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Abstract

Background: The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB

proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four

major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats.

MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction,

disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis

will help reveal the evolution and function of MYB genes in plants.

Results: A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively.

Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as

compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both

in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with

three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and

five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing

pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region

(5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented

cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of

MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis.

Conclusion: A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and

phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication.

Genome-wide comparative analysis of MYB genes and their expression analysis identified several MYBs with

potential role in development and stress response of plants.

Background
Transcription factors are essential regulators of gene

transcription and usually consist of at least two domains

namely a DNA-binding and an activation/repression

domain, that function together to regulate the target

gene expression [1]. The MYB (myeloblastosis) transcrip-

tion factor family is present in all eukaryotes. "Oncogene"

v-MYB was the first MYB gene identified in avian myelo-

blastosis virus [2]. Three v-MYB-related genes namely

c-MYB, A-MYB and B-MYB were subsequently identified

in many vertebrates and implicated in the regulation of

cell proliferation, differentiation, and apoptosis [3]. Hom-

ologous genes were also identified in insects, fungi and

slime molds [4]. A homolog of mammalian c-MYB gene,

Zea mays C1, involved in regulation of anthocyanin bio-

synthesis, was the first MYB gene to be characterized in

plants [5]. Interestingly, plants encode large number of

MYB genes as compared to fungi and animals [6-12].

MYB proteins contain a MYB DNA-binding domain,

which is approximately 52 amino acid residues in length,
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and forms a helix-turn-helix fold with three regularly

spaced tryptophan residues [13]. The three-dimensional

structure of the MYB domain showed that the DNA rec-

ognition site α-helix interacts with the major groove of

DNA [14]. However, amino acid sequences outside the

MYB domain are highly divergent. Based on the number

of adjacent MYB repeats, MYB transcription factors

are classified into four major groups, namely 1R-MYB,

2R-MYB, 3R-MYB and 4R-MYB containing one, two, three

and four MYB repeats, respectively. In animals, R1R2R3-

type MYB domain proteins are predominant, while in

plants, the R2R3-type MYB domain proteins are more

prevalent [4,7,15]. The plant R2R3-MYB genes probably

evolved from an R1R2R3-MYB gene progenitor through

loss of R1 repeat or from an R1-MYB gene through dupli-

cation of R1 repeat [16,17].

In plants, MYB transcription factors play a key role in

plant development, secondary metabolism, hormone sig-

nal transduction, disease resistance and abiotic stress

tolerance [18,19]. Several R2R3-MYB genes are involved

in regulating responses to environmental stresses such

as drought, salt, and cold [9,20]. Transgenic rice over

expressing OsMYB3R-2 exhibited enhanced cold tolerance

as well as increased cell mitotic index [21]. Enhanced

freezing stress tolerance was observed in Arabidopsis

over-expressing OsMYB4 [10,22]. Arabidopsis AtMYB96,

an R2R3-type MYB transcription factor, regulates drought

stress response by integrating ABA and auxin signals [23].

Transgenic Arabidopsis expressing AtMYB15 exhibited

hypersensitivity to exogenous ABA and improved toler-

ance to drought [24], and cold stress [20]. The AtMYB15

negatively regulated the expression of CBF genes and

conferred freezing tolerance in Arabidopsis [20]. Other

functions of MYBs include control of cellular morpho-

genesis, regulation of secondary metabolism, meristem

formation and the cell cycle regulation [15,25-28]. Recent

studies have shown that the MYB genes are post-

transcriptionally regulated by microRNAs; for instance,

AtMYB33, AtMYB35, AtMYB65 and AtMYB101 genes

involved in anther or pollen development are targeted by

miR159 family [29,30].

MYB TF family genes have been identified in a number

of monocot and dicot plants [9], and evolutionary rela-

tionship between rice and Arabidopsis MYB proteins has

been reported [31]. We report here genome-wide classifi-

cation of 155 and 197 MYB TF family genes in rice and

Arabidopsis, respectively. We also analysed abiotic stress

responsive and tissue specific expression pattern of the

selected MYB genes. To map the evolutionary relation-

ship among MYB family members, phylogenetic trees

were constructed for both rice and Arabidopsis MYB

proteins. Several over- represented cis-regulatory motifs

in the promoter region of the MYB genes were also

identified.

Results and discussion
Identification, classification and structural analysis of MYB

family members

Genome-wide analysis led to the identification of 155

and 197 MYB genes in rice and Arabidopsis, respect-

ively, with their mapping on different chromosomes

(Additional file 1: Table S1). We used previously

assigned names to the MYB genes; for instance, AtMYB0

(GL1) name was accepted for the first identified R2R3

MYB gene; subsequently identified R2R3 MYB genes

were named as AtMYB1, AtMYB2, etc. in Arabidopsis

[31-34]. We classified MYB transcription factors in to

four distinct groups namely “MYB-related genes”, “MYB-

R2R3”, “MYB-R1R2R3”, and “Atypical MYB genes” based

on the presence of one, two, three and four MYB repeats,

respectively. Our analysis revealed that the MYB-R2R3

subfamily consisted of the highest number of MYB genes,

with 56.77 and 70.05% of the total MYB genes in rice

and Arabidopsis, respectively (Figure 1a, b). In the R2R3-

MYB proteins, N-terminal consists of MYB domains,

while the regulatory C-terminal region is highly variable.

Presence of a single MYB-like domain (e.g. hTRF1/

hTRF2) in their C terminus is required for telomeric

DNA binding in vitro [35]. Earlier study revealed that

the R2R3-MYB related proteins arose after loss of the

sequences encoding R1 in an ancestral 3R-MYB gene

during plant evolution [36]. In contrast, only few MYB-

R1R2R3 genes were identified in Arabidopsis and rice

with 5 and 4 genes, respectively. The category “MYB-

related genes” usually but not always contain a single

MYB domain [17,31,36]. We found that “MYB-related

genes” represented 40 and 26.39% of the total MYB genes

in rice and Arabidopsis, respectively (Figure 1a, b), and

thus constituted the second largest group of MYB pro-

teins in both rice and Arabidopsis. We also identified

one MYB protein in rice and two MYB proteins in

Arabidopsis that contained more than three MYB repeats

and these belong to “Atypical MYB genes” group. The

AT1G09770 in Arabidopsis and LOC_Os07g04700 in

rice have five MYB domains and are called as CDC5-type

protein, whereas AT3G18100 of Arabidopsis has four

MYB domains and is named as 4R-type MYB (Table 1;

Additional file 1: Table S1). The 4R-MYB proteins be-

long to the smallest class, which contains R1/R2-like

repeats. MYB genes can also be classified into several

subgroups based on gene function, such as Circadian

Clock Associated1 (CCA1) and Late Elongated Hypocotyl

(LHY), Triptychon (TRY) and Caprice (CPC) [15,17,37].

CPC and TRY belong to the R3-MYB group and are

mainly involved in epidermal cell differentiation, together

with ENHANCER OF TRY AND CPC1, 2 and 3 (ETC1,

ETC2 and ETC3), and TRICHOMELESS1 and 2 (TCL1

and TCL2) [38-41]. Here, we observed that CCA1, CPC

and LHY subgroups contain 23, 3 and 1 ‘MYB-related’
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TF, respectively in Arabidopsis. To further understand

the nature of MYB proteins, their physiochemical proper-

ties were also analyzed. The MYB proteins have similar

grand average hydropathy (GRAVY) scores. Kyte and

Doolittle [42] proposed that higher average hydropathy

score of a protein indicates physiochemical property of

an integral membrane protein, while a negative score

indicates soluble nature of the protein. We observed that

all MYB proteins in rice and Arabidopsis, except

AT1G35516 had a negative GRAVY score, suggesting that

MYBs are soluble proteins, a character that is necessary

for transcription factors. Minimum and maximum score

of GRAVY were recorded as −1.287 (LOC_Os02g47744)

and −0.178 (LOC_Os08g37970) in rice, and −1.359

Figure 1 Chromosome-wise distribution of MYB transcription factor genes. a) rice, b) Arabidopsis. We classified MYB transcription factors in

to four distinct groups namely “MYB-related genes”, “MYB-R2R3”, “MYB-R1R2R3”, and “Atypical MYB genes” based on the presence of one, two,

three and four MYB repeats, respectively.
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(AT5G41020) and 0.612 (AT1G35516) in Arabidopsis,

respectively. We also calculated average isoelectric point

(pI) value. The mean pI values for MYB-1R, R2R3 and

R1R2R3 protein families were 7.55, 6.90 and 7.25 in rice,

and 7.55, 6.89 and 6.80 in Arabidopsis, respectively. The

average molecular weight of MYB-1R, R2R3 and R1R2R3

protein families were 31.128, 34.561 and 72.52 kDa in

rice, and 34.186, 35.875 and 86.217 kDa in Arabidopsis,

respectively (Additional file 1: Table S1).

