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Abstract. Expression of genes is controlled by histone modifi-
cation, histone acetylation and methylation, but abnormalities 
of these modifications have been observed in carcinogenesis 
and cancer development. The effect of the lysine-specific 
histone demethylase 1 (LSD1) inhibitor, a demethylating 
enzyme of histones, is thought to be caused by controlling the 
expression of genes. The aim of the present study is to elucidate 
the efficacies of the LSD1 inhibitor on the gene expression of 
esophageal cancer cell lines using chromatin immunopre-
cipitation (ChIP)‑Seq. A comprehensive analysis of gene 
expression changes in esophageal squamous cell carcinoma 
(ESCC) cell lines induced by the LSD1 inhibitor NCL1 was 
clarified via analysis using microarray. In addition, ChIP‑seq 
analysis was conducted using a SimpleChIP plus Enzymatic 
Chromatin IP kit. NCL1 strongly suppressed the proliferation 
of T.Tn and TE2 cells, which are ESCC cell lines, and further 
induced apoptosis. According to the combinatory analysis of 
ChIP-seq and microarray, 17 genes were upregulated, and 16 
genes were downregulated in both cell lines. The comprehen-
sive gene expression study performed in the present study is 
considered to be useful for analyzing the mechanism of the 
antitumor effect of the LSD1 inhibitor in patients with ESCC.

Introduction

In the whole world, esophageal cancer is the sixth cause of 
death among various cancer types. Esophageal cancers are 
mainly classified into two histological types, esophageal 
squamous cell carcinoma (ESCC) and adenocarcinoma (1). 
Then, ESCC is thought to be the main histological type which 
accounts for more than 90% in Asian countries including 
Japan, Korea and China (2), and it is known that ESCC is a 
highly malignant malignancy among many cancer types (3‑5). 
Esophagectomy remains the mainstay potential curative 
treatment for ESCC (6). However, esophagectomy is still 
a highly invasive surgical procedure with high morbidity 
and mortality (7). Although remarkable advances have been 
made in chemotherapy and chemotherapy with radiotherapy 
as cancer therapies, These therapeutic effects can be said to 
be extremely limited as curative treatment (8,9). Therefore, 
understanding the characteristics of ESCC and developing 
new therapeutic tools are urgently required.

Both genetic mechanisms and epigenetic alterations 
are thought to be closely involved in the development and 
progression of ESCC (10). Several epigenetic abnormalities 
have been reported, including DNA methylation, histone 
modifications and non‑coding RNAs (11,12). In our studies, 
epigenetic modifications play crucial roles in the regula-
tion of gene expression in ESCC (12‑19). In particular, the 
methylation of lysine residues on histone proteins in the 
chromatin structure has received attention due to their poten-
tial regulatory ability on DNA‑based nuclear processes such 
as transcription, replication and repair (20). The methylation 
of histone lysine residues was first reported in the 1960s 
and was considered an irreversible posttranslational modi-
fication (21). In 2004, however, a lysine demethylase was 
discovered, and the methylation of histone lysine residues is 
now regarded as a dynamic modulation (22).

Genome‑wide ChIP‑seq data with a transcriptome analysis 
reveals the groups of genes regulated by histone demethylase 
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Abnormalities in histone lysine methylation are frequently 
observed in various cancers (23‑26). Lysine‑specific histone 
demethylase 1 (LSD 1), a histone demethylase, is an amine 
oxidase that removes monomethyl and dimethyl moieties from 
Lys 4 of histone H 3 and produces a demethylated H3 tail (27). 
Identifying the key points of regulation in the histone meth-
ylation network for cancer development and progression can 
provide innovative targets for cancer therapies.

In the present study, we focused on the mechanisms 
underlying how demethylated Lys4 of H3 influences the 
gene expressions in ESCC cells. We investigated microarray 
and chromatin immunoprecipitation sequencing (ChIP-seq) 
in order to explore the effect of demethylated Lys4 of H3 on 
the transcriptional state of ESCC cells and identified genes 
affecting cancer growth.

