome libraries were sequenced 

using 100-bp paired-end runs on the Illumina HiSeq 2000/2500 (Illumina).

Analyses of targeted sequencing data from cfDNA

Analyses of targeted NGS data for cfDNA samples was performed as previously described5. 

Briefly, primary processing was completed using Illumina CASAVA (Consensus Assessment 

of Sequence and Variation) software (version 1.8), including demultiplexing and masking of 

dual-index adapter sequences. Sequence reads were aligned against the human reference 

genome (version hg18 or hg19) using NovoAlign with additional realignment of select 

regions using the Needleman-Wunsch method 33. The positions of sequence alterations we 

identified have not been affected by the different genome builds. Candidate mutations, 

consisting of point mutations, small insertions, and deletions, were identified using 

VariantDx33 (Personal Genome Diagnostics, Baltimore, MD) across the targeted regions of 

interest.

To analyze the fragment lengths of cfDNA molecules, we required that each read pair from a 

cfDNA molecule has a Phred quality score ≥ 30. We removed all duplicate ctDNA 

fragments, defined as having the same start, end, and index barcode. For each mutation, we 

only included fragments for which one or both of the read pairs contained the mutated (or 

wild-type) base at the given position. This analysis was done using the R packages 

Rsamtools and GenomicAlignments.

For each genomic locus where a somatic mutation was identified, we compared the lengths 

of fragments containing the mutant allele to the lengths of fragments with the wild-type 

allele. If more than 100 mutant fragments were identified, we used Welch’s two-sample t-

test to compare the mean fragment lengths. For loci with fewer than 100 mutant fragments, 

we implemented a bootstrap procedure. Specifically, we sampled with replacement N 

fragments containing the wild-type allele, where N denotes the number of fragments with 

the mutation. For each bootstrap replicate of wild type fragments we computed their median 

length. The p-value was estimated as the fraction of bootstrap replicates with a median wild-

type fragment length as or more extreme than the observed median mutant fragment length.

Analyses of whole genome sequencing data from cfDNA

Primary processing of whole genome NGS data for cfDNA samples was performed using 

Illumina CASAVA (Consensus Assessment of Sequence and Variation) software (version 

1.8.2), including demultiplexing and masking of dual-index adapter sequences. Sequence 

reads were aligned against the human reference genome (version hg19) using ELAND.

Read pairs with a MAPQ score below 30 for either read and PCR duplicates were removed. 

We tiled the hg19 autosomes into 26,236 adjacent, non-overlapping 100 kb bins. We 

excluded regions of low mappability based on previous work27 where 10% of bins with the 

lowest coverage were removed, and excluded reads falling in the Duke blacklisted regions 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/). 

Using this approach, we excluded 361 Mb (13%) of the hg19 reference genome, including 
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centromeric and telomeric regions. Short fragments were defined as having lengths between 

100 and 150 bp and long fragments as having lengths between 151 and 220 bp.

To account for biases in coverage attributable to GC content of the genome, we applied the 

locally weighted smoother loess with span ¾ to the scatterplot of average fragment GC 

versus coverage calculated for each 100kb bin. This loess regression was performed 

separately for short and long fragments to account for possible differences in GC effects on 

coverage in plasma by fragment length, an approach loosely motivated by Benjamini et al.34 

We subtracted the predictions for short and long coverage explained by GC from the loess 

model, obtaining residuals for short and long that were uncorrelated with GC. We returned 

the residuals to the original scale by adding back the genome-wide median short and long 

estimates of coverage. This procedure was repeated for each sample to account for possible 

differences in GC effects on coverage between samples. To further reduce the feature space 

and noise, we calculated the total GC-adjusted coverage in 5 Mb bins.

To compare the variability of fragment lengths from healthy subjects to fragments in patients 

with cancer, we calculated the standard deviation of the short to long fragmentation profiles 

for each individual. We compared the standard deviations in the two groups by a Wilcoxon 

rank sum test.