Functional classification of MYB transcription factors

MYB proteins perform wide diversity of functions in

plants. The R2R3-MYB proteins are involved in plant spe-

cific processes, such as control of secondary metabol-

ism or cellular morphogenesis [43-49]. Gene ontology

(GO) analysis suggested that R2R3-MYB genes, namely

AtMYB16, AtMYB35, AtMYB5/AtMYB80, and AtMYB91

may regulate cell, anther, trichome and leaf morpho-

genesis, respectively. Likewise, R2R3-type genes, namely

OsMYB16, OsMYB88, OsMYB117, LOC_Os01g50110

and LOC_Os03g38210 may regulate morphogenesis in

rice. In addition to R2R3-type MYBs, two MYB-related

genes, LOC_Os01g43180 and LOC_Os09g23200 may

also regulate morphogenesis in rice. R2R3-type AtMYB10

and AT2G47210, MYB-related AT3G09600, and R1R2R3-

type AtMYB3R4 genes were identified with GO function,

such as N-terminal protein myristoylation, histone H3

acetylation, and regulation of DNA endoreduplication,

respectively. Previous studies have shown that genes

encoding 3R-MYB proteins have regulatory role in cell

cycle control [28,50]. We also found that AtMYB3R4

may be involved in cell cycle control (GO: 0007049). GO

analysis of MYB proteins illustrated that 98.70% OsMYB

and 98.47% AtMYB were fully involved in transcription

activation, while rest of the MYB proteins were classified

in to other GO functions, such as kinase activity, protein

binding, transcription repressor activity, etc. GO analysis

categorized rice LOC_Os01g62660 as signal transducer

(GO: 0004871) and transcription activator. The R2R3-

type AtMYB4 was classified into transcriptional repressor

group. The AtMYB4 expression is down regulated by

exposure to UV-B light, indicating that derepression of its

target genes is an important mechanism for acclimation to

UV-B in Arabidopsis [51,52]. In our study, AtMYB34; a

R2R3-type MYB protein, has been found with catalytic-

kinase as well as transcription activator molecular func-

tions as reported earlier [53,54]. The AtMYB34 is also

involved in defense response against insects [55]. In con-

sistent with previous report [56], AtMYB23 was found to

have protein binding (i.e. interaction with GL3) as well as

DNA-binding functions.

The subcellular localization of MYB proteins was pre-

dicted using several localization predictor softwares. The

predicted locations of the MYB proteins were also veri-

fied by gene ontology under keyword “GO cellular com-

ponent” and species-specific localization prediction tools,

e.g., AtSubP for Arabidopsis [57] to enhance the accuracy

of prediction. Consensus outcome revealed that 98.71%

OsMYB and all AtMYB proteins were found to be nu-

clear localized and confirmed by the presence of nuclear

localization signal (NLS). The remaining two members of

MYB proteins in rice were predicted to be localized in

mitochondria and plasma membrane. A Complete list

of functional assignment of MYB genes is given in

Additional file 2: Table S2.

Gene structure and intron distribution

To understand the structural components of MYB

genes, their exon and intron organization was analyzed.

We observed that 17 (10.96%) OsMYB and 9 (4.56%)

Table 1 MYB-domain based characterization and comparison of MYB transcription factor family genes in terms of

GRAVY, molecular weight and cellular localization

RICE

MYB groups No of genes (%) GRAVY PI Molecular weight Localization

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

MYB-related genes 62 40 −1.287 −0.201 −1.3875 3.99 12.26 8.125 7613.7 170921.8 89267.75 Nuclear

MYB-R2R3 88 56.77 −0.906 −0.178 −0.995 4.67 10.4 7.535 21605.3 75878.9 48742.1 Nuclear

MYB-R1R2R3 4 2.58 −0.691 −0.593 −0.9875 5.05 8.53 13.605 64100.1 109413.5 86756.8 Nuclear

Atypical MYB genes 1 0.64 −0.748 −0.748 −0.748 9.56 9.56 9.56 92424.6 92424.6 92424.6 Nuclear

ARABIDOPSIS

MYB groups No of genes (%) GRAVY PI Molecular weight Localization

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

MYB-related genes 52 26.39 −1.359 0.612 −0.3735 4.75 6.62 2.375 7570.9 50112 3785.45 Nuclear

MYB-R2R3 138 70.05 −1.102 −0.471 −0.7865 4.16 10.24 7.2 27951.2 33239 13975.6 Nuclear

MYB-R1R2R3 5 2.54 −0.941 −0.774 −0.8575 5.43 9.22 7.325 50032.2 158268.4 79134.2 Nuclear

Atypical MYB genes 2 0.51 −0.941 −0.94 −0.9405 5.67 6.37 3.185 95766.5 96084.3 95925.4 Nuclear

Katiyar et al. BMC Genomics 2012, 13:544 Page 4 of 19

http://www.biomedcentral.com/1471-2164/13/544



AtMYB genes were intronless (Figure 2), which is in

conformity with the previous analysis [58]. To identify

conserved intronless MYB genes, blastall (BLASTP) was

performed between protein sequence of all the predicted

intronless genes of rice and Arabidopsis, and vice versa.

Expected cut-off value of 1e-6 or less was used to

identify the conserved intronless genes. We found that

13 (76.47%) and 7 (77.77%) intronless OsMYB and AtMYB

genes, respectively, were orthologs. Other intronless MYB

genes that fulfilled the matching criteria, expected cut-off

value of 1e-10 or less were referred to as paralogs. We

observed that 4 (23.52%) and 2 (22.22%) intronless

OsMYB and AtMYB genes, respectively, were paralogs

(Additional file 3: Table S3). This analysis showed that

intronless genes of rice and Arabidopsis are highly con-

served, and may be involved in similar regulatory func-

tions in these plants [36,58]. To explore the intron

density in MYB genes with introns, we divided ORF into

three zones, namely N-terminal, central and C-terminal

zones. We observed that mid region had high density of

introns, i.e., 43.99 and 50.63% in rice and Arabidopsis,

respectively. The number of introns per ORF varied,

with maximum of 12 and 15 introns in OsMYB4R1 and

AT2G47210, respectively. Rice LOC_Os01g43180 and

Arabidopsis AT3G10585 genes contain shortest introns

with 37 and 43nt, respectively. Among all MYB genes,

LOC_Os08g25799 of rice and AT1G35515 of Arabidopsis

contained longest intron with an intron length of 5116

and 1621nt, respectively (Additional file 4: Table S4). In

order to gain insight into exon-intron architecture, the

intron positions on MYB domains were investigated. In

support with previous results [16,59], we also noticed

that a large number of rice (26.45%) and Arabidopsis

(38.57%) R2R3-type domain containing proteins have a

conserved splicing pattern with three exons and two

introns. However, some R2R3-type MYB genes lack one

intron either in R2 or R3 repeat in rice (23.22%) and

Arabidopsis (25.88%) (Figure 3). It has been proposed

that the duplication of R2 in an early form of two repeat

MYB proteins gave rise to the R1R2R3 MYB domains

[17]. Hence, we also investigated the exon-intron struc-

ture of R1R2R3-type MYB proteins. We observed that

3R-MYB proteins contained conserved three exons-two

introns pattern in R1 and R2 and one conserved intron

in R3 repeat in Arabidopsis. Similarly, in rice, three out

of five 3R-MYB genes have similar structure (Figure 4;

Additional file 4: Table S4). These results indicate similar

distribution of introns in MYB domain in both rice and

Arabidopsis.

