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Genome-wide changes in lncRNA, splicing, and 
regional gene expression patterns in autism
Neelroop N. Parikshak1,2*, Vivek Swarup1,2*, T. Grant Belgard1,2*†, Manuel Irimia3,4, Gokul Ramaswami1,2, Michael J. Gandal1,2, 
Christopher Hartl1,2, Virpi Leppa1, Luis de la Torre Ubieta1,2, Jerry Huang1,2, Jennifer K. Lowe1, Benjamin J. Blencowe5,6, 
Steve Horvath7,8 & Daniel H. Geschwind1,2,7

Autism spectrum disorder (ASD) involves substantial genetic 
contributions. These contributions are profoundly heterogeneous 
but may converge on common pathways that are not yet well 
understood1–3. Here, through post-mortem genome-wide 
transcriptome analysis of the largest cohort of samples analysed 
so far, to our knowledge4–7, we interrogate the noncoding 
transcriptome, alternative splicing, and upstream molecular 
regulators to broaden our understanding of molecular convergence 
in ASD. Our analysis reveals ASD-associated dysregulation of 
primate-specific long noncoding RNAs (lncRNAs), downregulation 
of the alternative splicing of activity-dependent neuron-specific 
exons, and attenuation of normal differences in gene expression 
between the frontal and temporal lobes. Our data suggest that 
SOX5, a transcription factor involved in neuron fate specification, 
contributes to this reduction in regional differences. We further 
demonstrate that a genetically defined subtype of ASD, chromosome 
15q11.2-13.1 duplication syndrome (dup15q), shares the core 
transcriptomic signature observed in idiopathic ASD. Co-expression 
network analysis reveals that individuals with ASD show age-related 
changes in the trajectory of microglial and synaptic function 
over the first two decades, and suggests that genetic risk for ASD 
may influence changes in regional cortical gene expression. Our 
findings illustrate how diverse genetic perturbations can lead to 
phenotypic convergence at multiple biological levels in a complex 
neuropsychiatric disorder.

We performed rRNA-depleted RNA sequencing (RNA-seq) of 251 
post-mortem samples of frontal and temporal cortex and cerebellum 
from 48 individuals with ASD and 49 control subjects (Methods and 
Extended Data Fig. 1a–h). We first validated differential gene expression 
(DGE) between samples of cortex from control individuals and those 
with ASD (ASD cortex) by comparing gene expression with that of 
different individuals from those previously profiled by microarray8, and 
found strong concordance (R2 =  0.60; Fig. 1a, Extended Data Fig. 1i).  
This constitutes an independent technical and biological replication of 
shared molecular alterations in ASD cortex.

We next combined covariate-matched samples from individuals with 
idiopathic ASD to evaluate changes across the entire transcriptome. 
Compared to control cortex, 584 genes showed increased expres-
sion and 558 showed decreased expression in ASD cortex (Fig. 1b; 
Benjamini–Hochberg FDR <  0.05, linear mixed effects model; see 
Methods). This DGE signal was consistent across methods, unrelated to 
major confounders, and found in more than two-thirds of ASD samples 
(Extended Data Fig. 1j–m). We performed a classification analysis to 
confirm that gene expression in ASD could separate samples by disease 

status (Extended Data Fig. 2a) and confirmed the technical quality of 
our data with qRT–PCR (Extended Data Fig. 2b, c). We next evaluated 
enrichment of the gene sets for pathways and cell types (Extended Data 
Fig. 2d, e), and found that the downregulated set was enriched in genes 
expressed in neurons and involved in neuronal pathways, including 
PVALB and SYT2, which are highly expressed in interneurons; by 
contrast, the upregulated gene set was enriched in genes expressed in 
microglia and astrocytes8.

Although there was no significant DGE in the cerebellum 
(FDR <  0.05, P distributions in Fig. 1b), similar to observations in a 
smaller cohort8, there was a replication signal in the cerebellum and 
overall concordance between ASD-related fold changes in the cortex 
and cerebellum (Extended Data Fig. 2f–h). The lack of significant 
DGE in the cerebellum is explained by the fact that changes in expres-
sion were consistently stronger in the cortex than in the cerebellum 
(Extended Data Fig. 2h), which suggests that the cortex is more selec-
tively vulnerable to these transcriptomic alterations. We also compared 
our results to an RNA-seq study of protein coding genes in the occipital  
cortex of individuals with ASD and control subjects4. Despite  
significant technical differences that reduce power to detect DGE,  
and profiling of different brain regions in that study, there was a weak 
but significant correlation in fold changes, which was due mostly to 
upregulated genes in both studies (P =  0.038, Extended Data Fig. 2i, j).

We next explored lncRNAs, most of which have little functional 
annotation, and identified 60 lncRNAs in the DGE set (FDR <  0.05, 
Extended Data Fig. 2k). Multiple lines of evidence, including deve-
lopmental regulation in RNA-seq datasets and epigenetic annotations, 
support the functionality of most of these lncRNAs (Supplementary 
Table 2). Moreover, 20 of these lncRNAs have been shown to interact 
with microRNA (miRNA)–protein complexes, and 9 with the fragile  
X mental retardation protein (FMRP), whose mRNA targets are 
enriched in ASD risk genes9,10. As a group, these lncRNAs are enriched 
in the brain relative to other tissues (Extended Data Fig. 2l, m) and most 
that have been evaluated across species exhibit primate-specific expres-
sion patterns in the brain11, which we confirm for several transcripts 
(Supplementary Information, Extended Data Fig. 3a–h). We highlight 
two primate-specific lncRNAs, LINC00693 and LINC00689. Both 
interact with miRNA processing complexes and are typically down-
regulated during development12, but are upregulated in ASD cortex  
(Fig. 1c, d, Extended Data Fig. 2n). These data show that dysregu-
lation of lncRNAs, many of which are brain-enriched, primate-specific, 
and predicted to affect protein expression through miRNA or FMRP 
interactions, is an integral component of the transcriptomic signature  
of ASD.
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Previous studies have evaluated alternative splicing in ASD and its 
relation to specific splicing regulators in small sets of selected sam-
ples across individuals8,13,14. Given the increased sequencing depth, 
reduced 5′ –3′  sequencing bias, and larger cohort represented here, we 
were able to perform a comprehensive analysis of differential alter-
native splicing (Extended Data Fig. 4a). We found a significant differ-
ential splicing signal over background in the cortex (1,127 differential 
splicing events in 833 genes; Methods), but not in the cerebellum  
(P distributions in Extended Data Fig. 4b, c). We confirmed that con-
founders do not account for the differential splicing signal, reproduced 
the global differential splicing signal with an alternative pipeline15, 
and performed technical validation with RT–PCR (Extended Data  
Figs 4d–g, 5a), confirming the differential splicing analysis. Notably, 
the differential splicing molecular signature is not driven by DGE 
(Extended Data Fig. 4h), consistent with the observation that splicing 
alterations are related to common disease risk independently of gene 
expression changes16.