Materials and methods

Cell culture and chemicals. The human esophageal cell lines 
T.Tn and TE2 were cultured in DMEM (Life Technologies, 
Grand Island, NY, USA) supplemented with 10% fetal calf 
serum. T.Tn cells were acquired from the Japanese Cancer 
Research Resources Bank (Tsukuba, Japan), and TE2 cells were 
obtained from Tohoku University (Sendai, Japan). NCL1, an 
LSD1 inhibitor, was provided by Kyoto Prefectural University 
of Medical Science (Graduate School of Medicine) (Kyoto, 
Japan) in cooperation. NCL1 showed higher inhibitory activity 
than the known LSD1 inhibitor, trans-2-phenylcyclopropyl-
amine. Moreover, in the presence of NCL1, the methylation 
activity of H3K4 is observed and cell proliferation is inhibited 
in experiments using cancer cells (28‑30). NCL1 was dissolved 
in dimethyl sulfoxide and used for in vitro studies.

Messenger RNA preparation and a cDNA microarray 
analysis. T.Tn or TE2 cells were seeded into a 225‑cm2 flask, 
incubated for 48 h, treated with or without an IC80 concentra-
tion of LSD1 inhibitor and harvested at 24 h. Subsequently, 
the cells were washed with phosphate‑buffered saline (PBS; 
cat. no: 14190‑250, Invitrogen, Carlsbad, CA, USA) and total 
RNA was extracted using RNeasy Plus Mini kit (Qiagen, 
Inc., Chatsworth, CA, USA). Changes in gene expression 
were compared between 5.5 tor of total RNA extracted from 
cells cultured by exposure to NCL 1 and 5.5 tor of total RNA 
extracted from cells cultured in a control culture using an 
Affymetrix Human Exon 1.0ST array (Affymetrix, Santa 
Clara, CA, USA). Hybridization signals were detected with 
a GeneChip scanner 3000 7 G (Affymetrix), and the scanned 
images were analyzed using the GeneChip command console 
software (AGCC). All the processes were basically carried 
out according to the previous report (31). All experiments 
were done in duplicate and the averaged data were subjected 
to statistical analysis.

ChIP‑seq analyses. ChIP-seq analyses were performed using 
the SimpleChIP plus enzymatic chromatin IP kit (Magnetic 
Beads; Cell Signaling Technology, Danvers, MA, USA). 
T.Tn or TE2 cells were cultured for 48 h in a 225‑cm2 flask, 
then incubated under the condition with or without an IC80 
concentration of LSD1 inhibitor and harvested at 24 h. The 
Cells were crosslinked with 1% formaldehyde for 10 min at 

room temperature, then washed twice with PBS containing 
0.5 mM EDTA and collected. The cell pellet was lysed with 
0.3 ml of cell lysis buffer (50 mM Tris‑HCl [pH 8.1], 10 mM 
EDTA, 1% SDS, and protease inhibitor) and incubated on ice 
for 10 min. Lysates of the cells were sonicated to obtain DNA 
fragments of 150 to 900 base pair (bp) in size. About 50 µg 
of cross-linked sheared chromatin solution was then used for 
immunoprecipitation. The solution with the Anti‑Histone H3 
(di methyl K4) antibody‑ChIP Grade (Abcam, Inc., Cambridge, 
UK; cat. no: ab7766) was incubated overnight at 4˚C on a 
rotating shaker for immunoprecipitation. Magnetic beads were 
added to the solution, incubated at 4˚C for 1 h, and then washed 
with washing buffer. The cross‑linking was reversed by adding 
NaCl at a final concentration of 200 mM and heating at 65˚C for 
30 min. The DNA fragments were purified using a spin column. 
A sequencing library was prepared and massively parallel high 
throughput sequencing was performed with the Illumina HiSeq 
2000 system (Illumina, Inc., San Diego, Calif., USA) and a 
50-bp reads were aligned against the reference genome on a 
Burrows‑Wheeler transform, and a minimum mapping quality 
filter 20 was applied (32). Enriched regions for each condition 
were detected and analyzed with MACS v1.4.0 (model‑based 
analysis for ChIP‑Seq) (33) and CEAS v1.0.2 (cis‑regulatory 
element annotation system) (34,35). Peaks with overlaps in 
both cell lines were merged into a broad peak domain using 
BEDTools (36). All of the count data from the ChIP‑Seq assays 
were analyzed with DESeq to normalize the peak signal (37).