Chromosomal distribution, tandem repeats

and duplication

The position of all 155 OsMYB and 197 AtMYB genes

were mapped on chromosome pseudomolecules avail-

able at MSU (release 5) for rice and TAIR (release 8) for

Arabidopsis (Figures 5 and 6). The distribution and

density of the MYB genes on chromosomes were not

uniform. Some chromosomes and chromosomal regions

have high density of the MYB genes than other regions.

Rice chromosome 1 and Arabidopsis chromosome 5 con-

tained highest density of MYB genes, i.e. 21.93 and

28.93%, respectively. Conversely, chromosome 11 of rice

and chromosome 2 of Arabidopsis contained lowest

density of MYB genes, i.e. 2.58 and 12.69%, respectively.

Distribution of MYB genes on chromosomes revealed

that lower arm of chromosomes are rich in MYB genes,

i.e. 65.16% in rice and 52.79% in Arabidopsis. Distribu-

tion pattern also revealed that chromosome 5 in rice,

and chromosome 2 and 5 in Arabidopsis contained

higher number of MYB genes with introns, i.e. 29.41

and 33.33%, respectively. Intronless MYB genes are

absent in chromosome 4, 9, 10, 11 and 12 in rice, and

chromosome 1 in Arabidopsis (Figure 2). Distribution of

MYB genes on chromosomal loci revealed that 11 (7.09%)

Figure 2 Chromosome-wise distribution of intronless MYB genes in rice and Arabidopsis.
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Figure 4 Conserved intron position within the MYB domain of R1R2R3-type MYB genes in rice and Arabidopsis. Vertical bar and arrow

indicate conserved introns position. MSU Gene IDs in red letters represent genes with non-conserved intron position.

Figure 3 Intron distribution within the MYB domains of MYB genes in rice and Arabidopsis. The graph shows dominantly two intron

positions within the domain of MYB-related (a, c) and R2R3-MYB genes (b, d) in rice and Arabidopsis, respectively.
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in rice and 20 (10.15%) genes in Arabidopsis were

found in tandem repeats suggesting local duplication

(Table 2). Chromosome 6 in rice and chromosome 1

in Arabidopsis contained higher number of tandem

repeats, i.e. 7 genes and showed over-representation of

MYB genes. Three direct tandem repeats were found on

chromosome 6 (LOC_Os06g07640; LOC_Os06g07650;

LOC_Os06g07660) in rice, and chromosome 1 (AT1G66370,

AT1G66380; AT1G66390) as well as chromosome 5

(AT5G40330; AT5G40350; AT5G40360) in Arabidopsis.

Four direct tandem repeats were also observed on

chromosome 3 (AT3G10580, AT3G10585, AT3G10590

and AT3G10595) in Arabidopsis. Manual inspection un-

raveled 44 (28.38 %) and 69 (35.02%) homologous pairs

of MYB genes in rice and Arabidopsis, respectively

evolved due to segmental duplication. We also observed

that two homologous pairs in Arabidopsis contained one

MYB gene and other than that was not classified as MYB

gene in TAIR (release 10) databases (Table 3). About

44 (28.39%) OsMYB and 69 (35.02%) AtMYB genes

Figure 5 Distribution of OsMYB genes in rice genome. Arrow and star signs represent to tandem repeats and intronless genes, respectively.
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showed homology with multiple genes including MYB

genes from various locations on different chromosomes.

It is widely accepted that redundant duplicated genes will

be lost from the genome due to random mutation and loss

of function, except when neo-or sub-functionalization

occur [60,61]. Rabinowicz et al. (1999) suggested that gene

duplications in R2R3-type MYB family occurred during

earlier period of evolution in land plants [62]. Recently, a

range of duplicated pair of MYB genes in R2R3-type pro-

tein family has been identified in maize [63]. Among the

tandem repeat pair (AT2G26950 and AT2G26960) in

Arabidopsis, AtMYB104 (AT2G26950) is down-regulated

by ABA, anoxia and cold stress, but up-regulated under

drought, high temperature and salt, while AtMYB81

(AT2G26960) expression pattern was opposite to that of

AtMYB104, i.e., AtMYB81 is up-regulated in response to

Figure 6 Distribution of AtMYB genes in Arabidopsis genome. Arrow and star signs represent tandem repeats and intronless genes,

respectively.
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ABA, anoxia and cold stress, but down regulated under

drought, high temperature and salt stresses. Similar di-

versification was also observed in the duplicate pair

(LOC_Os10g33810 and LOC_Os02g41510) in rice.

OsMYB15 (LOC_Os10g33810) expressed in leaf, while

LOC_Os02g41510 expressed in shoot and panicle tissue.

These spatial and temporal differences among different

MYB genes evolved by duplication indicate their func-

tional diversification.

Cis-motifs in the MYB gene promoters

Discovery of regulatory cis-elements in the promoter

regions is essential to understand the spatial and tem-

poral expression pattern of MYB genes. Co-expressed

genes may be regulated by a common set of transcrip-

tion factors, and can be detected by the occurrence of

specific cis-regulatory motifs in the promoter region.

Hence, we analyzed the promoter regions of the drought

up- and down-regulated MYB genes identified from our

previous microarray data experiments [64]. Among the

top five cis-motifs identified by this analysis, only CCA1

(TTWKTTWWTTTT) was the previously known cis-

motif. Although, CCA1 cis-motif was reported as common

feature of rice genome [65], we found CCA1 cis-motif

only in genes that are down-regulated by drought stress

(Figure 7). The CCA1 motif was found in 94.74% of the

drought down-regulated genes in rice. Furthermore, we

investigated the group of R2R3-type MYB genes for the

discovery of gene-specific new cis-regulatory element in

both rice and Arabidopsis. Likewise, we discovered novel

cis-motifs with no description in PLACE database, except

for CCA1 motif in rice (Figure 7). The CCA1 motif was

found in 70.45% of the R2R3-type MYB genes in rice.

The CCA1, a MYB-related TF, binds to CCA1 motif and

regulate circadian clock controlled expression of genes in

Arabidopsis [66]. To validate our prediction, we examined

the diurnal or circadian clock controlled MYB expression

using “Diurnal Version 2.0” [67]. About 47.74 and 90.86%

MYB genes were found to be diurnal/circadian-regulated

in rice and Arabidopsis, respectively (Additional file 5:

Table S5). Noticeably, we did not find any common motif

between rice and Arabidopsis MYB promoter regions,

indicating divergence in regulatory region of MYB genes

between monocot and dicot species.

Expression of MYB genes under abiotic stresses

To identify MYB genes with a potential role in abiotic

stress response of plants, we analyzed the expression

Table 2 Comparison of tandem repeat MYB genes in rice and Arabidopsis based on cellular localization

Tandem repeat in rice Blast 2 sequences alignment

TR_NO TR_OsMYB_G1 TR_OsMYB_G2 OsMYB_G1 OsMYB_G2 Cellular
localization
G1

Cellular
localization
G2

Bit
score

%
identity

E-value

OsTR1 LOC_Os06g07640 LOC_Os06g07650 OsMYB OsMYB Nuclear Nuclear 75.5 55% 2.00E-18

LOC_Os06g07650 LOC_Os06g07660 OsMYB OsMYB Nuclear Nuclear 488 84% 2.00E-142

OsTR2 LOC_Os06g14700 LOC_Os06g14710 OsMYB OsMYB Nuclear Nuclear 146 64% 2.00E-40

OsTR3 LOC_Os08g05510 LOC_Os08g05520 OsMYB OsMYB103 Nuclear Nuclear 19.2 25% 1.60E-01

OsTR4 LOC_Os09g12750 LOC_Os09g12770 OsMYB OsMYB Nuclear Nuclear 55.8 40% 6.00E-13

OsTR5 LOC_Os12g07610 LOC_Os12g07640 OsMYB OsMYB Nuclear Nuclear 105 45% 2.00E-27

Tandem repeat in Arabidopsis Blast 2 sequences alignment

TR_NO TR_AtMYB_G1 TR_AtMYB_G2 AtMYB_G1 AtMYB_G2 Cellular
localization
G 1

Cellular
localization
G2

Bit
score

%
identity

E-value

AtTR1 AT1G35515 AT1G35516 AtMYB8 AtMYB Nuclear Nuclear No significant similarity found