Cell-type specific enrichment and pathway analysis of alternative 
splicing demonstrated that most differential splicing events involve 
exclusion of neuron-specific exons17 (Fig. 1e, Extended Data Fig. 4i). 
Therefore, we next investigated whether the shared splicing signa-
ture in ASD could be explained by perturbations in splicing factors 
known to be important in nervous system function8,14 (Extended 
Data Fig. 4j), and found high correlations between splicing factor 

expression and differential splicing in the cortex (Fig. 1f) but not the 
cerebellum (Fig. 1g). The absence of neuronal splicing factor DGE 
or correlation with splicing changes in the cerebellum is consistent 
with the absence of a differential splicing signal in the cerebellum 
and suggests that these splicing factors contribute to cortex-biased 
differential splicing. Previous experimental perturbation of three 
 splicing factors, Rbfox1 (ref. 18), SRRM4 (ref. 19), and PTBP1 (ref. 20),  
shows strong overlap with the differential spli cing changes found 
in ASD cortex, further supporting these predicted  relationships  
(Fig. 1h, Extended Data Fig. 5b). Given that differential splicing events in 
ASD cortex overlap significantly with those that are targets of  neuronal 
splicing factors, we hypothesized that some of these events may be 
involved in activity-dependent gene regulation. Indeed,  differential 
splicing events were significantly enriched in those  previously 
shown to be regulated by neuronal activity21 (Fig. 1h). This overlap  
supports a model of ASD pathophysiology based on changes in the 
 balance of excitation and inhibition and in neuronal activity22 and 
 suggests that alterations in transcript structure are likely to be an 
 important component.

When we compared the first principal component across samples for 
protein coding DGE, lncRNA DGE and differential splicing, we found 
remarkably high correlations (R2 >  0.8), indicating that molecular con-
vergence is likely to be a unitary phenomenon across multiple levels of 
transcriptome regulation in ASD (Fig. 1i).

Figure 1 | Transcriptome-wide differential gene expression and 
alternative splicing in ASD. a, Replication of DGE between ASD and 
control cortex from previously analysed samples (16 ASD and 16 control 
on microarray8) with new age- and sex-matched cortex samples (15 ASD 
and 17 control). b, P value distribution of the linear mixed effect (LME) 
model DGE results for cortex and cerebellum. c, LINC00693 and LINC00689 
are upregulated in ASD and downregulated during cortical development 
(developmental expression data from ref. 12). Two-sided ASD–control 
P values are computed by the LME model, developmental P values are 
computed by analysis of variance (ANOVA). FPKM, fragments per kilobase 
million mapped reads. d, UCSC genome browser track displaying reads 
per million (RPM) in ASD and control samples along with sequence 

conservation for LINC00693 and LINC00689. e, Cell-type enrichment 
analysis of differential alternative splicing events from cortex using exons 
with ∆ PSI (per cent spliced in) > 50% in each cell type compared to the 
others17. f, g, Correlation between the first principal component (PC1) of the 
cortex differential splicing (DS) set and gene expression of neuronal splicing 
factors in cortex (f) and cerebellum (g) (DGE P value in parentheses).  
h, Enrichment among ASD differential splicing events and events regulated 
by splicing factors and neuronal activity (see Methods). i, Correlations 
between the PC1 across the ASD versus control analyses for different 
transcriptome subcategories. Bottom left: scatterplots of the principal 
components for ASD (red) and control (black) individuals. Top right: 
pairwise correlation values between principal components.
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Previous analysis suggested that the typical pattern of transcriptional 
differences between the frontal and temporal cortices may be attenu-
ated in ASD8. We confirmed this in our larger cohort and identified 
523 genes that differed significantly in expression between the frontal 

cortex and the temporal cortex in control subjects, but not those with 
ASD (Fig. 2a); we refer to these genes as the ‘attenuated cortical pattern-
ing’ (ACP) set (Extended Data Fig. 6a). We demonstrated the robust-
ness of attenuation in cortical patterning in ASD by confirming that 
the ACP set was not more variable than other genes, that attenuation 
of cortical patterning was robust to removal of previously analysed 
samples8, and that the effect could also be observed using a different 
classification approach (Extended Data Fig. 6b–h).

