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ABSTRACT 

 

Genome-wide association analyses using high-throughput metabolomics platforms have led to 

novel insights into the biology of human metabolism1–7. This detailed knowledge of the genetic 

determinants of systemic metabolism has been pivotal for uncovering how genetic pathways 

influence biological mechanisms and complex diseases8–11. Here we present a genome-wide 

association study of 233 circulating metabolic traits quantified by nuclear magnetic resonance 

spectroscopy in up to 136,016 participants from 33 predominantly population-based cohorts. 

We discover over 400 independent loci and assign likely causal genes at two-thirds of these 

using detailed manual curation of highly plausible biological candidates. We highlight the 

importance of sample- and participant characteristics, such as fasting status and sample type, 

that can have significant impact on genetic associations, revealing direct and indirect 

associations on glucose and phenylalanine. We use detailed metabolic profiling of lipoprotein- 

and lipid-associated variants to better characterize how known lipid loci and novel loci affect 

lipoprotein metabolism at a granular level. We demonstrate the translational utility of 

comprehensively phenotyped molecular data, characterizing for the first time the metabolic 

associations of an understudied phenotype, intrahepatic cholestasis of pregnancy. Finally, we 

observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the 

importance of careful instrument selection in Mendelian randomization analysis, revealing a 

putative causal relationship between acetoacetate and hypertension. Our publicly available 

results provide a foundational resource for the community to examine the role of metabolism 

across diverse diseases. 
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MAIN TEXT 

 

Large genome-wide association studies (GWASs) coupled with metabolic profiling platforms 

have successfully identified many loci associated with circulating metabolic traits1–7,12–16. For 

example, studies combining genomics with detailed metabolic profiling from a high-

throughput metabolomics platform based on nuclear magnetic resonance (NMR) 

spectroscopy17 have allowed the identification of dozens of loci for circulating lipid, lipoprotein 

and fatty acid traits and small molecules such as amino acids2,4,5,9,18,19. These studies have 

provided novel insights into the biology of human metabolism and have guided large-scale 

epidemiological studies, such as Mendelian randomization analyses to infer causal 

relationships17. Here, using the same NMR metabolomics platform from Nightingale Health 

with an updated quantification version, we considerably extend our previous GWAS4 of 123 

circulating metabolic traits in up to ~25,000 participants to study of 233 traits in more than 

135,000 participants.  

 

Genetic discovery 

GWAS was performed under the additive model separately in each of 33 cohorts 

(Supplementary Table S1). Subsequent meta-analysis involved 233 metabolic traits 

(Supplementary Table S2), including 213 lipid and lipoprotein parameters or fatty acids, and 

20 non-lipid traits (amino acids, ketone bodies, and glycolysis/gluconeogenesis, fluid balance 

and inflammation-related metabolites). After variant filtering and quality control, up to 

13,389,637 imputed autosomal single-nucleotide polymorphisms (SNPs) were included in the 

meta-analysis in up to 136,016 participants.  
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In the meta-analysis, we detected genome-wide significant associations for all 233 metabolic 

traits (Supplementary Figures S1-S3, Supplementary Tables S4 and S5) with extensive 

pleiotropy and polygenicity. We detected 276 broad regions (defined as a +/-500 Kb region 

around the set of genome-wide significant SNPs) associated with at least one metabolic trait 

(Figure 1A, Supplementary Table S4). Eighty-six of these regions were associated with just a 

single metabolic trait, whereas most regions harbored associations with multiple traits (Figure 

1B and 1C), up to a maximum of 214 associated traits at the well-characterized lipid-associated 

APOE region. The lipid and lipoprotein traits were mostly demonstrably polygenic, with some 

traits having associations at >60 loci, whereas most non-lipid traits had substantially fewer 

associated loci (<20), including three glucose-metabolism related traits (lactate, pyruvate, 

glycerol) having fewer than five associated loci (Supplementary Table S5). The non-lipid traits 

accounted for most of the regions with a single associated trait (n=67; 79%), and the majority 

(n=163; 57%) of the regions with non-lipid trait associations had fewer than five associated 

metabolic traits in total. By contrast, the lipid, lipoprotein and fatty acid trait-associated regions 

(n=186) were generally more pleiotropic with 75% (n=140) of the regions being associated 

with five or more traits. Within the 276 regions, we found 8,795 lead SNP – lead trait 

associations corresponding to 1,447 unique lead SNPs (Supplementary Table S5). After 

resolving independent signals based on pairwise linkage disequilibrium, we concluded that the 

276 broad regions involved at least 443 independent loci. 

 

Associations in UK Biobank and the effects of fasting and sample type 

The availability of NMR data from the UK Biobank resource20 (March 2021 release) allowed 

us to check for associations of the lead variants in an independent population and to assess the 

effects of participant characteristics and sample-related factors on our associations. Of the 

8,502 lead SNP – metabolic trait pairs that could be tested in up to 115,078 UK Biobank 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

European-ancestry participants, 5,443 (64.0%) associated at p <5 × 10-8, while a further 777 

(9.1%; 332 unique SNPs) associated at p <1 × 10-5 (Supplementary Table S6). In addition to 

subtle differences in population ancestry between the studies, we identified sample type and 

fasting status as major drivers of non-replication. The UK Biobank NMR measurements were 

performed on EDTA plasma samples, whereas the current meta-analysis involved 

predominantly serum samples. For example, several of non-replicating associations with 

phenylalanine were in coagulation-related loci (e.g., KLKB1, F12, KNG1, FGB) but these 

signals were absent in UK Biobank (Supplementary Table S6; Supplementary Figure S4), 

suggesting that the removal of clotting factors in the preparation of serum can reveal 

associations with phenylalanine via coagulation. Similarly, we found associations with glucose 

that did not replicate in the UK Biobank, including a well-known association at MTNR1B 

(melatonin receptor 1B)21, a key regulator in glucose metabolism (rs10830963; meta-analysis 

p-value=1.5 × 10-60; UK Biobank p-value=0.60). The UK Biobank predominantly includes 

non-fasted samples, but the current meta-analysis mainly consists of cohorts (27 cohorts) with 

fasted samples (Supplementary Table S1). We therefore conducted a fasting-stratified meta-

analysis, which suggested that some of these associations were driven by cohorts with 

predominantly fasted samples (Figure 1D, Supplementary Figure S5) and hence are absent in 

UK Biobank. In addition to MTNR1B rs10830963 (p-values 2.9 × 10-89 and 0.57 in meta-

analysis of fasted and non-fasted cohorts, respectively), the association of which was also 

previously shown to be absent in non-fasting samples22, GLIS3 (GLIS family zinc finger 3, a 

known diabetes risk gene23 with a role in pancreatic β-cell biology) rs10974438 represents 

another example of an association that was not robustly replicated in UK Biobank (meta-

analysis p-value=4.0 × 10-14; UK Biobank p-value=0.001) and was characterized by the 

absence of signals in the non-fasted cohorts (p-values 1.1 × 10-15 and 0.14 in meta-analysis of 

fasted and non-fasted cohorts; Supplementary Figure S5). We note that the effects of the sample 
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type and fasting status require careful consideration when interpreting the results of GWAS of 

metabolic traits and conducting downstream analyses, such as Mendelian randomization 

studies using trait-associated variants as instruments. 