Analyses of chromosome arm copy number changes

To develop arm-level statistics for copy number changes, we adopted a previously described 

approach for aneuploidy detection in plasma10. This approach divides the genome into non-

overlapping 50KB bins for which GC-corrected log2 read depth was obtained after 

correction by loess with span 3/4. This loess-based correction is comparable to the approach 

outlined above, but is evaluated on a log2 scale to increase robustness to outliers in the 

smaller bins and does not stratify by fragment length. To obtain an arm-specific Z-score for 

copy number changes, the mean GC-adjusted read depth for each arm (GR) was centered 

and scaled by the average and standard deviation, respectively, of GR scores obtained from 

an independent set of 50 healthy samples.

Analyses of mitochondrial-aligned reads from cfDNA

Whole genome sequence reads that initially mapped to the mitochondrial genome were 

extracted from bam files and realigned to the hg19 reference genome in end-to-end mode 

with Bowtie2 as previously described35. The resulting aligned reads were filtered such that 

both mates aligned to the mitochondrial genome with MAPQ >= 30. The number of 

fragments mapping to the mitochondrial genome was counted and converted to a percentage 

of the total number of fragments in the original bam files.

Prediction model for cancer detection

To distinguish healthy from cancer patients using fragmentation profiles, we used a 

stochastic gradient boosting model (gbm)36,37. GC-corrected total and short fragment 

coverage for all 504 bins were centered and scaled for each sample to have mean 0 and unit 

standard deviation. Additional features included Z-scores for each of the 39 autosomal arms 

and mitochondrial representation (log10-transformed proportion of reads mapped to the 
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mitochondria). To estimate the prediction error of this approach, we used 10-fold cross-

validation.38 Feature selection, performed only on the training data in each cross-validation 

run, removed bins that were highly correlated (correlation > 0.9) or had near zero variance. 

Stochastic gradient boosted machine learning was implemented using the R package gbm 

package with parameters n.trees=150, interaction.depth=3, shrinkage=0.1, and 

n.minobsinside=10. To average over the prediction error from the randomization of patients 

to folds, we repeated the 10-fold cross-validation procedure 10 times. Confidence intervals 

for sensitivity fixed at 98% and 95% specificity were obtained from 2000 bootstrap 

replicates.

Prediction model for tumor tissue of origin classification

For samples correctly identified from patients with cancer at 90% specificity (n = 174), a 

separate stochastic gradient boosting model was trained to classify the tissue of origin. To 

account for the small number of lung samples used for prediction, we included 18 cfDNA 

baseline samples from late stage lung cancer patients from the monitoring analyses of our 

study. Performance characteristics of the model were evaluated using 10-fold cross-

validation repeated 10 times. This gbm model was trained using the same features as in the 

cancer classification model. Features that displayed correlation above 0.9 to each other or 

had near zero variance were removed within each training dataset during cross-validation. 

The tissue class probabilities were averaged across the 10 replicates for each patient and the 

class with the highest probability was used as the predicted tissue.

Analyses of nucleosomal DNA from human lymphocytes and cfDNA

From the nuclease treated lymphocytes, fragment sizes were analyzed in 5 Mb bins as 

described for whole genome cfDNA analyses. A genome-wide map of nucleosome positions 

was constructed from the nuclease treated lymphocyte cell lines. This approach identified 

local biases in the coverage of circulating fragments, indicating a region protected from 

degradation. A “Window positioning score” (WPS) was used to score each base pair in the 

genome18. Using a sliding window of 60bp centered around each base, the WPS was 

calculated as the number of fragments completely spanning the window minus the number 

of fragments with only one end in the window. Since fragments arising from nucleosomes 

have a median length of 167 bp, a high WPS indicated a possible nucleosomic position. 