Pathway and cell-type analysis showed that the ACP set is enriched 
in Wnt signalling, calcium binding, and neuronal genes (Extended Data 
Fig. 6i, j, Supplementary Information). We next explored potential  
regulators of cortical patterning by transcription factor binding site 
enrichment (Extended Data Fig. 6k). Among the transcription factors 
identified, SOX5 was of particular interest because of its known role in 
mammalian corticogenesis23,24, its sole membership in the ACP set, and 
its correlation with predicted targets in the brains of control subjects, 
which is lost in ASD (Fig. 2b–d). We confirmed that a significant propor-
tion of ACP genes are regulated by SOX5 by overexpressing it in human 
neural progenitors. SOX5 induced synaptic genes and repressed cell 
proliferation (Fig. 2e), and predicted SOX5 targets exhibited net down-
regulation, consistent with the repressive function of SOX5 (Fig. 2f,  
Extended Data Fig. 6l, m). These findings support the prediction that 
attenuated patterning of the transcription factor SOX5 between cortical 
regions contributes to direct alterations in patterning of SOX5 targets.

We also evaluated DGE and differential splicing in nine individuals 
with dup15q (which is among the most common and penetrant forms of 
ASD) and independent controls (Extended Data Fig. 7a, b). Significant 
upregulation in the 15q11.1–13.2 region (cis) was evident in duplication 
carriers, but not in idiopathic ASD (Fig. 3a). Remarkably, genome-wide 
(trans) DGE and differential splicing patterns were highly concordant  
between dup15q and ASD (Fig. 3b, c, Extended Data Fig. 7c–e). Moreover, 
alterations in dup15q cortex were of greater magnitude and more 
homogeneous than those observed in idiopathic ASD cortex (Fig. 3d,  
Extended Data Fig. 7f, g). Analysis of DGE in the cerebellum confirmed 
a weaker signal than in the cortex and demonstrated that cis changes in 
dup15q cerebellum (Extended Data Fig. 7h–j) were more concordant 
with the cortex than trans changes (Extended Data Fig. 7k, l), further 
supporting the observation that the cortex is selectively vulnerable to 
transcriptomic alteration in ASD. Together, the DGE and differential 
splicing analyses in dup15q provide further biological validation of 
the ASD transcriptomic signature and demonstrate that a genetically 
defined form of ASD exhibits similar changes to idiopathic ASD.

We next applied weighted gene co-expression network analysis 
(WGCNA; Methods) and evaluated the biological functions and ASD 
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Figure 3 | Duplication 15q syndrome 
recapitulates transcriptomic changes in 
idiopathic ASD. a, DGE changes across 
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association of the 24 co-expression modules identified (Extended 
Data Fig. 8a–d). Of the six modules associated with ASD, three were 
upregulated and three were downregulated, and each showed signifi-
cant cell-type enrichment (Fig. 4a, b). This analysis corroborates and 
extends previous work by identifying sub-modules of those previously 
identified, thus demonstrating greater biological specificity (Extended 
Data Figs 8e, 9a). It also confirms that downregulated modules are 
enriched in synaptic function and neuronal genes, that upregulated 
modules are enriched in genes associated with inflammatory pathways 
and glial function4,8, and that microglial and synaptic modules exhibit 
significant anticorrelation (Fig. 4c). Furthermore, the downregulated 
modules CTX.M10 and CTX.M16 are enriched in genes previously 
related to neuronal firing rate, consistent with the overlap of dysregu-
lated splicing with events regulated by neuronal activity (Extended Data 
Fig. 9b and Fig. 1h). One glial and one neuronal module are highlighted 
in Fig. 4d, e (the remainder in Extended Data Fig. 9c–e). Remarkably, 
the upregulated module CTX.M20 was not found in previous analyses, 
overlaps significantly with the ACP set (FDR <  0.05, Extended Data  
Fig. 9a), and contains genes implicated in development and regulation 
of cell differentiation (Fig. 4f).

We also leveraged our large sample and younger age-matched ASD 
and control samples to detect differences in developmental trajecto-
ries in ASD compared to control subjects. We identified a remarkable 
difference in CTX.M19 and CTX.M20 during the first two decades of 
life (Fig. 4g, additional age trajectories in Extended Data Fig. 9f) that 
is most consistent with an evolving process during early brain deve-
lopment that stabilizes starting in late childhood and early adolescence. 
We also found preservation of most cortex modules in the  cerebellum, 
but with weaker associations to ASD (Extended Data Fig. 10a–h, 
Supplementary Table 4), consistent with the DGE analysis showing 
that ASD-related changes are substantially smaller in the cerebellum.

To determine the role of genetic factors in transcriptomic dysregula-
tion, we evaluated enrichment in genes affected by ASD-associated rare 
mutations and common variants (Extended Data Fig. 9a). One module, 

CTX.M24, exhibited significant enrichment for rare mutations found 
in ASD, while rare de novo mutations associated with intellectual disa-
bility were most strongly enriched in CTX.M22 (FDR <  0.05, Extended 
Data Fig. 9a). Remarkably, CTX.M24 was significantly enriched for 
lncRNAs, genes expressed highly during fetal cortical development, 
and genes harbouring protein-disrupting mutations found in ASD, 
suggesting that lncRNAs will be important targets for investigation in 
ASD10,25 (FDR <  0.05, Extended Data Fig. 9a, g). By contrast, enrich-
ment for ASD-associated common variation was observed in CTX.
M20 (FDR <  0.1, Extended Data Fig. 9h–1, Methods). As CTX.M20 is 
enriched for the ACP gene set, this suggests a potential link between 
polygenic risk and regional attenuation of gene expression in ASD. 
Several other ASD-associated modules showed a weaker common 
variant signal for ASD, including CTX.M16, which also shows a sig-
nal for schizophrenia polygenic risk. However, other phenotypes with 
larger, better-powered genome-wide association studies (GWAS) also 
demonstrate enrichment (Extended Data Fig. 9h–i). It will be necessary 
to perform this analysis with larger ASD GWAS in the future to fully 
understand the extent and specificity of the contribution of common 
variation to the transcriptome alterations in ASD.