 

Novel loci and candidate genes 

We conducted extensive manual curation to prioritize 231 likely causal genes with clear 

biological relevance to the associated trait(s) at 297 (67.0%) of the 443 loci (Methods). As 

some regions were extremely complex and pleiotropic due to overlapping genetic associations 

of up to 11 independent lead variants with heterogeneous associations across the metabolic 

traits, we characterized these loci in detail to pinpoint potential multiple likely causal genes 

within each locus (Supplementary Table S5). For example, in a 7.6-Mb region on chromosome 

16 with 139 associated metabolic traits, we identified six distinct biologically relevant potential 

causal genes: LCAT (lecithin-cholesterol acyltransferase, associated with multiple lipoprotein 

subclass measures), SLC7A6 (solute carrier family 7 member 6, associated with acetate and 

creatinine), PDPR (pyruvate dehydrogenase phosphatase regulatory subunit, associated with 

pyruvate), AARS (alanyl-tRNA synthetase 1, associated with amino acids), TAT (tyrosine 

aminotransferase, associated with tyrosine) and HP (haptoglobin, associated with a range of 

lipoprotein subclass measures, fatty acids, cholesterol, apolipoprotein B and glycoprotein 

acetylation). This locus exemplifies the complexity of the metabolic trait-associated loci.  For 

additional loci without an obvious biological candidate, we assigned a further 39 likely causal 

genes based on SNP function or the presence of likely functional (missense, stop gained or 

splice region) variants in strong LD (r2≥0.8) with the lead variant (Supplementary Table S5).  

 

We performed an extensive comparison of the discovered associations to previously reported 

genetic associations of metabolic traits and traditional clinical lipids (HDL-C, LDL-C, 
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triglycerides, total cholesterol; Supplementary Table S5). In comparison to previous large-scale 

NMR metabolomics GWASs4,5, we identified 212 additional associated genomic regions 

(Supplementary Table S4). These included 138 novel genomic regions for the lipoprotein, lipid, 

and fatty acid traits, and 113 novel regions associated with the non-lipid traits. New 

associations for several lipoprotein subclass measures were detected in loci previously 

associated with clinical lipids, such as the locus containing LDLRAP1 encoding low density 

lipoprotein receptor adapter protein 1, which is involved in cholesterol metabolism. This locus 

was previously known to be associated with LDL-C and total cholesterol24,25, and we found 

associations at this locus with several lipoprotein subclass measures, lipids and fatty acids 

(Supplementary Table S5). Our analyses also identified genetic associations with detailed 

lipoprotein subclass measures in loci not reported to be associated with traditional clinical 

lipids: ACOX1 (encoding Peroxisomal acyl-coenzyme A oxidase 1 with a function in fatty acid 

oxidation), SOAT2 (encoding sterol O-acyltransferase 2 with a function in cholesterol 

metabolism), and ST3GAL6 (encoding Type 2 lactosamine alpha-2,3-sialyltransferase with a 

function in glycolipid metabolism) represent examples of biologically plausible genes 

associated with a range of lipoprotein subclass measures, lipids, and apolipoprotein B.  

 

Novel loci were also detected for the small molecules, such as phenylalanine and glutamine. 

For phenylalanine, we detected associations at 13 loci. Novel phenylalanine-associated loci 

include both a well-known metabolic trait-associated locus (FADS1/FADS2) and two novel, 

biologically plausible loci (GSTA2, SLC2A4RG). For example, SLC2A4RG encodes SLC2A4 

regulator, a transcription factor involved in the activation of SLC2A4 (GLUT4), a key regulator 

of glucose transport. For glutamine, we detected associations at 26 loci. Interestingly, seven of 

the loci were only associated with glutamine (GLS, PLCL1, SFXN1, KCNK16, MED23, 

SLC25A29, PCK1). Thus, these associations likely represent biology local to glutamine, most 
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of the loci having biologically plausible candidate genes with roles in glutamine metabolism 

(GLS), amino acid transport (SFXN1, SLC25A29) or glucose and gluconeogenesis-related 

pathways (PCK1, KCNK16). KCNK16, a known type 2 diabetes susceptibility gene encoding 

potassium two pore domain channel subfamily K member 16, is a pancreatic potassium 

channel, and represents an example of a novel glutamine-associated locus with a role in glucose 

biology26,27.    

 

Characterizing metabolic effects of apolipoprotein B-associated variants 

To provide insights into the distinct ways in which lipid loci can affect the continuum of 

lipoprotein metabolism, we characterized clusters of genes with similar metabolic association 

profiles. The effect estimates were scaled by dividing all effect estimates of a given SNP using 

the strongest association effect estimate across all metabolic associations in each locus. This 

way, the scaled effect estimates for all SNPs were between -1 and 1, and the statistical strength 

of an association affects the clustering less while more emphasis is given to the association 

landscape in guiding the clustering. We concentrated on 134 loci with nominal evidence (p < 

0.05) of an association with apolipoprotein B (apoB), as recent studies have highlighted the 

predominant role of apoB in coronary artery disease etiology28–30. Despite the strong 

correlation structure within the lipid and apolipoprotein traits, we identified several loci with 

association patterns that do not follow the between-trait correlation structure (Figure 2A, 

Supplementary Figures S6 and S7). For example, some loci (APOC1, TIMD4) are strongly 

associated with all the apoB-containing particles (VLDL, IDL, and LDL), while other loci are 

predominantly associated with IDL and LDL particles (PCSK9, HMGCR, TRIM5), with VLDL 

and the largest HDL particles (IRS1, CD300LG), or with medium and small HDL particles 

(APOA2, CERS2). Several SNPs also exhibit discordant associations within highly correlated 

metabolic traits (e.g., LPA and APOH within apoB-containing particles and FADS1-2-3 within 
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both apoB-containing and HDL particles; Figure 2A). Genes known to play a role in LDL-

related metabolism (PCSK9, APOB, HMGCR, LDLR) clustered closely together, 

demonstrating that our clustering approach is reflecting at least some known biological 

similarity (Figure S7).  