WPS scores were centered at zero using a running median and smoothed using a 

Kolmogorov-Zurbenko filter39. For spans of positive WPS between 50 and 450 bp, a 

nucleosome peak was defined as the set of base pairs with a WPS above the median in that 

window. The calculation of nucleosome positions for cfDNA from 30 healthy individuals 

with sequence coverage of 9x was determined in the same manner as for lymphocyte DNA. 

To ensure that nucleosomes in healthy cfDNA were representative, we defined a consensus 

track of nucleosomes consisting only of nucleosomes identified in two or more individuals. 

Median distances between adjacent nucleosomes were calculated from the consensus track.

Monte Carlo simulation of detection sensitivity

We used Monte Carlo simulation to estimate the probability of detecting a molecule with a 

tumor-derived alteration. Briefly, we generated 1 million molecules from a multinomial 

distribution. For a simulation with m alterations, wild-type molecules were simulated with 
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probability p and each of the m tumor alterations were simulated with probability (1-p)/m. 

Next, we sampled g * m molecules randomly with replacement, where g denotes the number 

of genome equivalents in 1 ml of plasma. If a tumor alteration was sampled s or more times, 

we classified the sample as cancer-derived. We repeated the simulation 1000 times, 

estimating the probability that the in silico sample would be correctly classified as cancer by 

the mean of the cancer indicator. Setting g = 2000 and s = 5, we varied the number of tumor 

alterations by powers of 2 from 1 to 256 and the fraction of tumor-derived molecules from 

0.0001% to 1%.

Statistical analyses

All statistical analyses were performed using R version 3.4.3. The R packages caret (version 

6.0–79) and gbm (version 2.1–4) were used to implement the classification of healthy versus 

cancer and tissue of origin. Confidence intervals from the model output were obtained with 

the pROC (version 1.13) R package40. Assuming the prevalence of undiagnosed cancer 

cases in this population is high (1 or 2 cases per 100 healthy), a genomic assay with a 

specificity of 0.95 and sensitivity of 0.8 would have useful operating characteristics (positive 

predictive value of 0.25 and negative predictive value near 1). Power calculations suggest 

that an analysis of more than 200 cancer patients and an approximately equal number of 

healthy controls, enable an estimation of the sensitivity with a margin of error of 0.06 at the 

desired specificity of 0.95 or greater.

Data and Code Availability

Sequence data utilized in this study have been deposited at the database of Genotypes and 

Phenotypes (dbGaP, study ID 34536). Code for analyses is available at http://github.com/

Cancer-Genomics/delfi_scripts.

Extended Data
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Extended Data Fig. 1. Simulations of noninvasive cancer detection based on number of 
alterations analyzed and tumor-derived cfDNA fragment distributions.
a, Monte Carlo simulations were performed using different numbers of tumor-specific 

alterations to evaluate the probability of detecting cancer alterations in cfDNA at the 

indicated fraction of tumor-derived molecules. The simulations were performed assuming an 

average of 2000 genome equivalents of cfDNA and the requirement of five or more 

observations of any alteration. These analyses indicate that increasing the number of tumor-

specific alterations improves the sensitivity of detection of circulating tumor DNA. b, 
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Cumulative density functions of cfDNA fragment lengths of 42 loci containing tumor-

specific alterations from 30 patients with breast, colorectal, lung, or ovarian cancer are 

shown with 95% confidence bands (orange). Lengths of mutant cfDNA fragments were 

significantly different in size compared to wild-type cfDNA fragments (blue) at these loci. c, 
GC content was similar for mutated and non-mutated fragments. d, GC content was not 

correlated to fragment length.
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Extended Data Fig. 2. Germline and hematopoietic cfDNA fragment distributions.
a, Cumulative density functions of fragment lengths at 44 loci containing germline 

alterations (non-tumor derived) from 38 patients with breast, colorectal, lung, or ovarian 

cancer are shown with 95% confidence bands. Fragments with germline mutations (orange) 

were comparable in length to wild-type cfDNA fragment lengths (blue). b, Cumulative 

density functions of fragment lengths at 41 loci containing hematopoietic alterations (non-

tumor derived) from 28 patients with breast, colorectal, lung, or ovarian cancer are shown 

with 95% confidence bands. After correction for multiple testing, there were no significant 

differences (α=0.05) in the size distributions of mutated hematopoietic cfDNA fragments 

(orange) and wild-type cfDNA fragments (blue).