These data contribute to a consistent emerging picture of the mole-
cular pathology of ASD4,7,8,10,25–27. Parsimony suggests that the highly 
overlapping expression pattern shared by individuals with dup15q and 
the majority of those with idiopathic ASD represents an evolving adap-
tive or maladaptive response to a primary insult rather than a secondary 
environmental hit. Although we observe no significant association of the 
ASD-associated transcriptome signature with either clinical or technical 
confounders, some of the changes are likely to represent consequences 
or compensatory responses, rather than causal factors. In this regard, it 
is notable that the observed transcriptome changes are consistent with 
an ongoing process that is triggered largely by genetic and prenatal fac-
tors3,9,10,23, but that evolves during the first decade of brain development.

We interpret these data to suggest that aberrant microglia–neuron 
interactions reflect an early alteration in developmental trajectory  

Figure 4 | Co-expression network analysis. a, Signed association of 
module eigengenes with diagnosis (Bonferroni-corrected P value from 
an LME model, see Extended Data Fig. 8c and Methods). Positive values 
indicate modules with an increased expression in ASD samples. Grey bars 
with labels signify six ASD-associated modules. b, Cell-type enrichment 
for the ASD-associated modules. c, Heat map of correlations between 

ASD-associated module eigengenes sorted by average linkage hierarchical 
clustering. d–f, Module plots displaying the top 15 hub genes and top 50 
connections along with the GO term enrichment of each module. g, Plot 
of CTX.M20 and CTX.M19 module eigengenes across age. P values are 
for the difference between temporal trajectories for ASD and control by 
permutation test (see Methods).
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that becomes more evident in late childhood. This corresponds to the 
period of synapse elimination and stabilization after birth in humans28,29, 
which may have significant implications for intervention. Our  analyses 
also reveal primate-specific lncRNAs that are probably relevant to 
understanding human higher cognition11,30. Co-expression of lncRNAs  
with genes harbouring ASD-associated protein coding mutations 
suggests that these noncoding RNAs are involved in similar biological 
functions and are potential candidate ASD risk loci. As future investi-
gations pursue the full range of causal genetic variation that contributes 
to ASD risk, these data will be valuable for interpreting genetic and 
epigenetic studies of ASD and the relationship between ASD and other 
neuropsychiatric disorders.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Brain tissue. Human brain tissue for ASD and control individuals was acquired 
from the Autism Tissue Program (ATP) brain bank at the Harvard Brain and 
Tissue Bank (which has since been incorporated into the Autism BrainNet) and 
the University of Maryland Brain and Tissue Bank, a Brain and Tissue Repository 
of the NIH NeuroBioBank. Sample acquisition protocols were followed for each 
brain bank, and samples were de-identified before acquisition. Brain sample and 
donor metadata are available in Supplementary Table 1 and further information 
about samples can be found in the Supplementary Information. No statistical 
methods were used to predetermine sample size. The sample dissections, RNA 
extractions, and RNA sequencing experiments were randomized (Supplementary 
Information). The investigators were blinded to diagnosis until the analysis but 
unblinded during the analysis.
RNA library preparation, sequencing, mapping and quantification. A detailed 
protocol, including parameters given to programs for each step, is provided in the 
Supplementary Information. Briefly, starting with total RNA, rRNA was depleted 
(RiboZero Gold, Illumina) and libraries were prepared using the TruSeq v2 kit 
(Illumina) to construct unstranded libraries with a mean fragment size of 150 bp. 
Libraries underwent 50-bp paired end sequencing on an Illumina HiSeq 2000 or 
2500 machine. Paired end reads were mapped to hg19 using Gencode v18 anno-
tations31 via Tophat2 (ref. 32). Gene expression levels were quantified using union 
exon models with HTSeq33. This approach counts only reads on exons or reads 
spanning exon–exon junctions, and is globally similar to including reads on the 
introns (whole gene model) or computing probabilistic estimates of expression 
levels (Extended Data Fig. 1e–g).
Differential gene expression. DGE analysis was performed with expression levels 
normalized for gene length, library size, and G+ C content (referred to as ‘normalized  
FPKM’). Cortex samples (frontal and temporal) were analysed separately from 
cerebellum samples. An LME model framework was used to assess differential 
expression in log2[normalized FPKM] values for each gene for cortical regions 
because multiple brain regions were available from the same individuals. The indi-
vidual donor identifier was treated as a random effect, and age, sex, brain region 
and diagnoses were treated as fixed effects. In the cerebellum DGE analysis, a linear 
model was used and brain region was not included as a covariate, because only one 
brain region was available in each individual and a handful of technical replicates 
could be removed for DGE analysis. We also used technical covariates accounting 
for RNA quality and batch effects as fixed effects in this model (Supplementary 
Information). Significant results are reported at Benjamini–Hochberg FDR <  0.05 
(ref. 34), and full results are available in Supplementary Table 2.

Throughout the study, we assessed replication between datasets by evaluating  
the concordance between independent sample sets by comparing the squared 
correlation (R2) of fold changes of genes in each sample set at a defined statistical 
cut-off. We set the statistical cut-off in one sample set (the y axis in the scatterplots) 
and computed the R2 with fold changes in these genes in the comparator sample 
set (the x axis in the scatterplots). For details of the regularized regression analyses 
and cortical patterning analyses, see Supplementary Information.
Differential alternative splicing. Alternative splicing was quantified using the 
per cent spliced in (PSI) metric using Multivariate Analysis of Transcript Splicing 
(MATS, v3.08)35. For each event, MATS reports counts supporting the inclusion 
(I) or splicing (S) of an event. To reduce spurious events due to low counts, we 
required at least 80% of samples to have I +  S ≥  10. For these events, the PSI is 
calculated as PSI =  I/(I +  S) (Extended Data Fig. 4a). Statistical analysis for diffe-
rential alternative splicing was performed using the linear mixed effects model as 
described above for DGE; significant results are reported at Benjamini–Hochberg 
FDR <  0.5 (ref. 34). Full differential alternative splicing results are available in 
Supplementary Table 3.
Quantitative real-time PCR validation. In order to ensure that our RNA-seq 
data were high quality and our DGE models were accurate, we evaluated gene 
expression changes in a representative subset of four ASD and four control samples 
(Extended Data Fig. 2b). One microgram of total RNA was reverse-transcribed 
using Invitrogen Superscript IV reverse-transcriptase and oligo-dT primers 
(Invitrogen). Real-time PCR was performed on a Lightcycler 480 thermocycler 
in 10 µ l volume containing SYBR Green Master Mix (Roche) and gene-specific 
primers at a concentration of 0.5 mM each. The results shown in Extended Data 
Fig. 2c represent at least two independent cDNA synthesis experiments for each 
gene. GAPDH levels were used as an internal control.