 

Metabolic profiles of 84 novel loci that were not identified in the previous NMR GWASs2,4,5 

were characterized here using the clustering approach (Supplementary Figures S6 and S7). As 

the approach we have taken uses scaled effect estimates, our results are not directly comparable 

to previous studies which have used unscaled effect estimates9 or numbers of associations per 

lipoprotein type5 in clustering. Even though most loci, such as the master regulator genes 

PCSK9 and LDLR, clustered similarly as reported previously5,9, the new genetically calibrated 

approach applied here can specifically add to the understanding of the detailed metabolic 

effects of less well-known lipid-associated loci as their metabolic association patterns have not 

been previously characterized. TRIM5 (encoding tripartite motif-containing protein 5) is an 

example of a poorly characterized locus associated with 42 lipoprotein and lipid traits 

(Supplementary Table S5). TRIM5 is best known for its role in antiviral host defense31, but 

variants near TRIM5 have also been associated with risk of liver fibrosis in HIV/HCV co-

infected patients and altered levels of liver enzymes32 and were recently reported to associate 

with risk of coronary artery disease33. Interestingly, the metabolic effects on the lipoprotein 

and lipid traits of the lead TRIM5 variant (rs11601507, p.Val112Ile) appear similar to those of 

the HMGCR variant rs12916 (Figures 2B and 2C), the metabolic effects of which are 

concordant with those of statin therapy34–36. The mechanism by which TRIM5 affects lipid and 

lipoprotein levels and predisposes to coronary artery disease is unclear and it has been 

speculated to be related to innate immunity37. However, our data suggest that TRIM5 may be 

affecting the hepatic cholesterol synthesis pathway, raising the possibility that inhibition of 
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TRIM5 could provide an alternative therapeutic pathway for reducing the risk of cardiovascular 

disease via lowering the concentrations of circulating atherosclerotic apoB-containing 

lipoprotein particles. 

 

Characterizing the roles of metabolic trait-associated variants in diseases 

To investigate the roles of the metabolic trait-associated variants in disease, we scanned all the 

disease and trait associations of the 1,447 lead SNPs in the (1) FinnGen study (Data Freeze 7, 

up to 309,154 participants, 3,095 phenotypes), a dataset linking genomic information from 

Finnish participants to digital health care data38, and in (2) PhenoScanner, a curated database 

of genotype-phenotype associations from published GWAS39,40 (Supplementary Table S5).  

 

Most (n=1,189) of the 1,447 lead SNPs had previously reported associations (p < 5 × 10-8) with 

traits or diseases, including directly relevant outcomes such as use of statin medication and 

hypercholesterolemia (Supplementary Table S5). Seven metabolic trait-associated loci (GCKR, 

ABCG8, ABCB11, ABCB1, CYP7A1, SERPINA1, HNF4A) were associated (p < 5 × 10-8) with 

risk of intrahepatic cholestasis of pregnancy (ICP) in FinnGen (Figure 3A, Supplementary 

Table S7), of which all but ABCG8 had robust evidence of colocalization or shared regional 

associations with the metabolic trait associations (Supplementary Table S8). ICP is a 

cholestatic disorder with onset in the second or third trimester of pregnancy, characterized by 

pruritus and elevated concentrations of serum aminotransferases and bile acids. ICP increases 

the risk of meconium staining of amniotic fluid, preterm delivery, fetal bradycardia, fetal 

distress, and fetal loss41. The genetic background of ICP is poorly characterized with few 

published GWASs7,42 and the metabolic impact of the ICP-loci has not been characterized. 

Compared to results of a recent ICP GWAS that included data from meta-analysis of an earlier 

FinnGen release (Data Freeze 4) and two other cohorts42, associations at nine loci (GCKR, 
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ABCG8, ABCB11, ABCB1, CYP7A1, SERPINA1, GAPDHS/TMEM147, SULT2A1, HNF4A) 

were replicated here and three novel loci (UGT8, NUP153, HKDC1) were additionally 

identified. A pathway analysis of the ICP-associated loci showed that biological processes 

related to bile acid, glucose, and lipid metabolism were enriched for ICP (Supplementary Table 

S9), consistent with the metabolic trait associations. For some loci (CYP7A1, ABCB1, 

SERPINA1), the most profound associations were detected for IDL and LDL particles, while 

two loci (HNF4A and GCKR) were more pleiotropic with effects across both apoB-containing 

and HDL particles (Figure 3B). At three of the loci (CYP7A1, ABCB1, SERPINA1) the ICP-

predisposing alleles were associated with higher concentrations of IDL and LDL subclass 

measures, while the directions were opposite for others (GCKR, ABCB11 and HNF4A). This 

information may be useful when considering these genes for therapeutic targets, as targets that 

adversely influence atherosclerotic lipids in pregnant women may be undesirable, despite the 

relatively short treatment period. By characterizing the associations of ICP-associated loci with 

metabolic traits in detail, we exemplify the value of combining the metabolic association 

information with disease associations to elucidate the metabolic underpinnings of poorly 

understood conditions. 

 

Mendelian randomization identifies a causal relationship between acetoacetate and 

hypertension 

Finally, we exploited the absence of UK Biobank from our GWAS meta-analysis to perform a 

two-sample Mendelian randomization (MR) analysis to investigate associations of genetically 

predicted levels of the twenty non-lipid traits with 460 Phecodes and 52 quantitative traits from 

the UK Biobank. Initial MR analyses using all lead variants for each trait as genetic instruments 

identified 503 significant associations (p < 4.88 × 10-6) under the inverse variance weighted 

model, including positive associations between glucose and diabetes, creatinine and renal 
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failure, and amino acids with diabetes (Supplementary Table S10), all of which represent well-

known causal relationships. Restricting the analyses to less pleiotropic variants (associated 

with fewer than five NMR traits), the association estimates were on average considerably 

weaker with less between-variant heterogeneity (median absolute beta=0.058 vs. 0.152; Q-

statistic 34.2 vs. 385.6, Supplementary Figure S8), suggesting that pleiotropy was driving many 

of the initial MR associations. This clearly emphasizes that pleiotropy should be carefully 

considered when selecting instrument SNPs for MR to avoid false interpretations about 

potential causal relationships.  

 

As an example, the MR results for acetoacetate were substantially affected by the inclusion of 

more pleiotropic SNPs in the instrument (Figure 4). Acetoacetate is a ketone body that is 

produced primarily in the liver during fasting and which has been associated with several 

cardiometabolic conditions including heart failure43 and diabetes44 in biochemical and 

epidemiological studies. In the GWAS, we identified associations for acetoacetate at ten loci 

(only one associated locus, APOA5, was identified in the previous NMR GWAS meta-

analysis4), and MR yielded twenty robust associations (Figure 4A). These included 

associations with triglycerides, HDL-cholesterol and remnant-cholesterol, likely reflecting the 

inclusion of well-known lipid loci (LPL, APOA5, TRIB1, APOC1, GALNT2, PPP1R3B) in the 

instrument. The less pleiotropic instrument for acetoacetate included only four loci: HMGCS2 

(3-hydroxy-3-methylglutaryl-CoA synthase 2), OXTC1 (3-oxoacid CoA-transferase 1), 

CYP2E1 (cytochrome P450 family 2 subfamily E member 1) and SLC2A4 (solute carrier family 

2 member 4), all of which have direct roles in ketone body or glycemic-related pathways. Using 

these four variants only the positive association with hypertension (OR per 1-SD higher 

genetically predicted acetoacetate level = 1.41, p = 6.9 × 10-7) was robust (Figures 4A and 4B) 

and was also replicated in FinnGen (OR 1.45, p = 4.5 × 10-5) (Figure 4C). Consistent with these 
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results, acetoacetate has recently been suggested as a biomarker for hypertension45. The 

discovery regarding this potential causal relationship between acetoacetate and hypertension is 

noteworthy since the data on the role of ketogenic diets in hypertension are suggestive but 

inconclusive46 and ketone bodies have also emerged as potential therapeutics for coronary 

disease47. A recent study in the UK Biobank demonstrated that some loci and pathways 

associated with the non-lipid NMR traits are highly pleiotropic, with the less pleiotropic 

variants often reflecting biology more proximal to the traits48. This is also in line with our 

findings as demonstrated by the identification of several pleiotropic triglyceride-related genes 

that are associated with acetoacetate levels, as well as four less pleiotropic acetoacetate-

associated loci with direct links to pathways related to ketone biology. These results accentuate 

that genetic pleiotropy can be common for metabolic measures, even for some non-lipid traits, 

and that careful selection of variants for MR is crucial to avoid bias due to pervasive pleiotropy. 