Cristiano et al. Page 14

Nature. Author manuscript; available in PMC 2019 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3. cfDNA fragmentation in healthy individuals and patients with lung cancer.
a, cfDNA fragments lengths are shown for healthy individuals (n=30, gray) and patients 

with lung cancer (n=8, blue). b-d, cfDNA fragmentation profiles from healthy individuals 

(n=30) had high correlations while patients with lung cancer (n=8) had lower correlations to 

median fragmentation profiles of b, lymphocytes, c, lymphocyte nucleosome distances, and, 

d, healthy cfDNA. Pearson correlations are shown with box plots depicting minimum, 25th 

percentile, median, 75th percentile, and maximum values. e, High coverage (9x) whole-

genome sequencing data were subsampled to 2x, 1x, 0.5x, 0.2x, and 0.1x fold coverage. 
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Mean centered genome-wide fragmentation profiles in 5 Mb bins for 30 healthy individuals 

and 8 patients with lung cancer are depicted for each subsampled fold coverage with median 

profiles shown in blue. f, Pearson Correlation of subsampled profiles to initial profile at 9x 

coverage for healthy individuals and patients with lung cancer.
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Extended Data Fig. 4. cfDNA fragmentation profiles and sequence alterations during therapy.
Detection and monitoring of cancer in serial blood draws from NSCLC patients (n=19) 

undergoing treatment with targeted tyrosine kinase inhibitors (black arrows) was performed 

using targeted sequencing (top) as previously reported29 and genome-wide fragmentation 

profiles (bottom). For each case, the vertical axis of the lower panel displays −1 times the 

Pearson correlation of each sample to the median healthy cfDNA fragmentation profile. 

Error bars depict confidence intervals from binomial tests for mutant allele fractions and 

confidence intervals calculated using Fisher transformation for genome-wide fragmentation 
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profiles. Although the approaches analyze different aspects of cfDNA (whole genome 

compared to specific alterations) the targeted sequencing and fragmentation profiles were 

similar for patients responding to therapy as well as those with stable or progressive disease. 

As fragmentation profiles reflect both genomic and epigenomic alterations, while mutant 

allele fractions only reflect individual mutations, mutant allele fractions alone may not 

reflect the absolute level of correlation of fragmentation profiles to healthy individuals.
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Extended Data Fig. 5. Profiles of cfDNA fragment lengths in copy neutral regions in healthy 
individuals and one patient with colorectal cancer.
a, The fragmentation profile in 211 copy neutral windows in chromosomes 1–6 for 25 

randomly selected healthy individuals (gray). For a patient with colorectal cancer 

(CGCRC291) with an estimated mutant allele fraction of 20%, we diluted the cancer 

fragment length profile to an approximate 10% tumor contribution (blue). a, b While the 

marginal densities of the fragment profiles for the healthy samples and cancer patient show 

substantial overlap (a, right), the fragmentation profiles are different as can be seen 

visualization of the fragmentation profiles (a, left) and by the separation of the colorectal 

cancer patient from the healthy samples (n=25) in a principal component analysis (b).
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Extended Data Fig. 6. Genome-wide GC correction of cfDNA fragments.
To estimate and control for the effects of GC content on sequencing coverage, we calculated 

coverage in non-overlapping 100kb genomic windows across the autosomes. For each 

window, we calculated the average GC of the aligned fragments. a, Loess smoothing of raw 

coverage (top row) for two randomly selected healthy subjects (CGPLH189 and 

CGPLH380) and two cancer patients (CGPLLU161 and CGPLBR24) with undetectable 

aneuploidy (PA score < 2.35). After subtracting the average coverage predicted by the loess 