For differential alternative splicing analysis, we validated selected events with 
semiquantitative RT–PCR using the same samples used for DGE validation. Total 
RNA (600 ng) was reverse-transcribed using Invitrogen Superscript IV reverse 
transcriptase and gene/exon-specific primers. cDNA (50 ng) was amplified by  
25 cycles using PCR. PCR products were resolved on 3% high-resolution Metaphor 
agarose gels (Lonza) and counterstained with SYBR Gold for visualization 

(Extended Data Fig. 5a, Supplementary Fig. 1). Gels were quantified using ImageJ 
(NIH).

Notably, this sample size is underpowered to evaluate significant changes in 
many genes or splicing events; however, the goal was to validate the accuracy of 
our data and analyses across genes, so we show the correlation of fold changes 
between ASD and control across genes or events. Genes and events were selected 
on the basis of being top hits or of particular biological interest. Sample details and 
primers are reported in Supplementary Tables 2 and 3.
Duplication 15q syndrome samples and analyses. For dup15q samples, the type 
of duplication and copy number in the breakpoint 2–3 region were available from 
previous work36. To expand this to the regions between each of the recurrent break-
point in these samples, eight out of nine dup15q brains were genotyped (one was 
not genotyped owing to limited tissue availability). The number of copies between 
each of the breakpoints is reported in Extended Data Fig. 7a. DGE and differential 
alternative splicing analysis for this set was performed with independent control 
samples from the main analysis, though the results were similar to those obtained 
using the larger set of controls used in the main analysis (Extended Data Fig. 7d, e).
Co-expression network analysis. The R package weighted gene co-expression 
network analysis (WGCNA) was used to construct co-expression networks 
using normalized data after adjustment to remove variability from technical  
covariates37,38 (Supplementary Information). We used the biweight midcorrelation 
to assess correlations between log2[adjusted FPKM] and parameters for network 
analysis are described in Supplementary Information. Notably, we used a modified 
version of WGCNA that involves bootstrapping the underlying dataset 100 times 
and constructing 100 networks. The consensus of these networks (median edge 
strength across all bootstrapped networks) was then used as the final network39, 
ensuring that a subset of samples does not drive the network structure.

For module-trait analyses, the first principal component of each module (the 
module eigengene37) was related to ASD diagnosis, age, sex, and brain region with 
an LME model as above. These associations were also supported by enrichment 
analyses with ASD DGE genes in Extended Data Fig. 9a. Given that modules are 
relatively uncorrelated to each other, significant eigengene-trait results are reported 
at Bonferroni-corrected P <  0.05.

Module temporal trajectories were computed with the LOESS function in R. 
For both ASD and control samples, the function was used to create quartic splines 
on module eigengenes (degree =  2, span =  2/3). The trend difference statistic was 
taken as the largest difference between these fitted curves between the ages of  
5 and 25 years. P values were computed using 5,000 permutations. Specifically, ASD 
and control labels were randomly permuted 5,000 times and splines were fit to the 
permuted groups; therefore, significant P values reject the null hypothesis of no 
relationship between age trends and disease status. Detailed statistics for module 
membership are available in Supplementary Table 2 and additional characterization 
of modules is available in Supplementary Table 4.
Enrichment analysis of gene sets and common variation. Gene set enrich-
ment analyses were performed with a two-sided Fisher’s exact test (cell type and 
splicing factor enrichments) or with logistic regression (Extended Data Fig. 9a, 
Supplementary Information). Results were corrected for multiple comparisons 
by the Benjamini–Hochberg method34 when a large number of comparisons were 
performed.

GO term enrichment analysis was performed using GO Elite40 with 10,000  
permutations, and results are presented as enrichment Z scores. We present only 
the top molecular function and biological process terms for display purposes. 
Notably, for splicing analysis, we evaluated GO term enrichment by using the genes 
containing differential splicing alterations to identify functional enrichment. It is 
possible that longer genes, which contain more exons, also contain more detected 
splicing events. This could bias pathway and cell type enrichment to more neuronal 
and synaptic genes, which are, on average, longer than other genes in the genome. 
However, the correlation between the number of detected events in genes and 
gene length is minimal (R2 =  0.004), and the correlation is even smaller for events 
at P <  0.01 (R2 =  0.00012) demonstrating that longer genes are not more likely to 
contain differential splicing events.