AtTR2 AT1G66370 AT1G66380 AtMYB113 AtMYB114 Nuclear Nuclear 212 80% 3.00E-60

AT1G66380 AT1G66390 AtMYB114 AtMYB90 Nuclear Nuclear 220 87% 1.00E-62

AtTR3 AT1G69560 AT1G69580 AtMYB105 AtMYB Nuclear Nuclear 14.2 31% 5.3

AtTR4 AT2G26950 AT2G26960 AtMYB104 AtMYB81 Nuclear Nuclear 358 50% 2.00E-103

AtTR5 AT3G10580 AT3G10585 AtMYB AtMYB Nuclear Nuclear 172 64% 4.00E-48

AT3G10590 AT3G10595 AtMYB AtMYB Nuclear Nuclear 56.6 27% 3.00E-13

AtTR6 AT3G12720 AT3G12730 AtMYB67 AtMYB Nuclear Nuclear 16.9 31% 4.40E-01

AtTR7 AT4G09450 AT4G09460 AtMYB AtMYB6 Cytoplasmic Nuclear 21.2 25% 1.40E-02

AtTR8 AT5G40330 AT5G40350 AtMYB23 AtMYB24 Nuclear Nuclear 142 55% 5.00E-39

AT5G40350 AT5G40360 AtMYB24 AtMYB115 Nuclear Nuclear 89.4 42% 8.00E-23

MYB coding sequence were aligned using BLAST 2 SEQUENCES to quantitate the sequence differences between the paired genes.
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Table 3 Comparison of homologous pair of MYB genes of rice and Arabidopsis based on cellular localization

Duplications in rice Blast 2 sequences alignment

HP_NO OsMYB_HP_G1 OsMYB_HP_G2 OsMYB_G1 OsMYB_G2 Cellular
localization
G 1

Cellular
localization
G2

Bit
score

%
identity

E-value

OsHP1 LOC_Os01g06320 LOC_Os05g07010 OsMYB OsMYB Nuclear Nuclear 160 81% 1.00E-38

OsHP2 LOC_Os01g18240 LOC_Os05g04820 OsMYB OsMYB Nuclear Nuclear 1230 79% 0.00E+00

OsHP3 LOC_Os01g44370 LOC_Os05g50350 OsMYB OsMYB Nuclear Nuclear 234 82% 8.00E-59

OsHP4 LOC_Os01g47370 LOC_Os05g49240 OsMYB OsMYB Nuclear Nuclear 188 77% 3.00E-47

OsHP5 LOC_Os01g49160 LOC_Os05g48010 OsMYB OsMYB Nuclear Nuclear 234 94% 2.00E-58

OsHP6 LOC_Os01g50720 LOC_Os05g46610 OsMYB OsMYB Nuclear Nuclear 696 77% 0.00E+00

OsHP7 LOC_Os01g59660 LOC_Os05g41166 GAMYB OsMYB Nuclear Nuclear 298 78% 1.00E-75

OsHP8 LOC_Os01g62410 LOC_Os05g38460 OsMYB3R-2 OsMYB Nuclear Nuclear 476 74% 8.00E-124

OsHP9 LOC_Os01g63460 LOC_Os05g37730 OsMYB OsMYB Nuclear Nuclear 22 100% 6.80E-01

OsHP10 LOC_Os01g65370 LOC_Os05g35500 OsMYB3 OsMYB Nuclear Nuclear 636 88% 6.00E-168

OsHP11 LOC_Os02g09480 LOC_Os05g37730 OsMYB OsMYB Nuclear Nuclear 32 87% 7.00E-04

OsHP12 LOC_Os02g14490 LOC_Os06g35140 OsMYB OsMYB Nuclear Nuclear 548 73% 2.00E-143

OsHP13 LOC_Os02g40530 LOC_Os04g42950 OsMYB OsMYB Nuclear Nuclear 284 94% 8.00E-72

OsHP14 LOC_Os02g41510 LOC_Os04g43680 OsMYB OsMYB4 Nuclear Nuclear 460 86% 3.00E-120

OsHP15 LOC_Os02g42870 LOC_Os04g45060 OsMYB OsMYB Nuclear Nuclear 744 77% 0.00E+00

OsHP16 LOC_Os02g45080 LOC_Os04g47890 OsMYB OsMYB Nuclear Nuclear 312 73% 6.00E-80

OsHP17 LOC_Os02g46780 LOC_Os04g50770 OsMYB OsMYB Nuclear Nuclear 620 70% 2.00E-163

OsHP18 LOC_Os02g51799 LOC_Os06g11780 OsMYB OsMYB93 Nuclear Nuclear 442 80% 5.00E-115

OsHP19 LOC_Os02g54520 LOC_Os07g48870 OsMYB OsMYB2 Nuclear Nuclear 54 78% 1.00E-09

OsHP20 LOC_Os03g03760 LOC_Os10g39550 OsMYB OsMYB Nuclear Nuclear 136 83% 3.00E-31

OsHP21 LOC_Os03g20090 LOC_Os07g48870 OsMYB112 OsMYB2 Nuclear Nuclear 554 84% 2.00E-145

OsHP22 LOC_Os03g25550 LOC_Os07g44090 OsMYB OsMYB Nuclear Nuclear 374 88% 1.00E-96

OsHP23 LOC_Os03g26130 LOC_Os07g43580 OsMYB OsMYB30 Nuclear Nuclear 384 82% 2.00E-99

OsHP24 LOC_Os05g04820 LOC_Os07g44090 OsMYB OsMYB Nuclear Nuclear 422 83% 2.00E-109

OsHP25 LOC_Os05g10690 LOC_Os01g09640 OsMYB OsMYB Nuclear Nuclear 232 83% 9.00E-58

OsHP26 LOC_Os05g49240 LOC_Os05g50340 OsMYB OsMYB Nuclear Nuclear 104 72% 4.00E-24

OsHP27 LOC_Os06g43090 LOC_Os02g09480 OsMYB OsMYB Nuclear Nuclear 616 71% 2.00E-162

OsHP28 LOC_Os06g45410 LOC_Os02g07770 OsMYB OsMYB Nuclear Nuclear 180 90% 1.00E-43

OsHP29 LOC_Os06g45890 LOC_Os02g07170 OsMYB OsMYB Nuclear Nuclear 98 81% 1.00E-21

OsHP30 LOC_Os07g02800 LOC_Os03g55590 OsMYB OsMYB Nuclear Nuclear 162 91% 1.00E-38

OsHP31 LOC_Os08g25799 LOC_Os09g12750 OsMYB OsMYB Nuclear Nuclear 682 80% 2.00E-180

OsHP32 LOC_Os08g25820 LOC_Os09g12770 OsMYB OsMYB Nuclear Nuclear 616 73% 2.00E-162

OsHP33 LOC_Os08g33660 LOC_Os02g36890 OsMYB16 OsMYB Nuclear Nuclear 134 69% 4.00E-31

OsHP34 LOC_Os08g33660 LOC_Os04g38740 OsMYB16 OsMYB Nuclear Nuclear 136 80% 1.00E-31

OsHP35 LOC_Os08g33940 LOC_Os09g24800 OsMYB OsMYB Nuclear Nuclear 838 76% 0.00E+00

OsHP36 LOC_Os08g43450 LOC_Os09g36250 OsMYB OsMYB Nuclear Nuclear 76 71% 2.00E-15

OsHP37 LOC_Os08g43550 LOC_Os09g36730 OsMYB7 OsMYB Nuclear Nuclear 502 84% 1.00E-131

OsHP38 LOC_Os09g23200 LOC_Os08g33050 OsMYB OsMYB Nuclear Nuclear 222 66% 2.00E-54

OsHP39 LOC_Os10g33810 LOC_Os02g41510 OsMYB15 OsMYB Nuclear Nuclear 374 81% 8.00E-97

OsHP40 LOC_Os10g33810 LOC_Os04g43680 OsMYB15 OsMYB4 Nuclear Nuclear 384 82% 2.00E-99

OsHP41 LOC_Os10g39550 LOC_Os03g03760 OsMYB OsMYB Nuclear Nuclear 384 81% 3.00E-99

OsHP42 LOC_Os11g03440 LOC_Os12g03150 OsMYB OsMYB Nuclear Nuclear 1702 96% 0.00E+00

OsHP43 LOC_Os11g47460 LOC_Os12g37970 OsMYB OsMYB Nuclear Nuclear 634 83% 2.00E-167