model, the residuals were rescaled to the median autosomal coverage (bottom row). As 

fragment length may also result in coverage biases, we performed this GC correction 

procedure separately for short (≤ 150 bp) and long (> 150 bp) fragments. While the 100 kb 

bins on chromosome 19 (blue points) consistently have less coverage than predicted by the 

loess model, we did not implement a chromosome-specific correction as such an approach 

would remove the effects of chromosomal copy number on coverage. b, Overall, we found a 

limited correlation between short or long fragment coverage and GC content after correction 
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among healthy subjects (n=211, inter-quartile range: −0.03–0.03) and cancer patients 

(n=128, inter-quartile range: −0.06–0.02) with a PA score <3. Box plots depict minimum, 

25th percentile, median, 75th percentile, and maximum values.
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Extended Data Fig. 7. Machine learning model.
a, We used gradient tree boosting machine learning to examine whether cfDNA can be 

categorized as having characteristics of a cancer patient or healthy individual. The machine 

learning model included fragmentation size and coverage characteristics in windows 

throughout the genome, as well as chromosomal arm and mitochondrial DNA copy 

numbers. We employed a 10-fold cross-validation approach in which each sample is 

randomly assigned to a fold and 9 of the folds (90% of the data) are used for training and 

one fold (10% of the data) is used for testing. The prediction accuracy from a single cross-

validation is an average over the 10 possible combinations of test and training sets. As this 

prediction accuracy can reflect bias from the initial randomization of patients, we repeat the 

entire procedure, including the randomization of patients to folds, 10 times. For all cases, 

feature selection and model estimation were performed on training data and were validated 

on test data and the test data were never used for feature selection. Ultimately, we obtained a 

DELFI score that could be used to classify individuals as likely healthy or having cancer. b, 
Distribution of AUCs across the repeated 10-fold cross-validation. The 25th, 50th, and 75th 

percentiles of the 100 AUCs for the cohort of 215 healthy individuals and 208 patients with 

cancer are indicated by dashed lines.
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Extended Data Fig. 8. Whole-genome analyses of chromosomal arm copy number changes and 
mitochondrial genome representation.
a, Z scores for each autosome arm are depicted for healthy individuals (n=215) and patients 

with cancer (n=208). The vertical axis depicts normal copy at zero with positive and 

negative values indicating arm gains and losses, respectively. Z scores greater than 50 or less 

than −50 are thresholded at the indicated values. b, The fraction of reads mapping to the 

mitochondrial genome is depicted for healthy individuals (n=215) and patients with cancer 
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(n=208). Box plots depict the minimum, 25th percentile, median, 75th percentile, and 

maximum values.
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Extended Data Fig. 9. DELFI detection of cancer and tissue of origin prediction.
a, Analyses of individual cancer types using the DELFI-combined approach had AUCs 

ranging from 0.86 to >0.99. b, Receiver operator characteristics for detection of cancer using 

cfDNA fragmentation profiles and other genome-wide features in a machine learning 

approach are depicted for a cohort of 215 healthy individuals and each stage of 208 patients 

with cancer with ≥ 95% specificity shaded in blue. c, Receiver operator characteristics for 

DELFI tissue prediction of bile duct, breast, colorectal, gastric, lung, ovarian, or pancreatic 

cancer are depicted. In order to increase sample sizes within cancer type classes, we 
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included cases detected with a 90% specificity, and the lung cancer cohort was 

supplemented with the addition of baseline cfDNA data from 18 lung cancer patients with 

prior treatment36. d, DELFI tissue of origin prediction.