Common variant enrichment was evaluated by analysis of genome-wide asso-
ciation study (GWAS) signal with stratified linkage disequilibrium (LD) score 
regression to partition disease heritability within functional categories represented 
by gene co-expression modules41. This method uses GWAS summary statistics 
and LD explicitly modelled from an ancestry-matched 1,000 genomes reference 
panel to calculate the proportion of genome-wide single nucleotide polymor-
phism (SNP)-based heritability that can be attributed to SNPs within explicitly 
defined functional categories. To improve accuracy, these categories were added 
to a ‘full baseline model’ that includes 53 functional categories capturing a broad 
set of genomic annotations, as previously described42. Enrichment is calculated as 
the proportion of SNP heritability accounted for by each module divided by the  
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proportion of total SNPs within the module. Significance is assessed using a block 
jack-knife procedure42, which accounts for module size and gene length, followed 
by FDR correction of P values.
Data availability statement. Human brain RNA-seq data have been deposited in 
Synapse (https://www.synapse.org/#!Synapse:syn4587609) under accession number  
syn4587609. Data for the SOX5 overexpression are available from the Gene 
Expression Omnibus (accession number GSE89057). All other data are available 
from the corresponding author upon reasonable request.
Code availability. Code underlying the DGE, differential alternative splicing, cor-
tical patterning, and co-expression network analyses is available at https://github.
com/dhglab/Genome-wide-changes-in-lncRNA-alternative-splicing-and-cortical- 
patterning-in-autism.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Methodology, quality control, and differential 
expression replication analysis. a, RNA-seq workflow (see Supplementary 
Information for details). b, RNA-seq quality and alignment statistics 
from this study, including RNA integrity number (RIN), sequencing 
depth (aligned reads), proportion of reads mapping to different genomic 
regions, and bias in coverage from the 5′  to the 3′  ends of transcripts. 
c, RNA-seq read coverage relative to normalized gene length across 
transcript length across samples. d, Dependence between coverage and 
RIN across gene body. e–g, Correlation of transcript model quantifications 
comparing the union exon model (used throughout this study), the whole 
gene model (which includes introns), and the Cufflinks approach43 to 
estimating FPKM. h, Summary table describing the characteristics of 
the matched covariate data used in the DGE and differential alternative 
splicing (DS) analysis of ASD in cortex and cerebellum. This includes the 
number of samples overlapping with our previous work8, the age and RIN 
distributions, and the dependence between diagnosis and age and RIN 
(summarized from Supplementary Table 1). i, Independent replication of 
ASD versus control DGE fold changes between previously evaluated and 
new ASD samples in cortex by RNA-seq using samples from ref. 8  

(similar to Fig. 1a, but with RNA-seq in all samples). j, Correlation of  
P value rankings with Spearman’s correlation across different DGE methods  
for DGE analysis in cortex, comparing the ‘full model’ (LME P value) 
described in the Supplementary Information with other methods. Methods 
include removal of three additional principal components of sequencing 
surrogate variables(SVs) (LME with 5 SVs, top left), application of a 
permutation analysis for DGE P value computation (LME P, permuted, 
top right), application of variance-weighted linear regression for DGE44 
(limma voom, middle left), application of surrogate variable analysis for 
DGE45 (full model +  17 SVs, middle right), and application of DESeq2 
with the full model46, which uses a negative binomial distribution (bottom 
left). k. Comparison of fold changes between frontal cortex (FC) and 
temporal cortex (TC) for all samples, demonstrating similar changes in 
both regions. l, Average linkage hierarchical clustering of samples in ASD 
cortex using the top 100 upregulated and top 100 downregulated protein 
coding genes, demonstrating that confounders do not drive clustering 
of about two-thirds of samples. m, The first principal component of the 
cortex DGE set is primarily associated with diagnosis, and not with other 
factors. The red line marks a Bonferroni-corrected P =  0.05.
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Transcriptome-wide DGE analysis. a, We 
applied a classification method robust to overfitting (elastic net model47) 
by training on the RNA-seq data from samples previously analysed in 
ref. 8 (Extended Data Fig. 1h, similar to the comparison in Extended 
Data Fig. 1i) and classifying ASD versus control status in independent 
samples. Results are shown as a comparison of classification scores (left) 
and area under the receiver operator characteristic curve (AUROC, right). 
Approximately 85% of ASD samples are classified successfully around 
a false positive rate of 20%. b, Summary table describing the subset of 
representative, covariate matched samples used for qRT–PCR validations. 
Supplementary Table 2 contains the underlying values. c, Fold changes 
from RNA-seq compared against fold changes from qRT–PCR (see 
Supplementary Table 2 for data). d, GO term enrichment analysis of genes 
that are upregulated or downregulated in individuals with ASD.  
e, Enrichment analysis of cell-type specific gene sets (defined as genes  
with fivefold higher expression in the cell type than in other cell types) 
with genes that are decreased or increased in ASD. f, g, Independent 
replication analysis of ASD versus control DGE fold changes between 
previously evaluated and new ASD samples from cerebellum by 
microarray and RNA-seq using samples from ref. 8 (similar to Fig. 1a 
and Extended Data Fig. 1i). The RNA-seq data show a replication signal 
between previously evaluated and new samples from this study.  
h, Comparison of fold changes that were significant at FDR <  0.05 in 

the ASD versus control DGE analysis from cortex compared with fold 
changes observed in cerebellum, revealing strong concordance but a lower 
average fold change in the cerebellum. i, Sample summary and quality 
control (QC) statistics for ref. 4. Compare to Extended Data Fig. 1b and 
see Supplementary Information for additional discussion. Compared to 
this study, samples from ref. 4 were prepared by poly(A) selection RNA-
seq, exhibit lower RNA integrity number (RIN, median 4.8 versus 7.3), 
have lower median sequencing depth (11 million versus 40 million), 
exhibit greater 5′ -3′  bias, and have generally greater variability across all 
QC metrics. j, Comparison of fold-changes for the top significant genes 
from ref. 4 (P <  0.01 as provided in their Supplementary Information) with 
the fold changes for the same genes in this study. Co-expression network 
analysis demonstrated that the moderate agreement is largely driven by 
concordance in upregulation of microglial genes in both studies (Extended 
Data Fig. 8e). k, Average linkage hierarchical clustering of lncRNAs in the 
DGE set. l, Boxplots of expression values of DGE lncRNAs across multiple 
tissue types from the Illumina Body Map (expression data from ref. 12). 
Lines above the plot indicate pairwise significance with a one-sided 
Wilcoxon rank-sum test between brain and the other tissues. m, Similar  
to l, except for embryonic stem cells and stem-cell-derived cell types.  
n, RT–PCR validation of the two lncRNAs shown in Fig. 1c, d; P values 
computed by two-sided Wilcoxon rank-sum test.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LETTERRESEARCH