OsHP44 LOC_Os12g37690 LOC_Os11g45740 OsMYB78 OsMYB Nuclear Nuclear 226 88% 5.00E-56
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Table 3 Comparison of homologous pair of MYB genes of rice and Arabidopsis based on cellular localization

(Continued)

Duplications in Arabidopsis Blast 2 sequences alignment

HP_NO AtMYB_HP_G1 AtMYB_HP_G2 AtMYB_G1 ATMYB_G2 Cellular
localization
G 1

Cellular
localization
G2

Bit
score

%
identity

E-value

AtHP1 AT2G31180 AT1G06180 AtMYB14 AtMYB13 Nuclear Nuclear 350 84% 2.00E-100

AtHP2 AT1G57560 AT1G09540 AtMYB50 AtMYB61 Nuclear Nuclear 392 88% 7.00E-113

AtHP3 AT1G58220 AT1G09710 AtMYB1l AtMYB Nuclear Nuclear 827 75% 0

AtHP4 AT1G26580 AT1G13880 AtMYB No MYB Nuclear Nuclear 45.4 76% 4.00E-08

AtHP5 AT2G02820 AT1G14350 AtMYB88 AtMYB124 Nuclear Nuclear 728 80% 0

AtHP6 AT3G12820 AT1G16490 AtMYB10 AtMYB58 Nuclear Nuclear 293 79% 3.00E-83

AtHP7 AT1G17950 AT1G73410 AtMYB52 AtMYB54 Nuclear Nuclear 381 88% 7.00E-110

AtHP8 AT1G79180 AT1G16490 AtMYB63 AtMYB58 Nuclear Nuclear 346 84% 4.00E-99

AtHP9 AT5G61420 AT1G18570 AtMYB28 AtMYB51 Nuclear Nuclear 99 86% 1.00E-24

AtHP10 AT1G74080 AT1G18570 AtMYB122 AtMYB51 Nuclear Nuclear 305 81% 9.00E-87

AtHP11 AT5G07700 AT1G18570 AtMYB76 AtMYB51 Nuclear Nuclear 185 71% 2.00E-50

AtHP12 AT5G60890 AT1G18570 AtMYB34 AtMYB51 Nuclear Nuclear 206 77% 8.00E-57

AtHP13 AT1G74430 AT1G18710 AtMYB95 AtMYB47 Nuclear Nuclear 351 82% 7.00E-101

AtHP14 AT1G74840 AT1G19000 AtMYB AtMYB Nuclear Nuclear 233 85% 3.00E-65

AtHP15 AT1G35516 AT1G22640 AtMYB AtMYB3 Nuclear Nuclear No significant
similarity found

AtHP16 AT4G09460 AT1G22640 AtMYB6 AtMYB3 Nuclear Nuclear 394 84% 1.00E-113

AtHP17 AT1G68320 AT1G25340 AtMYB62 AtMYB116 Nuclear Nuclear 366 86% 3.00E-105

AtHP18 AT3G27810 AT1G25340 AtMYB21 AtMYB116 Nuclear Nuclear 149 70% 7.00E-40

AtHP19 AT1G68670 AT1G25550 AtMYB AtMYB Nuclear Nuclear 176 84% 8.00E-48

AtHP20 AT3G29020 AT1G26780 AtMYB110 AtMYB117 Nuclear Nuclear 232 77% 8.00E-65

AtHP21 AT1G26780 AT1G69560 AtMYB117 AtMYB105 Nuclear Nuclear 416 88% 3.00E-120

AtHP22 AT5G39700 AT1G69560 AtMYB89 AtMYB105 Nuclear Nuclear No significant
similarity found

AtHP23 AT5G07690 AT1G74080 AtMYB29 AtMYB122 Nuclear Nuclear 161 76% 2.00E-43

AtHP24 AT1G19510 AT1G75250 AtMYB AtMYB Nuclear Nuclear 154 80% 4.00E-42

AtHP25 AT4G36570 AT1G75250 AtMYB AtMYB Nuclear Nuclear No significant
similarity found

AtHP26 AT4G34990 AT2G16720 AtMYB32 AtMYB7 Nuclear Nuclear 411 85% 1.00E-118

AtHP27 AT4G37260 AT2G23290 AtMYB73 AtMYB70 Nuclear Nuclear 364 84% 1.00E-104

AtHP28 AT5G67300 AT2G23290 AtMYB44 AtMYB70 Nuclear Nuclear 171 77% 3.00E-46

AtHP29 AT5G11050 AT2G25230 AtMYB64 AtMYB100 Nuclear Nuclear 63.9 78% 1.00E-13

AtHP30 AT5G01200 AT2G38090 AtMYB AtMYB Nuclear Nuclear 195 82% 1.00E-53

AtHP31 AT3G55730 AT2G39880 AtMYB109 AtMYB25 Nuclear Nuclear 281 81% 2.00E-79

AtHP32 AT3G10760 AT2G40970 AtMYB AtMYB Nuclear Nuclear 235 69% 8.00E-66

AtHP33 AT5G05090 AT2G40970 AtMYB AtMYB Nuclear Nuclear 156 81% 5.00E-42

AtHP34 AT3G62610 AT2G47460 AtMYB11 AtMYB12 Nuclear Nuclear 388 86% 9.00E-112

AtHP35 AT5G15310 AT3G01140 AtMYB16 AtMYB106 Nuclear Nuclear 593 83% 2.00E-173

AtHP36 AT5G40350 AT3G01530 AtMYB24 AtMYB57 Nuclear Nuclear 254 81% 1.00E-71

AtHP37 AT5G16600 AT3G02940 AtMYB43 AtMYB107 Nuclear Nuclear 110 73% 7.00E-28

AtHP38 AT5G16770 AT3G02940 AtMYB9 AtMYB107 Nuclear Nuclear 586 86% 3.00E-171

AtHP39 AT3G24120 AT3G04030 AtMYB3l AtMYB Nuclear Nuclear 73% 86 1.00E-20

AtHP40 AT5G18240 AT3G04030 AtMYB AtMYB Nuclear Nuclear 887 80% 0

AtHP41 AT5G49620 AT3G06490 AtMYB78 AtMYB108 Nuclear Nuclear 396 83% 4.00E-114
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pattern of MYB genes in response to abiotic stresses.

Expression of MYBs genes was examined from the avail-

ability of full-length cDNA (FL-cDNA) and Expressed

Sequence Tag (EST) available at MSU and dbEST data-

bases for rice and Arabidopsis, respectively [68]. It was

found that 109 OsMYB genes in rice and 157 AtMYB

genes in Arabidopsis had one or more representative

ESTs. The LOC_Os10g41200 and AT5G47390 gene in

rice and Arabidopsis had maximum number of ESTs,

that is, 219 and 44, respectively. About 70% of rice MYB

genes and 80% of Arabidopsis MYB genes appeared to

be highly expressed as evident from the availability of

ESTs for these genes (Additional file 6: Table S6). Fur-

ther, we assessed the expression levels of MYB genes

under various abiotic stresses by PlantQTL-GE [69],

GENEVESTIGATOR [70,71] and our previous microarray

data experiment (E-MEXP-2401) with rice cv. Nagina

22 and IR64 under normal and drought conditions

(Additional file 7: Table S7). In our previous microarray

data experiments, we found that 142 (92.26%) MYB

genes were expressed in seedlings of rice (Additional file

8: Figure S1), of which 92 genes were differentially regu-

lated under drought stress. In IR64, 30 genes were up-

regulated (≥ 2.0 fold) and 30 genes were down-regulated

(≤ 2.0 fold), while in Nagina 22, 22 genes were up-

regulated (≥ 2.0 fold) and 19 genes were down-regulated

(≤ 2.0 fold) under drought stress. The exploration of

PlantQTL-GE for rice MYBs showed that 14 (9.03%)

OsMYB genes were up-regulated under cold, drought

and salt stress in rice, of which 10 are up-regulated under

drought condition. These results suggest that large set of

MYB genes may have a role in drought stress response in

rice. Previous studies have shown that over-expression of

MYB genes improved abiotic stress tolerance of rice and

Arabidopsis [24,72]. In addition to these, we have identi-

fied additional MYB genes that are regulated by drought

Table 3 Comparison of homologous pair of MYB genes of rice and Arabidopsis based on cellular localization