 

CONCLUSION 

Through this large-scale, genome-wide meta-analysis including more than 136,000 

participants, we discovered over 8,000 genetic associations of circulating metabolic biomarkers 

involving over 400 loci. The five-fold increase in sample size and doubling of the number of 

metabolic traits compared to our previous GWAS meta-analysis of NMR metabolic traits led 

to a dramatic increase in the number of significant associations (62 associated loci previously4), 

leading to a substantial improvement in understanding of genetic regulation of systemic 

metabolism. Key features of our meta-analysis are the inclusion of participants from 33 cohorts, 

enabling the discovery of many new robust associations with evidence from independent 

datasets. Through internal comparisons across these datasets and external comparison with UK 

Biobank, we have highlighted the important role that sample and participant characteristics, 
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such as sample type and fasting status, can play in revealing or masking genetic associations, 

with significant consequences for biological interpretation and downstream analyses. Our 

extensive manual curation to identify highly likely causal genes at nearly 300 associated loci 

provides a useful resource to further biological understanding of the associations and allows 

high-confidence identification of causal genes for disease associations that colocalize. For the 

remaining loci, our results provide a starting point for identification of genes that have not been 

known to be involved in metabolic regulation thus far. Our comparison of the fine-grained 

metabolic associations across the lipoprotein measures allows for the identification of clusters 

of genes with similar metabolic profiles, suggesting TRIM5 as a potential therapeutic target for 

lowering pro-atherogenic lipid levels, and therefore cardiovascular diseases, due to its 

similarity to HMGCR, the target for statins. By making the summary statistics publicly 

available, we provide a valuable resource for Mendelian randomization studies and have 

illustrated the potential pitfalls of using pleiotropic variants as genetic instrumental variables. 

Finally, we have illustrated the potential to use these findings to shed light on inadequately 

characterized diseases by examining the metabolic effects of genetic variants associated with 

intrahepatic cholestasis of pregnancy, a disease with a largely unknown genetic background. 
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METHODS 

 

NMR metabolomics 

In this work, we expand our previous genome-wide association study of 123 human metabolic 

traits in ~25,000 individuals4 to include additional cohorts and a more comprehensive panel of 

metabolic traits. Up to 233 serum metabolic traits were quantified in 33 cohorts (total sample 

size up to 136,016) using an updated quantification version of the same NMR metabolomics 

platform17 as in the previous study. The NMR metabolomics platform provides data of 

lipoprotein subclasses and their lipid concentrations and compositions, apolipoprotein A1 (apo-

AI) and apoB, cholesterol and triglyceride measures, albumin, various fatty acids and low-

molecular-weight metabolites, e.g., amino acids, glycolysis-related measures and ketone 

bodies. In this work, the metabolic traits were quantified in the following cohorts (described in 

detail in Supplementary Notes and Supplementary Table S1): Avon Longitudinal Study of 

Parents and Children (ALSPAC), China Kadoorie Biobank (CKB), Estonian Genome Center 

of University of Tartu Cohort (EGCUT), The Erasmus Rucphen Family study (ERF), European 

Genetic Database (EUGENDA), FINRISK 1997 (FR97), FINRISK 2007 (FR07, i.e. 

DILGOM), The INTERVAL Bioresource (INTERVAL), CROATIA-Korcula Study 

(KORCULA),  LifeLines-DEEP (LLD), Leiden Longevity Study (LLS), eight subcohorts from 

the London Life Sciences Prospective Population Study (LOLIPOP), The Metabolic Syndrome 

in Men study (METSIM), The Netherlands Epidemiology of Obesity Study (NEO), The 

Netherlands Study of Depression and Anxiety (NESDA), Northern Finland Birth Cohort 1966 

(NFBC1966), NFBC1986, The Netherlands Twin Register (NTR), Oxford Biobank (OBB), 

Orkney Complex Disease Study (ORCADES),  PROspective Study of Pravastatin in the 

Elderly at Risk (PROSPER), three subcohorts from the Rotterdam Study (RS), TwinsUK 

(TUK), and The Cardiovascular Risk in Young Finns Study (YFS). Most of the cohorts 
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consisted of individuals of European origin (six Finnish and 21 non-Finnish), and six cohorts 

had individuals of Asian origin (one Han Chinese and five South Asian). All participants gave 

informed consent and all studies were approved by the ethical committees of the participating 

centers. 

 

Genome-wide association study 

A GWAS was performed for 233 metabolic traits (Supplementary Table S2) in each of 33 

cohorts (Supplementary Table S1), leading to inclusion of up to 136,016 individuals with both 

NMR metabolic trait measurements and genome-wide SNP data available. Pregnant 

individuals or those under lipid-lowering medication were excluded from the study. SNPs were 

imputed using the Haplotype Reference Consortium release 1.1 or the 1000 Genomes Project 

Phase 3 release, and GWAS was performed under the additive model separately in each cohort 

(details in Supplementary Table S3). Before analyses, the metabolic trait distributions were 

adjusted for age, sex, principal components and relevant study-specific covariates (See 

Supplementary Table S3), and inverse rank normal transformation of trait residuals was 

performed. The cohorts were combined in fixed-effect meta-analysis with METAL49, and the 

SNPs were filtered to those present in at least seven cohorts. The NMR metabolic traits are 

highly correlated and therefore using the Bonferroni correction to account for multiple testing 

would result in an overconservative threshold for genome-wide significance. We therefore used 

the number of PCs (28) explaining >95% variation in the metabolic traits defined in the largest 

cohort, INTERVAL, to correct for multiple-testing, and our genome-wide significance 

threshold was set to p < 1.8 × 10-9 (standard genome-wide significance level, p < 5 × 10-8, 

divided by 28). After the primary GWAS, a fasting-stratified analysis was performed; in this 

analysis 27 of the cohorts were classified as fasted (total n=68,559) and five cohorts were 

classified as non-fasted (total n=58,112; see Supplementary Table S1). To define associated 
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loci across the metabolic traits, we defined a 500-kb window flanking each SNP meeting the 

significance threshold, pooled together these windows from all metabolic traits for each 

chromosome, and iteratively merged the windows. As this approach can lead to inclusion of 

multiple independent signals within these loci, we further defined potential independent signals 

that reside within the defined loci based on pairwise linkage disequilibrium (LD; r2 cut-off of 

0.3, defined in INTERVAL and FINRISK97) of all the lead SNPs within each locus. We 

assigned the associated lead SNPs to most likely causal genes based on two criteria: 1) we 

prioritized genes with clear biological relevance to the associated metabolic traits; and 2) if no 

biologically plausible causal gene was detected and the lead SNP was a functional variant 

(missense, splice region or stop gained) or in high LD (r2>0.8 in INTERVAL) with such 

variant, the gene with the functional variant was assigned as the most likely candidate gene. If 

criteria 1 and 2 were not fulfilled, the nearest gene was indicated as the candidate gene.  