Extended Data Figure 3 | RNA-seq gene expression on genome browser 
tracks for selected primate-specific lncRNAs in human, macaque and 
mouse. For each lncRNA, expression for representative samples for ASD 
versus control (top) in human, macaque (middle), and mouse (bottom) 
are shown. The genome location for macaque and mouse displayed is 

syntenic to the human region, with the expected location of the lncRNA 
highlighted. a–g, Examples of specific lncRNA transcripts that show 
primate-specific (in human and macaque, or only in human, but not in 
mouse) expression. h, Example of a strongly conserved lncRNA, which 
shows robust expression in all three species.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Splicing analyses and validation in ASD.  
a, Schematic of the PSI metric used for differential alternative splicing35.  
b, Distribution of LME model P values for changes in the PSI between 
ASD and control in cortex for all events and event subtypes. c, Distribution 
of LME model P values for changes in the PSI between ASD and  
control in cerebellum. d, Average linkage hierarchical clustering in ASD 
and control cortex samples using top 100 differentially included and top  
100 differentially excluded exons from the differential splicing set.  
e, The first principal component of the cortex differential splicing set is 
strongly associated with diagnosis, but not other factors. Red line marks 
Bonferroni-corrected P =  0.05. f, Comparison of the cortex differential 
splicing with the pipeline used here (TopHat2 (ref. 43) followed by 
multivariate analysis of transcript splicing, MATS35) with PSI values 
obtained via another method (read alignment by OLego followed by PSI 

quantification with Quantas15). g, Comparison of ∆ PSI values between 
RT–PCR and RNA-seq for nine splicing events (Supplementary Table 3).  
h, Differential splicing analysis identifies events independent of DGE 
signal. Top,difference between ASD and control in the differential splicing 
set based on PC1 of the differential splicing set at the PSI level, and PC1 of 
the gene expression levels of genes in the differential splicing set. Bottom, 
same comparison after removing nominally differentially expressed genes 
(P <  0.05). P values computed by two-sided Wilcoxon rank-sum test.  
i, GO term enrichment analysis of genes with differential splicing events in 
ASD. j, Clustering dendrogram and heat map for neuronal splicing factor 
gene expression levels across samples demonstrating three major clusters 
and the known positive correlation between SRRM4 and RBFOX1 and 
anticorrelation between PTBP1 and SRRM4 (refs 14,19).
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Extended Data Figure 5 | Additional splicing analyses in ASD.  
a, PCR validation and sashimi plots for nine splicing events delineated 
in Extended Data Fig. 4d, from the indicated samples (see Extended 
Data Fig. 2b for details of these samples). Notably, these genes are not in 
the DGE set, but are detected in the differential alternative splicing set 
owing to altered transcript structure. b, Heat map as in Fig. 1h for the 

splicing regulator ESRP48. ESRP is not known to be involved in neuronal 
function, ESRP1 is not expressed in cortex, and ESRP2 is expressed but 
not significantly different between ASD and control cortex. Therefore, we 
show ESRP enrichment analysis in differential splicing events as a control 
for Fig. 1h. Enrichment P values are computed as described in Methods.
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Extended Data Figure 6 | See next page for caption.
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Extended Data Figure 6 | Attenuation of cortical patterning in ASD.  
a, Histograms of P values from paired Wilcoxon rank-sum test differential 
gene expression between 16 frontal cortex (FC) and 16 temporal cortex 
(TC) samples from control and ASD individuals. b, Histogram of Bartlett’s 
test P values for differences in gene expression variance between ASD 
and control samples for all genes (white) and genes in the ACP set (red). 
The Kolmogorov–Smirnov (K–S) test P value for a difference between 
these two distributions is shown. c, Histograms of P values from unpaired 
Wilcoxon rank-sum test DGE between 21 frontal cortex and 22 temporal 
cortex samples after removing those used in ref. 8. d, Histogram of 
Bartlett’s test P values for differences in gene expression variance between 
ASD and control samples for all genes (white) and genes in the ACP set 
(red). The Kolmogorov–Smirnov test P value for a difference between 
these two distributions is reported. e, Approach to training the elastic net 
model on BrainSpan49,50 frontal cortex and temporal cortex samples and 
application of the model to 123 cortical samples in this study. f–h, Results 
of learned cortical region classifications with different starting gene sets, 

with the BrainSpan training set (left), control samples (middle) and ASD 
samples (right) in each panel and the Wilcoxon rank-sum test P value 
of frontal versus temporal cortex difference for each comparison. A1C, 
primary auditory cortex; DFC, dorsolateral prefrontal cortex; MFC, medial 
prefrontal cortex; STC, superior temporal cortex. i, Cell-type enrichment 
analysis for genes in the ACP set. j, GO term enrichment analysis of the 
ACP set. Enrichment P values are computed as described in Methods. 
k, Enrichment statistics for transcription factor motifs found to be 
significantly enriched in the ACP set (see Supplementary Information for 
details of P value computation). l, Average linkage hierarchical clustering 
of the global gene expression profiles for samples with overexpression of 
SOX5 and green fluorescent protein (GFP) tag overexpression (controls). 
m, Density plots of fold changes for the subset of ACP genes that are 
predicted SOX5 targets (top, green) and non-targets (bottom, green) 
against background (grey). The median log2[fold change] is marked  
(red line) and P values are from a one-sided Wilcoxon rank-sum test.
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Extended Data Figure 7 | See next page for caption.
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Extended Data Figure 7 | Duplication 15q syndrome analyses. a, Copy 
number between breakpoints in the 15q region. Genome-wide copy 
number analysis allowed evaluation of copy number in additional regions 
from previous studies36. b, Sample characteristics for the dup15q analyses 
(additional details available in Supplementary Table 1). c, Similar to  
Fig. 3b, but focusing on the lncRNAs found to be significantly differentially  
expressed in idiopathic ASD compared to control subjects. d, Comparison 
of DGE fold changes demonstrating that using different control samples 
(control samples used in the idiopathic analysis, column 2 of Extended 
Data Fig. 7b) for the dup15q cortex analysis yields similar findings.  
e, Similar to d except for the differential alternative splicing analysis.  
f, Comparison of heterogeneity in the DGE signal using the first principal 
component of the ASD cortex DGE set across all cortical samples used 