(Continued)

AtHP42 AT5G02320 AT3G09370 AtMYB3R5 AtMYB3R3 Nuclear Nuclear 610 85% 4.00E-178

AtHP43 AT5G04760 AT3G10580 AtMYB AtMYB Nuclear Nuclear 105 71% 7.00E-27

AtHP44 AT5G05790 AT3G11280 AtMYB AtMYB Nuclear Nuclear 455 80% 5.00E-132

AtHP45 AT5G06100 AT3G11440 AtMYB33 AtMYB65 Nuclear Nuclear 710 78% 0

AtHP46 AT1G56160 AT3G12820 AtMYB72 AtMYB10 Nuclear Nuclear 270 81% 2.00E-76

AtHP47 AT4G13480 AT3G24310 AtMYB79 AtMYB71 Nuclear Nuclear 436 83% 2.00E-126

AtHP48 AT1G13300 AT3G25790 AtMYB AtMYB Nuclear Nuclear 250 84% 4.00E-70

AtHP49 AT5G40360 AT3G27785 AtMYB115 AtMYB118 Nuclear Nuclear 161 76% 3.00E-43

AtHP50 AT3G01530 At1g68320 AtMYB57 AtMYB62 Nuclear Nuclear 239 81% 4.00E-67

AtHP51 AT5G14750 AT3G27920 AtMYB66 AtMYB0 Nuclear Nuclear 320 80% 1.00E-91

AtHP52 AT5G40330 AT3G27920 AtMYB23 AtMYB0 Nuclear Nuclear 379 85% 2.00E-109

AtHP53 AT5G59780 AT3G46130 AtMYB59 AtMYB48 Nuclear Nuclear 237 86% 1.00E-66

AtHP54 AT5G59570 AT3G46640 AtMYB AtMYB Nuclear Nuclear 313 85% 4.00E-89

AtHP55 AT5G62470 AT3G47600 AtMYB96 AtMYB94 Nuclear Nuclear 527 88% 2.00E-153

AtHP56 AT5G65790 AT3G49690 AtMYB68 AtMYB84 Nuclear Nuclear 494 87% 2.00E-143

AtHP57 AT4G37780 AT3G49690 AtMYB87 AtMYB84 Nuclear Nuclear 246 79% 4.00E-69

AtHP58 AT4G22680 AT3G61250 AtMYB85 AtMYB17 Nuclear Nuclear 147 70% 3.00E-39

AtHP59 AT1G01520 AT4G01280 AtMYB AtMYB Nuclear Nuclear 272 83% 7.00E-77

AtHP60 AT4G21440 AT4G05100 AtMYB102 AtMYB74 Nuclear Nuclear 385 89% 1.00E-110

AtHP61 AT5G52260 AT4G25560 AtMYB19 AtMYB18 Nuclear Nuclear 407 79% 2.00E-117

AtHP62 AT5G55020 AT4G26930 AtMYB120 AtMYB97 Nuclear Nuclear 283 82% 7.00E-80

AtHP63 AT2G20400 AT4G28610 AtMYB No MYB Nuclear Nuclear 419 73% 7.00E-121

AtHP64 AT5G11510 AT4G32730 AtMYB3R4 AtMYB3R1 Nuclear Nuclear 329 78% 3.00E-93

AtHP65 AT3G09600 AT5G02840 AtMYB MYB (LCL1) Nuclear Nuclear 682 80% 0

AtHP66 AT3G10590 AT5G04760 AtMYB AtMYB Nuclear Nuclear 51.8 76% 1.00E-10

AtHP67 AT5G23650 AT5G08520 AtMYB AtMYB Nuclear Nuclear 139 72% 8.00E-37

AtHP68 AT5G65230 AT5G10280 AtMYB53 AtMYB92 Nuclear Nuclear 534 84% 9.00E-156

AtHP69 AT3G50060 AT5G67300 AtMYB77 AtMYB44 Nuclear Nuclear 265 82% 1.00E-74

The coding sequence were aligned using BLAST 2 SEQUENCES to quantitate the sequence differences between the gene pairs.
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Figure 7 Conserved cis-motifs found in upstream promoter region of MYB genes in rice and Arabidopsis. a) Motifs from the promoter

region of drought stress-regulated MYB genes in rice, b) Motifs from the group of R2R3-MYB genes in both rice and Arabidopsis.
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and other stresses, and thus can be used as candidate

genes for functional validation. The GENEVESTIGATOR

analysis showed that 44.67, 41.12 and 56.85% AtMYB

genes were down regulated and 47.21, 50.76 and 35.02%

AtMYB genes were up regulated in cold, drought and salt

stress, respectively (Additional file 9: Figure S2a, b and c,

Additional file 10: Figure S3).

We analyzed expression patterns of 60 OsMYB and

21 AtMYB genes using QRT-PCR. These genes were

selected based on phylogenetic analysis and one gene

from each cluster was selected for expression analysis.

Out of the 60 genes examined by QRT-PCR, 28 OsMYB

genes were up-regulated (≥ 1.5 fold change) under

drought stress in rice cv. Nagina 22 (Figure 8). We also

found that LOC_Os02g47744, LOC_Os12g41920 and

LOC_Os06g19980 were highly up-regulated (≥ 4 fold

change), indicating their potential role in drought stress.

QRT-PCR analysis of 21 MYB genes in Arabidopsis

revealed that 7 AtMYB genes were up-regulated (≥ 1.5

fold changes) and another 7 AtMYB genes were down-

regulated (≤ 1.5 fold change) under drought stress

(Figure 8).

Tissue-specific expression

In rice, a tissue breakdown of EST evidence for MYB

genes was analyzed using the Rice Gene Expression

Anatomy Viewer, MSU database [73,74]. In case of Ara-

bidopsis, tissue-specific expressions of MYB genes were

obtained from GENEVESTIGATOR tool [70,71]. The

expression patterns of MYB genes in different tissues

are listed in Additional file 11: Table S8. The results

showed that large numbers of OsMYB genes (32.90%)

were highly expressed in the panicle, leaf and shoots

(Additional file 12: Figure S4). EST frequency ana-

lysis suggested that OsMYB genes, LOC_Os02g34630,

LOC_Os08g05510, LOC_Os01g74590, LOC_Os02g09480,

LOC_Os09g36730, OsMYB4, LOC_Os10g41200 and

LOC_Os01g13740 are highly expressed in flower, anther,

endosperm, pistil, shoot, panicle, immature seed and

whole plant, respectively. In case of leaves, we observed

that three MYB genes, i.e., OsMYB48, LOC_Os06g40710

and LOC_Os10g41200 showed highest levels of expres-

sion. In Arabidopsis, the following MYB genes expressed

at a very high level: AtMYBCDC5 in callus and seed;

AT1G19000 in seedling and stem; AT1G74840 in root

and root tip; AT1G26580 in flower, AtMYB91 in shoot,

and AtMYB44 in pedicel and leaves. In wheat, TaMYB1

showed high expression in root, sheath and leaf, while

TaMYB2 expression was highest in root and leaf, but at

low in sheath [75]. TaMYB1 and TaMYB2 showed a

very high sequence similarity with AtMYB44 and

OsMYB48, respectively. Our analysis also revealed that

these two MYBs are highly expressed in leaf as in case

of wheat. These analyses will be useful in selecting can-

didate genes for functional analysis of their role in a

specific tissue.

Figure 8 QRT-PCR expression analyses of OsMYB and AtMYB genes under drought stress in rice and Arabidopsis.
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Evolutionary relationship

To understand the evolutionary relationship among MYB

family genes, phylogenetic trees were constructed using

the multiple sequence alignment of MYB proteins [76].

The tree revealed that tandem repeat and homologous

pairs were grouped together into single clade with very

strong bootstrap support (Additional file 13: Figure S5).

These results further support gene duplication in rice

and Arabidopsis during evolution which may allow

functional diversification by adaptive protein structures

[77]. It was also noticed that few “homologues pairs” (e.g.

AT5G16600-AT3G02940 in Arabidopsis; LOC_Os12g07610-

LOC_Os12g07640 in rice) and “tandem repeat pairs” (e.g.