The reverse transcription‑quantitative PCR (RT‑qPCR) for 
measuring the LDHB and AEG‑1/MTDH mRNA expression. 
The mRNA expression of DUSP5, BHLHE40 and MXRA5 
were examined by a RT‑qPCR. T.Tn or TE2 cells were seeded 
into a 225-cm2 flask, incubated for 48 h, treated with or without 
an IC80 concentration of LSD1 inhibitor and harvested at 24 h. 
Subsequently, the cells were washed with phosphate-buffered 
saline (PBS) and total RNA was extracted using an RNeasy 
Plus Mini kit (Qiagen, Inc., Chatsworth, CA, USA). The cDNA 
templates for the qPCR were synthesized from 1 µg of total 
RNA using a High Capacity RNA‑to‑cDNA kit (Applied 
Biosystems).The Actin alpha 1 (ACTA1) gene served as an 
internal control. The PCR reaction consisted of Sso Fast Eva 
Green Supermix (BioRad; containing dNTPs, Sso7d fusion 
polymerase, MgCl2 , EvaGreen dye, stabilizers), the primers 
(each 1 µM ) and cDNA. All reactions were run in duplicate 
on the MyiQ2 Two‑Color Real‑Time PCR detection system 
(BioRad). The PCR processes were as follows: Initial denatur-
ation at 95˚C for 30 sec, followed by 40 cycles of denaturation 
at 95˚C for 5 sec, annealing at 55˚C for 10 sec. The following 
primer sequences were used: DUSP5; 5'‑CCT GCT AAA ACT 
GGG ATG GA‑3' and 5'‑ACC TAC CCT GAG GTC CGT CT‑3': 
BHLHE40; 5'‑GGC ATA GCA CGG TAG TGG TT‑3' and 5'‑TCA 
GAC CTT GGT TTG GTT CC‑3': MXRA5; 5'‑CTG TCC AGT 
CCT CAG GAA GC‑3' and 5'‑TCC TGT GGA AAC CTT TGT 
CC‑3': ACTA1; 5'‑CCT TCA TCG GTA TGG AGT C‑3' and 
5'‑GTT GGC ATA CAG GTC CTT‑3'.

The comparative quantitative cycle (Cq) method was 
applied to quantify the expression levels of mRNAs. The 
relative amount of DUSP5, BHLHE40 and MXRA5 to 
ACTA1mRNA was calculated using the following equation: 
2q

-ΔC, where ΔCq=(Cq DUSP5, BHLHE40 or MXRA5 or AEG‑1/MTDH‑Cq ACTA1).
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Statistical analyses. The Student's t‑test was performed to 
compare the differences in the mRNA expression levels. 
P<0.05 was considered to indicate a statistically significant 
difference. The SPSS v.16.0 (SPSS, Inc., Chicago, IL, USA) 
software program were used for the analyses.

Results

Effects of NCL1 on the expression of various genes in micro‑
array analyses. We used a cDNA microarray to identify genes 
induced by LSD1 exposure in ESCC. We extracted genes with 
expression levels more than two‑fold or greater compared to 
control, whether decreased or increased, as significant. In both 
T. Tn and TE2 cell lines, expression of 18 genes was increased, 
while expression of 9 genes was decreased (Table I).

ChIP‑seq analyses. To assess the functional significance of 
demethylated Lys4 of H3 in ESCC cells, we also analyzed the 
genome‑wide modified targets of demethylation Lys4 of H3 
using deep sequencing based on chromatin immunoprecipita-
tion (ChIP‑seq). When we compared the findings with control 
cells (without LSD1 inhibitor), we identified up-regulated 
peaks in 468 and 814 demethylated Lys4 of H3‑specific modi-
fication sites in T.Tn and TE2 cells, respectively (Fig. 1). We 
also identified down‑regulated peaks in 532 and 612 demethyl-
ated Lys4 of H3‑specific modification sites in T.Tn and TE2 
cells, respectively (Fig. 1).