in DGE analyses. Samples from individuals with diagnoses confirmed by 
dup15q mutations, confirmed by Autism Diagnostic Interview-Revised 
(ADI-R), and supported by clinical records are all significantly different 
from controls by two-sided pairwise Wilcoxon rank sum tests. g, Similar 
to Fig. 3d, but with the larger set of controls from the idiopathic ASD 
versus control analysis in Fig. 1. h, i, P value distributions for DGE 
changes outside the 15q region for cortex and cerebellum. j, Similar to 
Fig. 3a, but for the cerebellum analysis. k, Comparison of significant DGE 
changes in the duplicated region from cortex with changes in cerebellum. 
l, Comparison of significant DGE changes outside of the dup15q region in 
cortex with changes in cerebellum. Scatter plot P values correspond to the 
statistical significance of the Pearson correlation coefficient between fold 
changes (see Methods).
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Extended Data Figure 8 | Cortex co-expression network analyses.  
a, Sample characteristics for the cortex network analyses; additional 
details available in Supplementary Table 1. b, Average linkage hierarchical 
clustering using the topological overlap metric for co-expression 
dissimilarity37. Modules are identified from this dendrogram, which  
was constructed from a consensus of 100 bootstrapped datasets51,52  
(see Methods). Correlations for each gene to covariates are delineated 
below the dendrogram (blue, negative; red, positive). Modules are 
labelled with colours and numerical labels (see Supplementary Table 4 

for additional details). CTX.M11 is a module of genes that are not co-
expressed (grey module) and was not evaluated in further comparisons.  
c, Module-trait associations as computed by an LME model with all factors 
on the x axis used as covariates. Technical covariates were removed as 
part of adjusting the FPKM values. All P values are displayed where the 
association passed Bonferroni-corrected P <  0.05. d, Module enrichments 
for cell-type specific gene expression patterns. Asterisks indicate FDR <  0.05  
across all comparisons. e, Enrichment of ASD-associated modules with 
that from ref. 4. * FDR <  0.05 (see Supplementary Table 4 for details).
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | Additional figures for cortex co-expression 
network analyses. a, Gene set enrichment analyses comparing the 
24 cortex co-expression modules with multiple gene sets from this 
RNA-seq study, post-mortem ASD cortex microarray8, human cortical 
development10, the set of all brain-expressed lncRNAs, genes enriched for 
ASD-associated rare variants26, and genes with de novo variants associated 
with intellectual disability (ID)9. Boxes are filled if the odds ratio is greater 
than 0 and the enrichment P <  0.05. * FDR <  0.05 across all comparisons, 
controlling for gene length and expression level with logistic regression 
(Supplementary Information). b, Overlap of gene sets between firing-rate 
and mitochondrial associated modules from ref. 53 with ASD-associated 
modules in cortex. c–e, Module plot of ASD-associated modules not 
shown in Fig. 4 (CTX.M4, CTX.M9, CTX.M10) displaying the top 

hub genes along with the module’s GO term enrichment. f, Temporal 
trajectories for four module eigengenes (CTX.M4, CTX.M9, CTX.M10, 
CTX.M16) associated with ASD, similar to Fig. 4g. ASD samples are 
represented by red points and lines, control samples by black. g, Module 
plot and GO term enrichment for CTX.M24, which is enriched in ASD-
associated rare variants and lncRNAs. h, Common variant enrichment 
across modules as calculated by GWAS enrichment with LD score 
regression41,42 (see Methods). Disease GWAS studies evaluated include 
ASD54, schizophrenia55, inflammatory bowel disease56, type 2 diabetes 
mellitus57 and serum lipid levels58. P values are FDR corrected across all 
GWAS studies and modules. i, Plot of the proportion of SNP heritability 
across diseases for ASD-associated modules. Error bars represent s.e.
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Extended Data Figure 10 | Cerebellum co-expression network analyses. 
a, Sample characteristics for the cerebellum network analyses; additional 
details available in Supplementary Table 1. b, Modules identified from a 
dendrogram constructed from a consensus of 100 bootstrapped networks 
(see Methods). Correlations for each gene to each measured factor 
are delineated below the dendrogram (blue, negative; red, positive). 
Modules are labelled alphabetically instead of numerically to distinguish 
them from the cortex modules. Additional information is available in 
Supplementary Table 4. c, Signed association of module eigengenes with 
diagnosis; positive values indicate modules with increased expression 
in ASD samples. Grey bars with labels signify three ASD-associated 

modules. d, Cell-type enrichments for the three ASD-associated modules. 
e, Gene set enrichment analyses comparing the three ASD-associated 
cerebellum modules with post-mortem ASD cortex microarray, human 
brain development, six cortex ASD-associated modules from this 
RNA-seq study, and firing rate and mitochondrial associated modules 
from ref. 53. Boxes are filled if the odds ratio is greater than 0 and the 
enrichment P <  0.05. * FDR <  0.05 across all comparisons. f–h, Module 
plots of CB.ML, CB.MP, and CB.MT displaying the top hub genes along 
with the GO term enrichment. Additional details, including module 
preservation statistics for cerebellum in cortex and vice versa, are available 
in Supplementary Table 4.
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