 

Replication using publicly available resources 

UK Biobank SNP – metabolic trait summary statistics were downloaded 

(https://gwas.mrcieu.ac.uk/datasets/?gwas_id__icontains=met-d) from the IEU Open GWAS 

Project50. These summary statistics were derived from the publicly available March 2021 

release of the UK Biobank data in which the metabolic traits were measured with a similar 

NMR technology (newer version of the Nightingale Health platform) as in our study. The data 

was used to compare the association of our lead SNP – metabolic trait pairs within the 276 

associated regions. Two thresholds were used to define an association in the UK Biobank data: 

the standard genome-wide significance level (p < 5 × 10-8) and the suggestive level of 

significance (p <1 × 10-5). 
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Comparing to previous associations 

We performed an extensive comparison of our metabolic trait associations to previous genome-

wide association studies of metabolic traits. Our comparisons were divided into three groups: 

1) comparison to results of previously published large GWAS of circulating NMR traits4,5; 2) 

comparison with loci associated with clinical lipids (including those from the UK Biobank 

September 2019 version 3 release)20,24,25; and 3) comparison with an extensive list of 

associations from previous metabolite and metabolomic studies11,13,51–64. The comparisons 

were performed by indicating: 1) co-located known variants; 2) any known associations within 

a 500 kb flank of a lead SNP; or 3) known associations in LD (r2>0.3, defined in INTERVAL) 

with a lead SNP. Since our comparisons included studies with available summary statistics, 

comparing our associations to those from a recent study on sixteen non-lipid NMR traits48 was 

not possible. 

  

In addition to comparing to previous metabolic trait associations, we screened previous disease 

and trait associations (p value cut-off 5 × 10-8) of the lead SNPs using PhenoScanner, v239,40. 

In addition, we screened the FinnGen38 Data Freeze 7 summary statistics of 3,095 disease 

endpoints for overlapping associations (p value cut-off 5 × 10-8). 

 

Characterizing metabolic effects of lipoprotein and lipid associated loci 

To compare the metabolic effects of lipoprotein lipid and apolipoprotein associated variants, 

the effect estimates were visualized as color-coded heat maps. To allow comparison of SNP 

effects, the estimates were scaled relative to the highest absolute value of the estimate for each 

SNP. In this analysis, we included lead SNPs at the 276 initially defined regions that were 

associated with any of the lipoprotein lipids or apolipoproteins at genome-wide significance 
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and nominally associated (p < 0.05) with apolipoprotein B. We used these criteria to restrict 

the analysis to SNPs associated with apolipoprotein B, because apolipoprotein B is known to 

be a causal part of lipoprotein metabolism for cardiovascular disease 28–30. To exclude signals 

with similar effects across the metabolic traits due to the same causal gene, we included only a 

single SNP from the initially defined genomic regions that had multiple independent signals if 

the patterns of metabolic traits associations were similar (R>0.5). In the heat maps each line 

represents a single SNP, each column corresponds to a single metabolic measure, and the scaled 

effect estimates for the SNP-metabolite associations are visualized with a color range. 

Directions of effects are shown in relation to the allele associated with increased apolipoprotein 

B. To group SNPs with similar effects together, dendrograms were constructed based on 

hierarchical clustering of the scaled SNP effects. Heat maps were constructed using the 

heatmap.2 function of the gplots v. 3.0.3 R package. 

 

Characterizing metabolic associations of intrahepatic cholestasis of pregnancy 

We assessed overlap of our metabolic trait associations with intrahepatic cholestasis of 

pregnancy (ICP) using summary statistics from the FinnGen study 38 Data Freeze 7 (O15_ICP; 

1,460 cases 172,286 controls). ICP cases were defined through hospital discharge registry, 

ICD10 code O26.6 and ICD9 codes 6467A and 6467X. Using the candidate gene assignments 

of each associated locus, we performed gene ontology (GO) enrichment analysis to search for 

enriched biological process and molecular function GO terms65,66. We assessed colocalizations 

of association signals using Hypothesis Prioritisation for multi-trait Colocalization 

(HyPrColoc) R library in which an efficient deterministic Bayesian algorithm is used to detect 

colocalization across vast numbers of traits simultaneously67. We searched for colocalization 

at single causal variants and shared regional associations. To visualize SNP effects across lipid 

and lipoprotein traits, heat maps were constructed using the heatmap.2 function of the gplots 
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v. 3.0.3 R package. The following SNPs were included in the heatmaps: GCKR-rs1260326, 

ABCB11-rs10184673, ABCB1-rs17209837, CYP7A1-rs9297994, SERPINA1-rs28929474 and 

HNF4A-rs1800961. Effects of the metabolic trait-associated SNPs were scaled relative to an 

odds ratio of 1.5 for ICP. 

 

Mendelian randomization 

Two-sample Mendelian randomization was performed using twenty NMR non-lipid metabolic 

traits [including amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, valine, 

phenylalanine, tyrosine), ketone bodies (acetate, acetotoacetate, 3-hydroxybutyrate), and 

glycolysis/gluconeogenesis (glucose, lactate, pyruvate, glycerol, citrate), fluid balance 

(albumine, creatinine) or inflammation-related (glycoprotein acetylation) metabolic traits] as 

exposures and 460 Phecodes and 52 quantitative traits from the UK Biobank20 as outcomes. 

We defined two sets of instruments for the analyses that are referred to as full and strict 

instruments. As initial instruments we used the 334 lead variants (a single instrument SNP per 

each defined associated locus) associated with these traits (‘full instruments’). To avoid 

potential pleiotropy, we also selected a subset of 193 variants (‘strict instruments’) that had 

fewer than 5 associations across all 233 metabolic traits. We defined disease outcomes in UK 

Biobank using a curated list of major Phecodes available in the PheWAS R package68,69. To 

restrict our analysis to major disease outcomes, we discarded any sub-categories (i.e., Phecodes 

with four or more characters) and removed outcomes with fewer than 100 events across up to 

367,542 unrelated European-ancestry UK Biobank participants. The resulting 460 diseases 

were grouped into 15 broad domains: circulatory system, dermatologic, digestive, 

endocrine/metabolic, genitourinary, haematopoietic, infectious diseases, mental disorders, 

musculoskeletal, neoplasms, neurological, pregnancy complications, respiratory, sense organs, 

symptoms. We also analyzed 52 quantitative traits available in UK Biobank, including blood 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


23 
 

pressure, lung function measures, blood cell traits and clinical chemistry biomarkers. In our 

replication analysis (acetoacetate as the exposure and hypertension as the outcome), we used 

essential hypertension from the FinnGen study38 Data Freeze 7 as the outcome (Hypertension 

essential, I9_HYPTENSESS; 70,651 cases, 223,663 controls). Cases were defined through 

hospital discharge registry, ICD10 code I10, ICD9 codes 4019X and 4039A, ICD8 codes 

40199, 40299, 40399, 40499, 40209, 40100, 40291, 40191 and 40290. 