Identifying the relationship between histone modification 
states and the gene expression in ESCC cells. To clarify the 
gene expression change by the state of histone modification, 
the genes with up‑ or down‑regulated expression were inves-
tigated using microarray data, and that the promoter region 
of these genes may be the targets of histone modification. 
The expression of some of these genes whose promoters were 
detected as candidates for targets of demethylated Lys4 of 
H3 were markedly changed according to the microarray data 
(Table II). The results showed that 17 genes were commonly 
up-regulated, while 16 genes were commonly down-regulated 
(Table III). These identified genes were categorized based 
on their function, referring to GENE ONTOLOGY™, and 
classified into 7 groups: Apoptosis, cell cycles, defense and 
immunity, metabolism, signal transduction and transcrip-
tion, structural protein, and unclassified. The frequencies of 
these functionally classified genes in each cluster are shown 
in Table IV.

Validation of the gene expression changes induced by NCL1. 
Among the mRNAs that showed altered expression levels in 
both microRNA and ChIP‑seq experiments, changes in the 
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Table II. List of numbers of genes up‑ or down‑regulated in the 
chromatin immunoprecipitation‑seq analysis.

Cell line Upregulated peaks, n Downregulated peaks, n

T.Tn 468 532
TE2 814 612
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expression levels of DUSP5, BHLHE40 and MXRA5 were 
confirmed by a RT‑qPCR (Fig. 2). As expected, the expres-
sion of DUSP5 and BHLHE40 increased and the expression of 
MXRA5 decreased.

Discussion

In this study, we tried to clarify the changes in the gene 
expression due to histone demethylase LSD1 inhibitor using 
a microarray and ChIP‑Seq analyses. Some LSD1 inhibitors 
have shown potent anti‑cancer effects, and their pharmacolog-
ical mechanisms have been elucidated (38,39). ORY‑1001 is an 
LSD1 inhibitor that was shown to selectively inhibit KDM1A 
in clinical trials and is currently being assessed for its utility in 
treating patients with leukemia and solid tumors (40). Although 
clinical trials of LSD1 inhibitors are being conducted around 
the world, very few describe the mechanisms in detail (41,42).

We have already elucidated the anti‑tumor effect of LSD1 
inhibitors on ESCC, and this effect was shown to be caused 
by changes in the gene expression induced by the agent, with 
PHLDB2 reported to demonstrate a particularly enormous 
change in expression (19). In the present study, in addition 
to changes in the gene expression, genome‑wide CHIP‑Seq 
analyses were performed, and the histone methylation that 
occurred was evaluated.

DUSP5 is one of the nuclear localization members of 
the MKP/DUSP family and it is induced in response to 
the activation of ERK, specifically dephosphorylated, and 
has the function of anchoring the ERK in the nucleus (43). 
Furthermore, DUSP5 has been reported to increase RAF, 
MEK and ERK activities in the cytoplasm, in addition to its 
role in ERK nuclear inactivation. This activity has been shown 
to be caused by alleviation of upstream kinase inhibition and 
depends on its ability to sequester DUSP5 turnover rate and 
inactive ERK in the nucleus (44). Also, the expression of 
BRAFV 600 E oncoprotein, which has mutations in BRAF 
that are not sensitive to feedback inhibition, changes the func-
tion of DUSP 5 to become an inhibitor of the entire cell of 
ERK, and that the cell avoids hyperactivation and aging of 
ERK. These analysis results explain that DUSP5 functions as 
a tumor suppressor or a tumor promoter (45).

BHLHE 40 is an up‑regulated gene and is a basic 
helix-loop-helix type transcription factor that has been shown 
to be involved in epithelial‑mesenchymal transition (EMT). 
According to Asanoma et al (46), BHLHE 40 inhibited tumor 
cell invasion by suppressing the transcription of the EMT 
factors SNAI 1, SNAI 2 and TWIST 1. In addition, they showed 
an association between the transcription factor SP1 and the 
basal transcriptional activity of TWIST1 and BHLHE40 and 
competes with SP1 to regulate DNA transcription and control 
gene transcription. Therefore, BHLHE 40 is thought to func-
tion as a tumor suppressor.