Cristiano et al. Page 26

Nature. Author manuscript; available in PMC 2019 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 10. Detection of cancer using DELFI and mutation-based cfDNA 
approaches.
DELFI (green) and targeted sequencing10 for mutation identification (blue) were performed 

independently in a cohort of 126 patients with breast, bile duct, colorectal, gastric, lung, or 

ovarian cancer. The number of individuals detected by each approach and in combination are 

indicated for DELFI detection with a specificity of 98%, targeted sequencing specificity at 

>99%, and a combined specificity of 98%. ND indicates not detected.
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Fig. 1. Schematic of DELFI approach.
Blood is collected from healthy individuals and patients with cancer. cfDNA is extracted 

from plasma, processed into sequencing libraries, examined through WGS, mapped to the 

genome, and analyzed to determine cfDNA fragmentation profiles across the genome. 

Machine learning is used to categorize whether individuals have cancer and identify tumor 

tissue of origin.
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Fig. 2. Aberrant cfDNA fragmentation profiles in patients with cancer.
a, Genome-wide cfDNA fragmentation profiles (defined as the ratio of short to long 

fragments) from ~9x WGS are shown in 5 Mb bins for 30 healthy individuals (top) and 8 

lung cancer patients (bottom). b, Analyses of healthy cfDNA (top), lung cancer cfDNA 

(middle), and healthy lymphocyte (bottom) fragmentation profiles from chromosome 1 at 1 

Mb resolution. Healthy lymphocyte profiles were scaled with a standard deviation equal to 

that of the median healthy cfDNA profiles. c, Smoothed median distances between adjacent 

nucleosome centered at zero using 100 kb bins from healthy cfDNA (top) and nuclease-

digested healthy lymphocytes (middle) are depicted together with the first eigenvector for 

the genome contact matrix from Hi-C analyses of lymphoblastoid cells27 (bottom).
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Fig. 3. cfDNA fragmentation profiles in healthy individuals and patients with cancer.
a, Fragmentation profiles (bottom) in the context of tumor copy number changes (top) in a 

colorectal cancer patient. The distribution of segment means and integer copy numbers are 

shown at top right. b, GC adjusted fragmentation profiles from 1–2x WGS for healthy 

individuals and patients with cancer are depicted per cancer type using 5 Mb windows. The 

median healthy profile is indicated in black and the 98% confidence band is shown in gray. 

For patients with cancer, individual profiles are colored based on their Pearson correlation to 

the healthy median. c, Windows are indicated in orange if more than 10% of the cancer 

samples had a fragment ratio more than three standard deviations from the median healthy 

fragment ratio.
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Fig. 4. Detection of cancer using DELFI.
Receiver operator characteristics for detection of cancer using cfDNA fragmentation profiles 

and other genome-wide features in a machine learning approach are depicted for a cohort of 

215 healthy individuals and 208 patients with cancer (DELFI, AUC = 0.94), with ≥ 95% 

specificity shaded in blue. Machine learning analyses of chromosomal arm copy number 

(Chr copy number (ML)), and mitochondrial genome copy number analyses (mtDNA), are 

shown in the indicated colors.
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Table 1.

DELFI performance for cancer detection

Individuals 
analyzed

95% specificity 98% specificity

Individuals 
detected

Sensitivity 95% CI Individuals 
detected

Sensitivity 95% CI

Healthy 215 10 - - 4 - -

Cancer 208 166 80% 74%–85% 152 73% 67%–79%

Type

Breast 54 38 70% 56%–82% 31 57% 43%–71%

Bile duct 26 23 88% 70%–98% 21 81% 61%–93%

Colorectal 27 22 81% 62%–94% 19 70% 50%–86%

Gastric 27 22 81% 62%–94% 22 81% 62%–94%

Lung 12 12 100% 74%–100% 12 100% 74%–100%

Ovarian 28 25 89% 72%–98% 25 89% 72%–98%

Pancreatic 34 24 71% 53%–85% 22 65% 46%–80%

Stage

I 41 30 73% 53%–86% 28 68% 52%–82%

II 109 85 78% 69%–85% 78 72% 62%–80%

III 33 30 91% 76%–98% 26 79% 61%–91%

IV 22 18 82% 60%–95% 17 77% 55%–92%

X 3 3 100% 29%–100% 3 100% 29%–100%
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