AT3G12720-AT3G12730 in Arabidopsis; LOC_Os06g14700-

LOC_Os06g14710 in rice) were found in distinct clade,

indicating that only few members had common ancestral

origin that existed before the divergence of monocot and

dicot. MYB proteins from rice and Arabidopsis with same

number of MYB domains were grouped into a single

clade. For instance, all the MYBs belonging to R1R2R3

family in both rice and Arabidopsis were clustered into

single clade. Within the R2R3 clade, MYBs from rice and

Arabidopsis were not found in distinct groups. These

results suggest that significant expansion of R2R3-type

MYB genes in plants occurred before the divergence of

monocots and dicots, which in agreement with the previ-

ous studies [4,62]. Finally, we observed that two CDC5-

type and one 4-repeat MYB orthologs were clustered into

single clade and might have been derived from an ancient

paralog of widely distributed R2R3 MYB genes.

Conclusions
Our study provides genome-wide comparative analysis

of MYB TF family gene organization, sequence diversity

and expression pattern in rice and Arabidopsis. Struc-

tural analysis revealed that introns are highly conserved

in the central region of the gene, and R2R3-type MYB

proteins usually have two introns at conserved positions.

Analysis of length and splicing of the intron/exon and

their position in MYB domain suggested that introns

were highly conserved within the same subfamily. Most

of the MYB genes are present as duplicate genes in both

rice and Arabidopsis. Phylogenetic analysis of rice and

Arabidopsis MYB proteins showed that tandem repeat

and homologous pair was grouped together into single

clade. Consensus motif analysis of 1kb upstream region

of MYB gene ORFs led to the identification of conserved

and over-represented cis-motifs in both rice and Arabi-

dopsis. The comparative analysis of MYB genes in rice

and Arabidopsis elucidated chromosomal location, gene

structure and phylogenetic relationships, and expression

analysis led to the identification of abiotic stress respon-

sive and tissue-specific expression pattern of the

selected MYB genes, suggesting functional diversification.

Our comprehensive analyses will help design experi-

ments for functional validation of their precise role in

plant development and stress responses.

Methods
Identification of MYB gene family in rice and Arabidopsis

To identify MYB transcription factor family genes, we

searched and obtained genes annotated as MYB in MSU

(release 5) for rice and TAIR (release 8) for Arabidopsis

by using in-house PERL script along with careful manual

inspection. The primary search disclosed 161 and 199

members annotated as “MYB” or “MYB-related genes”

in MSU and TAIR database, respectively. We observed

that some protein members lack MYB-DNA binding

domain but still annotated as MYB protein family in

MSU and TAIR database. We discarded these proteins

based in the annotation in MSU (release 7) for rice and

TAIR (release 10). Finally, we obtained 155 and 197 MYB

genes in rice and Arabidopsis, respectively. The gene

identifiers were assigned to each OsMYB and AtMYB

genes to avoid confusion when multiple names are used

for same gene. Uncharacterized MYB genes are denoted

here by their locus id.

MYB annotation

To identify number of domains present in MYB protein

we executed domain search by Conserved Domains

Database [78] (http://www.ncbi.nlm.nih.gov/Structure/

cdd/cdd.shtml) and pfam database [79] (http://pfam.

sanger.ac.uk/)with both local and global search strategy

and expectation cut off (E value) 1.0 was set as the

threshold for significance. Only significant domain found

in rice and Arabidopsis MYB protein sequence were

considered as a valid domain. To get more information

about nature of the MYB protein, grand average of hy-

dropathy (GRAVY), PI and the molecular weight were

predicted by ProtParam tool available on Expert Protein

Analysis System (ExPASy) proteomics server (http://

www.expasy.ch/tools/protparam.html). The subcellular

localization of MYB proteins were predicted by Protein

Localization Server (PLOC) (http://www.genome.jp/SIT/

plocdir/), Subcellular Localization Prediction of Eukaryotic

Proteins (SubLoc V 1.0) (http://www.bioinfo.tsinghua.edu.

cn/SubLoc/eu_predict.htm), SVM based server ESLpred

(http://www.imtech.res.in/raghava/eslpred/submit.html),

and ProtComp 9.0 server (http://linux1.softberry.com/

berry.phtml?topic=protcomppl&group=programs&subgroup=

proloc). Further, species-specific localization prediction

system was utilized for Arabidopsis (AtSubP, http://

bioinfo3.noble.org/AtSubP/) [57]. MYB protein function

in term of their Gene Ontology (GO) was predicted by

GO annotation search page available at MSU (http://

rice.plantbiology.msu.edu/downloads_gad.shtml) and TAIR

(http://www.arabidopsis.org/tools/bulk/go/index.jsp) for
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rice and Arabidopsis, respectively. Localization consensus

was predicted based on majority of result. The confi-

dence level was acquired by assigning equal numeric

value (e.g. one) to each general localization predictor and

higher value to gene ontology (e.g. two) and species spe-

cific predictor (e.g. three).

Identification of over-represented motifs

We discovered over represented cis-motif consensus pat-

tern in 1 kb upstream sequence from translational initi-

ation codon of MYB genes in both rice and Arabidopsis

using the Multiple Expectation maximization for Motif

Elicitation analysis tool [80] (MEME version 4.1.0, http://

meme.sdsc.edu/meme/meme-intro.html). This program

was used to search best 5 cis-motif consensus patterns of

8–12 bases width, with E-value < 0.01, only on the for-

ward strand of the input sequences. Motifs graph were

plotted according to their position within the region

using WebLogo tool (http://weblogo.berkeley.edu/logo.

cgi). Discovered motifs were analyzed using PLACE [81]

(http://www.dna.affrc.go.jp/PLACE/). Diurnal and circadian

controlled MYB expression was explored from “Diurnal

Version 2.0” (Mockler lab; http://diurnal.mocklerlab.org/).

Phylogenetic analysis

To generate the phylogenetic trees of MYB transcription

factor family genes, multiple sequence alignment of MYB

protein sequence were performed using COBALT pro-

gram [82] (http://www.ncbi.nlm.nih.gov/tools/cobalt/).

COBALT program automatically utilize information about

bona fide proteins (i.e. MYB domains in this case) to exe-

cute multiple sequence alignment and build phylogenetic

tree. The dendrogram were constructed with the following

parameters; method-fast minimum evolution, max se-

quence difference-0.85, distance- grishin (protein).

MYB localization, tandem repeat and duplication

To map the gene loci on rice and Arabidopsis chro-

mosomes pseudomolecules were used in MapChart

(version 2.2) program [83] for rice and chromosome map

tool [84] for Arabidopsis available on The Arabidopsis

Information Resource (TAIR) database (http://www.

arabidopsis.org/jsp/ChromosomeMap/tool.jsp). Tandem

repeats were identified by manual visualization of rice

and Arabidopsis physical map. Duplication or homolo-

gous pair genes were obtained by the segmental gen-

ome duplication segment (http://rice.plantbiology.msu.

edu/segmental_dup/) and Arabidopsis Syntenic Pairs /

Annotation Viewer (http://synteny.cnr.berkeley.edu/AtCNS/)

in rice (distance = 500kb) and Arabidopsis, respectively.

The tandem repeat and homologous pairs were aligned

with the BLAST 2 SEQUENCE tool available on National

Center on Biotechnology Information (NCBI) (http://

blast.ncbi.nlm.nih.gov/Blast.cgi/).

Gene structure analysis

To know more about intron / exon structure, MYB

coding sequence (CDS) were aligned with their corre-

sponding genomic sequences using spidey tool available

on NCBI (http://www.ncbi.nlm.nih.gov/spidey/). To iden-

tify conserved intronless genes between rice and Arabi-

dopsis, local protein blast (BLASTP) (http://www.molbiol.

ox.ac.uk/analysis_tools/BLAST/BLAST_blastall.shtml) was

performed for protein sequences of all predicted intronless

genes in rice against all predicted intronless gene in Arabi-

dopsis, and vice versa. Hits with 1e-6 or less were treated

as conserved intronless genes and hits with 1e-10 or less

were treated as paralogs. The cutoff of sequence identity

was considered as ≥ 20% over the 70% average query

coverage.