 

We performed univariable Mendelian randomization using the inverse-variance weighted 

method for each instrument70. We also performed sensitivity analyses using MR-Egger 

regression to account for unmeasured pleiotropy71 and weighted median regression to assess 

robustness to invalid genetic instruments72. Our primary analyses were based on fixed-effect 

models, but as sensitivity analyses we used random-effect models to account for between-

variant heterogeneity, which we quantified using the I-squared statistic. The MR analyses were 

performed using the MendelianRandomization package v. 0.5.173 or the TwoSampleMR 

package v. 0.5.374. Single-SNP MR estimates were based on the Wald ratio. We considered the 

fixed-effects inverse-variance weighted method as the main MR model but report the results 

of all models in Supplementary Table S10.  To account for multiple-testing, associations with 

p < 4.88 x 10-6 were considered significant (Bonferroni correction to account for testing of 20 

metabolic traits with 512 outcomes). 

 

FinnGen study 

In the present study, we used GWAS summary statistics of 3,095 disease endpoints from 

FinnGen Data Freeze 7. Full description of the FinnGen study38 and data analysis steps is 

provided in Supplementary Notes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Notes. This file contains study descriptions, acknowledgements, and funding 

information. 

 

Supplementary Figures. Supplementary Figures are included in four files: Figures S1-S3 in 

separate files, Figures S4-S8 in a combined file. Figure contents are described below.  

Fig. S1. Manhattan plots showing the meta-analysis results of 233 metabolic traits. 

Fig. S2. Regional associations plots for the most significantly associated metabolic traits 

in each genomic region. 

Fig. S3. Forest plots showing the associations of the lead SNPs in each cohort. 

Fig. S4. Mirrored manhattan plot showing the results of genome-wide association study 

of phenylalanine in the NMR meta-analysis and UK Biobank. 

Fig. S5. Examples of glucose associations for fasted and non-fasted cohorts. 

Fig. S6. Heat map of lipoprotein and lipid associations.  

Fig. S7. A zoomed heat map of lipoprotein and lipid associations. 

Fig. S8. Influence of pleiotropy on Mendelian randomization estimates.  

 

Supplementary Tables. This file contains Supplementary Tables S1-S11 (described below). 

Table S1. Description of studies. 

Table S2. List of NMR metabolic traits and their abbreviations. 

Table S3. Details of genotyping and GWAS analyses. 

Table S4. Genomic regions associated with metabolic traits. The genomic regions 

associated with the 233 NMR metabolic traits are indicated, along with candidate gene 
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assignments and GWAS results for the lead SNP of the most significant metabolic trait 

within each region. Genomic positions refer to hg19. Effects are given for allele 1.  

Table S5. Significant lead SNP – metabolic trait associations. GWAS results for all 

significant lead SNP – metabolic trait associations within the defined associated 

genomic regions are shown, along with comparisons to previous GWASs. Genomic 

positions refer to hg19. Effects are given for allele 1.  

Table S6. Associations of lead SNPs with NMR metabolic traits in UK Biobank. 

Table S7. Lead SNPs at loci associated with intrahepatic cholestasis of pregnancy in 

FinnGen Data Freeze 7. 

Table S8. HyprColoc analysis for shared regional associations and colocalization with 

intrahepatic cholestasis of pregnancy in FinnGen R7. 

Table S9. Pathway analysis of intrahepatic cholestasis of pregnancy. 

Table S10. Mendelian randomization results. The results of Mendelian randomization 

(MR) analyses of twenty non-lipid traits with 460 Phecodes and 52 quantitative traits 

from the UK Biobank are shown. The MR estimates are shown separately for analyses 

performed with full and strict (non-pleiotropic) instruments. 

Table S11. List of FinnGen contributors. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

REFERENCES 
 
 
1. Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical 

research. Nature 477, 54–60 (2011). 

2. Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing 

human serum metabolite levels. Nat Genet 44, 269-276 (2012). 

3. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat Genet 

46, 543–550 (2014). 

4. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and 

reveals novel systemic effects of LPA. Nat Commun 7, 11122 (2016). 

5. Gallois, A. et al. A comprehensive study of metabolite genetics reveals strong 

pleiotropy and heterogeneity across time and context. Nat Commun 10, 4787–4788 

(2019). 

6. Lotta, L. A. et al. A cross-platform approach identifies genetic regulators of human 

metabolism and health. Nat Genet 53, 54–64 (2021). 

7. Yin, X. et al. Genome-wide association studies of metabolites in Finnish men identify 

disease-relevant loci. Nat Commun 13, 1644 (2022). 

8. Chambers, J. C. et al. Genome-wide association study identifies loci influencing 

concentrations of liver enzymes in plasma. Nat Genet 43, 1131-1138 (2011). 

9. Tukiainen, T. et al. Detailed metabolic and genetic characterization reveals new 

associations for 30 known lipid loci. Hum Mol Genet 21, 1444–1455 (2012). 

10. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and 

Translation. Am J Hum Gen 101: 5-22 (2017). 

11. Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant 

association power. Nature 572, 323-328 (2019). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

12. Illig, T. et al. A genome-wide perspective of genetic variation in human metabolism. 

Nat Genet 42, 137-141 (2010). 

13. Draisma, H. H. M. et al. Genome-wide association study identifies novel genetic 

variants contributing to variation in blood metabolite levels. Nat Commun 6, 7208 

(2015). 

14. Long, T. et al. Whole-genome sequencing identifies common-to-rare variants 

associated with human blood metabolites. Nat Genet 49, 568–578 (2017). 

15. Tabassum, R. et al. Genetic architecture of human plasma lipidome and its link to 

cardiovascular disease. Nat Commun 10, 4328–4329 (2019). 

16. Hagenbeek, F. A. et al. Heritability estimates for 361 blood metabolites across 40 

genome-wide association studies. Nat Commun 11, 39 (2020). 

17. Wurtz, P. et al. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in 

Large-Scale Epidemiology: A Primer on -Omic Technologies. Am J Epidemiol 186, 

1084–1096 (2017). 

18. Inouye, M. et al. Novel Loci for Metabolic Networks and Multi-Tissue Expression 

Studies Reveal Genes for Atherosclerosis. PLoS Genet 8, e1002907 (2012). 

19. Teslovich, T. M. et al. Identification of seven novel loci associated with amino acid 

levels using single-variant and gene-based tests in 8545 Finnish men from the 

METSIM study. Hum Mol Genet 27, 664-1674 (2018). 

20. Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes 

of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med 12, 

e1001779 (2015). 

21. Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of 

type 2 diabetes and impaired early insulin secretion. Nat Genet 41, 82–88 (2009). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

22. Li-Gao, R. et al. Genetic Studies of Metabolomics Change After a Liquid Meal 

Illuminate Novel Pathways for Glucose and Lipid Metabolism. Diabetes 70, 2932-

2946 (2021). 

23. Barrett, J. C. et al. Genome-wide association study and meta-analysis find that over 40 

loci affect risk of type 1 diabetes. Nat Genet 41, 703-707 (2009). 

24. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat 

Genet 45, 1274–1283 (2013). 

25. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of 

the Million Veteran Program. Nat Genet 50, 1514-1523 (2018). 

26. Dickerson, M. T., Vierra, N. C., Milian, S. C., Dadi, P. K. & Jacobson, D. A. 

Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic 

β- Cells. PLoS One 12, e0175069 (2017). 

27. Graff, S. M. et al. A KCNK16 mutation causing TALK-1 gain of function is associated 

with maturity-onset diabetes of the young. JCI Insight 6, e138057 (2021). 

28. Ference, B. A. et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-

Lowering LDLR Variants with Risk of Coronary Heart Disease. JAMA 321, 364–373 

(2019). 

29. Sniderman, A. D. et al. Apolipoprotein B Particles and Cardiovascular Disease: A 

Narrative Review. JAMA Cardiol 4, 1287-1295 (2019). 

30. Ala-Korpela, M. The culprit is the carrier, not the loads: Cholesterol, triglycerides and 

apolipoprotein B in atherosclerosis and coronary heart disease. Int J Epidemiol 48, 

1389-1392 (2019). 

31. Rahm, N. & Telenti, A. The role of tripartite motif family members in mediating 

susceptibility to HIV-1 infection. Curr Opin HIV AIDS 7, 180–186 (2012). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

32. Medrano, L. M. et al. Relationship of TRIM5 and TRIM22 polymorphisms with liver 

disease and HCV clearance after antiviral therapy in HIV/HCV coinfected patients. J 

Transl Med 14, 257 (2016). 

33. van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an 

Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ Res 

122, 433–443 (2018). 

34. Wurtz, P. et al. Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-

CoA Reductase. J Am Coll Cardiol 67, 1200–1210 (2016). 

35. Sliz, E. et al. Metabolomic Consequences of Genetic Inhibition of PCSK9 Compared 

with Statin Treatment. Circulation 138, 2499-2512 (2018). 

36. Holmes, M.V. & Ala-Korpela, M. What is ‘LDL cholesterol’? Nat Rev Cardiol 16, 

197-198 (2019). 

37. Hughes, M. F. et al. Exploring Coronary Artery Disease GWAs Targets With 

Functional Links to Immunometabolism. Front Cardiovasc Med 5, 148 (2018). 

38. Kurki, M. I. et al. FinnGen: Unique genetic insights from combining isolated 

population and national health register data. medRxiv preprint (2022). 

doi:https://doi.org/10.1101/2022.03.03.22271360. 

39. Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype 

associations. Bioinformatics 32, 3207–3209 (2016). 

40. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human 

genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019). 

41. Pusl, T. & Beuers, U. Intrahepatic cholestasis of pregnancy. Orphanet J Rare Dis 2, 26 

(2007). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

42. Dixon, P. H. et al. GWAS meta-analysis of intrahepatic cholestasis of pregnancy 

implicates multiple hepatic genes and regulatory elements. Nat Commun 13, 4840 

(2022). 

43. Voros, G. et al. Increased Cardiac Uptake of Ketone Bodies and Free Fatty Acids in 

Human Heart Failure and Hypertrophic Left Ventricular Remodeling. Circ Heart Fail 

11, e004953 (2018). 

44. Mahendran, Y. et al. Association of Ketone Body Levels With Hyperglycemia and 

Type 2 Diabetes in 9,398 Finnish Men. Diabetes 62, 3618-3626 (2013). 

45. Palmu, J. et al. Comprehensive biomarker profiling of hypertension in 36 985 Finnish 

individuals. J Hypertens 40, 579-587 (2022). 

46. Raimondo, D. di et al. Ketogenic Diet, Physical Activity, and Hypertension-A 

Narrative Review. Nutrients 13, 2567 (2021). 

47. Yurista, S. R. et al. Therapeutic Potential of Ketone Bodies for Patients With 

Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Card 77, 1660-

1669 (2021). 

48. Smith, C. J. et al. Integrative analysis of metabolite GWAS illuminated the molecular 

basis of pleiotropy and genetic correlation. bioRxiv preprint (2022). 

doi:https://doi.org/10.1101/2022.04.02.486791. 

49. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics 26, 2190-2191 (2010). 

50. Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv preprint 

(2020). doi:https://doi.org/10.1101/2020.08.10.244293. 

51. Chen, J. et al. The Trans-Ancestral Genomic Architecture of Glycaemic Traits. 

bioRxiv preprint (2022). doi:https://doi.org/10.1101/2020.07.23.217646 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


32 
 

52. Davis, J. P. et al. Common, low-frequency, and rare genetic variants associated with 

lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM 

study. PLoS Genet 13, e1007079 (2017). 

53. de Oliveira Otto, M. C. et al. Genome-wide association meta-analysis of circulating 

odd-numbered chain saturated fatty acids: Results from the CHARGE Consortium. 

PLoS One 13, e0196951 (2018). 

54. Demirkan, A. et al. Genome-wide association study identifies novel loci associated 

with circulating phospho- and sphingolipid concentrations. PLoS Genet 8, e1002490 

(2012). 

55. Franceschini, N. et al. Discovery and fine mapping of serum protein loci through 

transethnic meta-analysis. Am J Hum Genet 91, 744-753 (2012). 

56. Guan, W. et al. Genome-Wide association study of plasma n6 polyunsaturated fatty 

acids within the cohorts for heart and aging research in genomic epidemiology 

consortium. Circ Cardiovasc Genet 7, 321-333 (2014). 

57. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links 

cell types to complex human diseases. Nat Genet 50, 390-400 (2018). 

58. Lemaitre, R. N. et al. Genetic loci associated with circulating levels of very long-chain 

saturated fatty acids. J Lipid Res 56, 176-184 (2015). 

59. Lemaitre, R. N. et al. Genetic loci associated with plasma phospholipid N-3 fatty 

acids: A Meta-Analysis of Genome-Wide association studies from the charge 

consortium. PLoS Genet 7, 940-947 (2011). 

60. Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK 

Biobank. Nat Genet 53, 185-194 (2021). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


33 
 

61. Tin, A. et al. GCKR and PPP1R3B identified as genome-wide significant loci for 

plasma lactate: the Atherosclerosis Risk in Communities (ARIC) study. Diabet Med 

33, 968-975 (2016). 

62. Wittemans, L. B. L. et al. Assessing the causal association of glycine with risk of 

cardio-metabolic diseases. Nat Commun 10, 1060 (2019). 

63. Wu, J. H. Y. et al. Genome-wide association study identifies novel loci associated with 

concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis 

pathway: Results from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 6, 171-183 (2013). 

64. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from 

analyses of a million individuals. Nat Genet 51, 957-972 (2019). 

65. Carbon, S. et al. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids 

Res 49, D325-D334 (2021). 

66. Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene 

function analysis with the panther classification system. Nat Protoc 8, 1551-1566 

(2013). 

67. Foley, C. N. et al. A fast and efficient colocalization algorithm for identifying shared 

genetic risk factors across multiple traits. Nat Commun 12, 764 (2021). 

68. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: Data analysis and plotting 

tools for phenome-wide association studies in the R environment. Bioinformatics 30, 

2375-2376 (2014). 

69. Denny, J. C. et al. Systematic comparison of phenome-wide association study of 

electronic medical record data and genome-wide association study data. Nat 

Biotechnol 31, 1102–1111 (2013). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

70. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis 

with multiple genetic variants using summarized data. Genet Epidemiol 37, 658–665 

(2013). 

71. Bowden, J., Smith, G. D. & Burgess, S. Mendelian randomization with invalid 

instruments: Effect estimation and bias detection through Egger regression. Int J 

Epidemiol 44, 512-525 (2015). 

72. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent Estimation in 

Mendelian Randomization with Some Invalid Instruments Using a Weighted Median 

Estimator. Genet Epidemiol 40, 304–314 (2016). 

73. Yavorska, O. O. & Burgess, S. MendelianRandomization: An R package for 

performing Mendelian randomization analyses using summarized data. Int J Epidemiol 

46, 1734-1739 (2017). 

74. Hemani, G. et al. The MR-Base platform supports systematic causal inference across 

the human phenome. Elife 7, e34408 (2018). 

  
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


35 
 

FIGURES 

 

 

 

Figure 1. Results of the GWAS meta-analysis of 233 metabolic traits. The metabolic trait 

associations are summarized in a Manhattan plot (panel A). Loci that do not overlap with those 

identified in the previous large-scale NMR metabolomics GWAS4,5 are shown in blue and 

green. Only genome-wide significant SNPs (p < 1.8 × 10-9) are shown and -log10(p-values) 

were capped at 300. Numbers of associated metabolic traits at the 276 associated genomic 

regions are shown separately for genomic regions in which the lead trait was a lipid, 
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lipoprotein or fatty acid trait (155 loci; median 24 traits per locus; panel B) and for those in 

which the lead trait was a non-lipid trait (121 loci; median one trait per locus; panel C). Results 

of the genome-wide association study of glucose are shown in panel D separately for the fasted 

(top) cohorts (total n=68,559) and non-fasted (total n=58,112) cohorts. The red line indicates 

the threshold for genome-wide significance. 500-kb regions around lead SNPs in the fasted 

cohorts are highlighted in both top and bottom panels. 
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Figure 2. Effects of SNPs across the lipoprotein and lipid traits. (A) Heatmaps of the 

correlation structure of lipoprotein subclass particle concentrations (left) and the association 

landscapes of exemplar SNPs (right). In the heat maps, pairwise correlations of lipoprotein 

subclass particle concentrations (calculated in FINRISK1997; left) and effect estimates for the 

SNP-metabolic trait associations (right) are visualized by a color range. The SNP effect sizes 

were scaled relative to the absolute maximum effect size in each locus. Each column represents 
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a single SNP, and each row corresponds to a single metabolic measure. A scatterplot (B) and 

forest plots (C) of the effect estimates for TRIM5 and HMGCR lead SNPs (rs11601507 and 

rs12916, respectively) across the lipoprotein and lipid traits. A best fit regression line is 

illustrated (purple dashed line) in panel B along with an estimate of Pearson’s correlation 

coefficient R in the title. The effect estimates (SD units) were scaled relative to a 1-SD decrease 

in LDL cholesterol. 
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Figure 3. Metabolic trait associated variants are associated with intrahepatic cholestasis of 

pregnancy. A Manhattan plot of genome-wide association study of intrahepatic cholestasis of 

pregnancy (ICP) (A) and a heat map of loci associated with metabolic traits and ICP (B). 

Twelve loci were associated with ICP in the FinnGen study (1,460 cases, 172,286 controls). In 

the Manhattan plot (A), 500 Kb regions flanking the lead SNPs are highlighted, and the nearest 

gene is indicated for each signal. Loci that overlap with the loci identified in the NMR meta-

analysis are indicated in red. In the heat map (B), loci that likely had shared causal variants 

with the metabolic traits were included. The heat map illustrates the resemblances of the 

association landscapes. Each row represents a single SNP, each column corresponds to a 

single metabolic measure, and the scaled effect estimates for the SNP-metabolite associations 

are visualized with a color range. The associations were scaled with respect to their 

associations with ICP (SD change per ICP OR 1.5). 
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Figure 4. Mendelian randomization suggests a causal association between acetoacetate and 

hypertension. In panel A, effect estimates (betas per 1-SD increase in acetoacetate) are shown 

MR−4 SNPs
MR−10 SNPs

TRIB1−rs2980855
PPP1R3B−rs2126264

APOC1−rs5112
CYP2E1−rs2265898

OXCT1−rs277414
GALNT2−rs11122450
HMGCS2−rs1163547

APOA5−rs964184
SLC2A4−rs117643180

LPL−rs35237252

−1.0 −0.5 0.0 0.5 1.0
MR effect size, UK Biobank hypertension

MR−4 SNPs
MR−10 SNPs

PPP1R3B−rs2126264
HMGCS2−rs1163547
CYP2E1−rs2265898

GALNT2−rs11122450
TRIB1−rs2980855
OXCT1−rs277414
LPL−rs35237252

APOC1−rs5112
APOA5−rs964184

SLC2A4−rs117643180

−0.5 0.0 0.5 1.0
MR effect size, FinnGen hypertension

Vitamin D
Total bilirubin

Serum total triglycerides
Serum total cholesterol

Remnant cholesterol
Platelet count

Nonfasting glucose
Non−HDL cholesterol

Neutrophil count
LDL cholesterol

Hypertension
HDL cholesterol

Haematocrit
Eosinophil count

Disorders of lipid metabolism
Apolipoprotein B

Apolipoprotein A−I
Alkaline phosphatase

Albumin
Alanine transaminase

−0.5 0.0 0.5 1.0
MR effect size

A

C

B

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.20.22281089doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281089
http://creativecommons.org/licenses/by-nd/4.0/


41 
 

for the UK Biobank outcomes that were significant (p < 4.88 × 10-6) with the full (pleiotropic, 

n = 10, pink) or strict (non-pleiotropic, n = 4, black) set of instruments. Panels B and C show 

the effect estimates in Mendelian randomization (MR) analysis with hypertension in the UK 

Biobank (panel B) and FinnGen (panel C) as the outcomes. Single-SNP MR effect estimates 

and 95% confidence intervals are shown, with the SNPs in the strict instrument colored blue 

and the other SNPs colored pink. Mendelian randomization effect estimates are shown with 

pink and black diamonds for the full instrument (all ten SNPs) and strict instrument (four non-

pleiotropic SNPs).  
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