It is thought that p53 reactivation and mass apoptosis 
induction (PRIMA‑1), a low‑molecular compound, restores 
the function of mutant TP53 to the function of wild-type TP53 
and induces p53‑mediated apoptosis (47). PRIMA‑1 and its 
methylated form PRIMA‑1 Met (APR‑246) are thought to have 
antitumor effects and its effects are evident in several types of 
cancers such as osteosarcoma, multiple myeloma, lung cancer, 
breast cancer and colon cancer (48‑52). Furthermore, several 
clinical trials using APR‑246 have been performed, indicating 
its tolerability and clinical effects in hematologic malignancies 
and prostate cancer (53). Also in ESCC, Furukawa et al (47) 
reported that PRIMA‑1 may restore the function of mutant 
TP 53 in ESCC with a TP 50 missense mutation, due to the 
enhanced expression of Noxa. Tissue inhibitor of metallopro-
teinase‑3 (TIMP 3) which is one of the four members of the 
protein family is initially classified according to their func-
tion of inhibiting matrix metalloproteinases (MMP) (54‑56). 
TIMP3 is thought to induce apoptosis in malignant cells, 
such as melanoma (57) human colon carcinoma (58), cervical 
carcinoma cells and breast cancer cells (59). The death domain 
of TIMP3, a region that inhibits the function of MMP, is local-
ized at its N‑terminus (60). TIMP3 has been reported in colon 
cancer cells and melanoma cells to increase susceptibility to 
apoptosis via stabilization of the TNF‑α receptor on the cell 
surface (58,61). In ESCC, expression of TIMP‑3 protein is 
correlated with depth of tumor infiltration, number of lymph 
node metastasis and stage of disease as a result of immuno-
histochemical analysis using clinical specimens (54). TIMP‑3 
protein was localizes in a shallow region of the tumor, and 
even in the same tumor, its expression was decreased in the 

Figure 1. Extraction peaks with a log2 fold change in each cell line. For both cell lines, peaks outside the ± 2 SD range were extracted. SD, standard deviation.
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deep part. Furthermore, the prognosis of cancer patients who 
lost TIMP‑3 expression was significantly worse than that of 
TIMP‑3‑positive cancer patients.

PHLDA1 is a cell death mediator that induces cells into 
apoptosis and exerts antiproliferative activity (62‑65). The 
overexpression of PHLDA1 inhibits cell proliferation and 
induces cell death in various malignant tumors, including 
breast cancer, melanoma and cervical carcinoma cells (66‑68). 
Low expression of PHLDA1 mRNA and protein is strongly 
related to breast cancer and melanoma progression (63,64). 
Conversely, it has been found that in oral squamous cell 
carcinoma, high expression of PHLDA1 is associated with 
more advanced stage. Therefore, the function of PHLDA1 is 
still controversial, but from these results, it is possible that 
PHLDA1 functions as a tumor suppressor in ESCC.

The genes shown to be down-regulated on either the 
microarray analysis or ChIP-seq analysis in our study may 
have a potential oncogenic function in ESCC.

Rho protein belongs to the Ras superfamily and is a 
small molecule that functions as a binary switch in a wide 
range of signaling pathways (69,70). Rho proteins are a 
family of 20 intracellular signaling molecules, including 
RhoA, RhoB, RhoC, RhoG, RhoE, Rac1, Rac2, Cdc42Hs and 
TC10 (71). RhoB has the function of molecular switch, and 
it circulates between inactive GDP‑bonded type and active 
GTP‑bound type (72). RhoB was reported as a molecule 
that induces Ras‑induced fibroblast transformation. New 
evidence suggests a potential role of RhoB in supporting 
the tumorigenic function. As an example, it is reported that 
RhoB protein expression is higher in T-acute lymphoblastic 

Table III. List of gene symbols commonly up‑ or downregulated in both the microarray and ChIP‑seq assay.