Expression analysis

Expression support for each gene model is explored

through gene expression evidence search page (http://rice.

plantbiology.msu.edu/locus_expression_evidence.shtml)

available at MSU for rice and GENEVESTIGATOR tool

(https://www.genevestigator.com/) for Arabidopsis. MYB

genes for which no ESTs were found, blast (BLASTP and

TBLASTN) (http://blast.ncbi.nlm.nih.gov/Blast.cgi) search

using NCBI databases was performed. Significant similarity

of MYB genes with MYB genes of other plant species was

searched. To measure the MYB expression level in abiotic

stress plant QTLGE database was used (http://www.scbit.

org/qtl2gene/new/) for rice and GENEVESTIGATOR tool

(https://www.genevestigator.com/) for Arabidopsis. To

identify tissue specific expression level of OsMYB

genes in rice, highly expressed gene search (http://Rice.

plantbiology.msu.edu/tissue.expression.shtml) available at

MSU were used. For Arabidopsis, GENEVESTIGATOR

tool (https://www.genevestigator.com/gv/user/gvLogin.jsp)

was used.

Plant materials and growth conditions

The plant materials used were drought tolerant rice

(Oryza sativa L. subsp. Indica) cv. Nagina 22 and Arabi-

dopsis thaliana ecotype Columbia. The seeds were sur-

face sterilized. Rice seeds were placed on absorbent

cotton, which was soaked overnight in water and kept in

medium size plastic trays. Arabidopsis seeds were germi-

nated on MS-agar medium containing 1% Sucrose and

seven days old seedlings were transferred to soilrite for

further growth. The rice and Arabidopsis seedlings were

grown in a greenhouse under the photoperiod of 16/8 h

light/dark cycle at 28°C ± 1 and 23°C ± 1, respectively.

Drought stress treatment

Drought was imposed to 3-weeks old rice seedlings [85]

and 5-week-old Arabidopsis plants by withholding water

till visible leaf rolling was observed. Control plants were

Katiyar et al. BMC Genomics 2012, 13:544 Page 16 of 19

http://www.biomedcentral.com/1471-2164/13/544

http://meme.sdsc.edu/meme/meme-intro.html
http://meme.sdsc.edu/meme/meme-intro.html
http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
http://www.dna.affrc.go.jp/PLACE/
http://diurnal.mocklerlab.org/
http://www.ncbi.nlm.nih.gov/tools/cobalt/
http://www.arabidopsis.org/jsp/ChromosomeMap/tool.jsp
http://www.arabidopsis.org/jsp/ChromosomeMap/tool.jsp
http://rice.plantbiology.msu.edu/segmental_dup/
http://rice.plantbiology.msu.edu/segmental_dup/
http://synteny.cnr.berkeley.edu/AtCNS/
http://blast.ncbi.nlm.nih.gov/Blast.cgi/
http://blast.ncbi.nlm.nih.gov/Blast.cgi/
http://www.ncbi.nlm.nih.gov/spidey/
http://www.molbiol.ox.ac.uk/analysis_tools/BLAST/BLAST_blastall.shtml
http://www.molbiol.ox.ac.uk/analysis_tools/BLAST/BLAST_blastall.shtml
http://rice.plantbiology.msu.edu/locus_expression_evidence.shtml
http://rice.plantbiology.msu.edu/locus_expression_evidence.shtml
https://www.genevestigator.com/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.scbit.org/qtl2gene/new/
http://www.scbit.org/qtl2gene/new/
https://www.genevestigator.com/
http://Rice.plantbiology.msu.edu/tissue.expression.shtml
http://Rice.plantbiology.msu.edu/tissue.expression.shtml
https://www.genevestigator.com/gv/user/gvLogin.jsp


irrigated with sufficient water. Plant water status was

quantified by measuring relative water content of leaf.

Control plants showed 96.89 and 97.49% RWC (relative

water content), while stressed plants showed 64.86 and

65.2% RWC in rice and Arabidopsis, respectively.

Real-Time RT-PCR

Total RNA from rice and Arabidopsis were isolated by

TRIzol Reagent (Ambion) and treated with DNase

(QIAGEN, GmbH). The first strand cDNA of rice and

Arabidopsis was synthesized using Superscript III Kit

(Invitrogen) from 1 μg of total RNA according to manu-

facturer’s protocol. Reverse transcription reaction was car-

ried out at 44°C for 60 min followed by 92°C for 10 min.

Five ng of cDNA was used as template in a 20 μL RT reac-

tion mixture. Sixty three pairs of rice and 51 pairs of

Arabidopsis gene specific primers were used to study ex-

pression of MYB transcription factor. Gene specific pri-

mers were designed using IDT PrimerQuest (http://www.

idtdna.com/scitools/applications/primerquest/default.aspx).

Ubiquitin and actin primers were used as an internal con-

trol in rice and Arabidopsis, respectively. The primer

combinations used here for real-time RT-PCR analysis

specifically amplified only one desired band. The dissoci-

ation curve testing was carried out for each primer pair

showing only one melting temperature. The RT-PCR

reactions were carried out at 95°C for 5 min followed by

40 cycles of 95°C for 15s and 60°C for 30s each by the

method described previously by Dai et al., 2007 [24]. For

qRT-PCR, QuantiFast SYBR Green PCR master mix

(QIAGEN GmbH) was used according to manufacturer’s

instruction. The threshold cycles (CT) of each test

target were averaged for triplicate reactions, and the

values were normalized according to the CT of the

control products (Os-actin or Ubiquitin) in case of rice

and Arabidopsis, respectively. MYB TFs expression data

were normalized by subtracting the mean reference gene

CT value from individual CT values of corresponding tar-

get genes (ΔCT). The fold change value was calculated

using the expression, where ΔΔCT represents difference

between the ΔCT condition of interest and ΔCT control.

The primer sets used to study the MYB TFs expression

profile are given in the Additional file 14: Table S9.

Additional files

Additional file 1: Table S1. Nomenclature and classification of MYB TF

family genes. Genome wide classification of MYB family genes including

their characters such as GRAVY, PI, molecular weight and subcellular

localization in rice and Arabidopsis.

Additional file 2: Table S2. Functional assignment and subcellular

localization of MYB TF family proteins. Molecular functional annotation of

MYB TF family by gene ontology enrichment analysis including their

subcellular localization in rice and Arabidopsis.

Additional file 3: Table S3. Sequence alignment of intronless MYB

genes. Sequence comparison between rice and Arabidopsis intronless

genes to predict conserveness.

Additional file 4: Table S4. Density of Introns. Distribution of introns in

the MYB domain and other region of MYB genes in rice and Arabidopsis.

Additional file 5: Table S5. Diurnal/circadian expression. MYB

expression under diurnal/circadian conditions in rice and Arabidopsis.

Additional file 6: Table S6. Expression of MYB genes. Availability of full-

length complementary DNA (FL-cDNA) / expressed sequence tag (EST)

consequent to MYB genes.

Additional file 7: Table S7. MYB regulation under abiotic stress.

Expression analysis of MYB genes under abiotic stress conditions in rice

and Arabidopsis by using publically available microarray data.

Additional file 8: Figure S1. MYB gene expression under drought stress

in rice. Analysis of MYB gene expression under drought stress in rice. We

obtained MYB expression from our previously published microarray gene

expression experiments [64].

Additional file 9: Figure S2. MYB gene expression under abiotic

stresses in Arabidopsis. MYB gene expression under cold (a), drought (b)

and salt (c) stresses in Arabidopsis. GENEVESTIGATOR database was used

to analyze the MYB gene expression levels.

Additional file 10: Figure S3. MYB expression profiling using heatmap

in Arabidopsis. Expression profile of MYB gene using heatmap for cold,

drought, and salt stress, fetched by GENEVESTIGATOR database.

Additional file 11: Table S8. Tissues specific MYB expression. Tissue-

specific expression profiling of MYB genes in rice and Arabidopsis.

Additional file 12: Figure S4. MYB expression profiles of different

tissues in rice. Tissue specific expression profile of MYB gene in rice

examine by MSU database.

Additional file 13: Figure S5. Phylogenetic analysis of MYB proteins.

Phylogenetic analysis of MYB proteins in both rice and Arabidopsis. The

tree was constructed by using the multiple sequence alignment of

bonafide MYB proteins.

Additional file 14: Table S9. Gene specific primers. List of gene specific

primers used for QRT-PCR expression analysis of MYB genes in rice and

Arabidopsis.
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