 Microarray 
 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ChIP‑seq Upregulated Downregulated

Upregulated DUSP5, BHLHE40, TMC5 DIO2, RBMS3, LHFP PLK2, CP,
 GNE, PMAIP1, TIMP3 C6orf223,  TOM1L2 MXRA5, DKK1, EPHA4
 PHLDA1,ERRFI1 MID1IP1, ULBP1,  EGLN3, CCDC80, MID1 SLC16A7, 
 FGF19 GCNT3, HMOX1, TRIB3  RAPGEF4, TOX VCL, MAP7D2, 
 VEGFA, CEACAM6 RASAL2 HAS2, TNS3, FLNA NEDD4L, 
  KIAA1217, PSAPL1 SEMA3A, GPR126, 
  EGFR
Downregulated GDF15, CLGN  RHOB, KLHL13, ARID5B DIO2, 
  MXRA5, THBS1 ALDH1A1, DKK1, 
  C1orf116 SOX2, CACNG4, LHFP 
  FGFR2, EPHA4, EFEMP1, PALMD

ChIP‑seq, chromatin immunoprecipitation‑seq.

Table IV. Categorization of genes regulated by the LSD1 inhibitor based on their functions, referring to GENE ONTOLOGY™, 
and classified into 7 groups.

 Microarray and ChIP‑seq analysis
 ------------------------------------------------------------------------------------------------------------------------------------------------------------
Function Upregulated Downregulated

Apoptosis PMAIP1,TIMP3, PHLDA1, FGF19,  RHOB, FGFR2
 TRIB3, CEACAM6
Cell cycles HMOX1, VEGFA KLHL13, THBS1
Defense and immunity GCNT3 -
Metabolism MID1IP1 ALDH1A1
Signal transduction and transcription DUSP5, BHLHE40, GNE, ERRFL1,  ARID5B, DKK1, SOX2, EPH!4, 
 ULBP1 EFEMP1
Structural protein TMC5, DIO2, MXRA5, C1orf116, 
  CACNG4, LHFP, PALMD
Unclassified C6orf223 ‑

ChIP‑seq, chromatin immunoprecipitation‑seq.
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leukemia (T‑All) cells compared to normal T cells, and it is 
shown to be significantly associated with leukemia cells (73). 
In the present study, the inhibition of RhoB increased cell 
apoptosis by ≥300%.

Matrix remodeling‑associated protein 5 (MXRA5), also 
known as adhesion protein with leucine-rich repeats and 
immunoglobulin domains related to perlecan (Adlican), is 
one of matrix remodeling related proteins (74). The MXRA5 
gene encodes a protein with a molecular weight of 312 kDa. 
The MXRA family contains three genes (MXRA5, MXRA7 
and MXRA8), both of which are thought to be involved in cell 
adhesion and matrix remodeling (75). The increased expres-
sion of MXRA5 has been reported in many kinds of tumors, 
such as colorectal cancer, ovarian cancer and esophageal 
cancer (76,77). Furthermore, somatic mutation of MXRA5 
has been reported, and this mutation has been confirmed in 
various malignant tumors such as lung, skin, brain, ovary and 
wall pleura (78).

Among thrombospondin, a family of extracellular matrix 
proteins, thrombospondin‑1 (THBS 1) is the first member iden-
tified and its major roles are platelet aggregation, angiogenesis, 
and tumorigenesis (79). Also in ESCC, THBS 1 can activate 
the TGF‑β signaling pathway, leading to the transcription of 
Cyr 61 and CTGF (78‑80). In addition, its overexpression is 
thought to be significantly associated with TNM progression 
(P=0.029) and lymph node metastasis (P=0.026) in clinico-
pathologic studies. In the analysis of prognosis, it was shown 
that overexpression of THBS protein is a prognostic predictor 
in ESCC patients (P=0.042) (80).

The results in this study suggest that the large number of 
genes affected by demethylation of H3 in ESCC Lys4 may be 
greatly implicated in the development of ESCC cancer. The 
correlation between these gene groups and carcinogenesis and 
progression of ESCC needs to be verified in further studies, but 
the present results will be helpful for clarifying the mechanism.

The authors declare that they have no competing interests.

Figure 2. Among the mRNAs that exhibited altered expression levels in both microRNA and chromatin immunoprecipitation‑seq experiments, changes in the 
expression of DUSP5, BHLHE40 and MXRA5 were confirmed by a reverse transcription‑quantitative PCR. *P<0.05 and **P<0.01, as indicated. DUSP5, dual 
specificity phosphatase 5; BHLHE40, basic helix‑loop‑helix family member E40; MXRA5, matrix remodeling associated 5.
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