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Abstract: The R2R3-MYB is a large gene family involved in various plant functions, including
carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry
(Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome
provides an opportunity for investigating the organization and evolutionary characteristics of
R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were
identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were
grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif
composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during
evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene fam-
ily. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae
species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expres-
sion (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly
expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative
Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are
candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution
and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.

Keywords: wolfberry; R2R3-MYB gene; carotenoids biosynthesis; expression analysis; co-expression

1. Introduction

Wolfberry (Lycium barbarum L., 2n = 2x = 24), of the genus Lycium within the Solanaceae
family, is an important Chinese traditional herbal medicine [1]. The fruits are a rich source
of carotenoids, flavonoids, and polysaccharides, contributing to wolfberry’s immune-
enhancing, antioxidant, and anti-tumor effects [2–4]. The carotenoids are responsible for
L. barbarum fruit colorations [5,6]. Moreover, fruit color is a key factor in wolfberry fruit qual-
ity. Fruit colorations involve complex biochemical changes due to genetic and environmen-
tal factors. Hence, understanding the genetic factors controlling carotenoid accumulation is
valuable to wolfberry breeding to generate novel fruit phenotypes. Carotenoid biosynthetic
genes (CBGs) have been cloned and characterized in various plant species [7–9], including
wolfberry. However, the transcriptional regulatory mechanisms of carotenoids in wolfberry
are unclear.

V-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors (TFs)
are major regulators of plant genes containing a highly conserved MYB DNA binding

Int. J. Mol. Sci. 2022, 23, 2259. https://doi.org/10.3390/ijms23042259 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23042259
https://doi.org/10.3390/ijms23042259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9497-3265
https://orcid.org/0000-0003-2682-5310
https://doi.org/10.3390/ijms23042259
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23042259?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 2259 2 of 19

domain, widely distributed in eukaryotes [10]. The MYB superfamily is grouped into four
subfamilies: 1R-MYB (MYB-related and R3-MYB), R2R3-MYB, 3R-MYB (R1R2R3-MYB), and
4RMYB. R2R3-MYB is the largest subfamily, with some members regulating plant growth
and developmental [11], primary and secondary metabolism [12–17], response to various
biotic and abiotic stresses [18–21], hormone synthesis, and signal transduction [22]. In
recent years, more studies focused on the R2R3-MYB TFs regulating carotenoid metabolism.
For example, the first R2R3-MYB TF, RCP1, regulates carotenoid pigmentation in Mimulus
lewisii flowers [23]. In tomato, SlMYB72 negatively regulates carotenoid biosynthesis
by decreasing the expressions of phytoene synthase (PSY), 15-cis-ζ-carotene isomerase
(ZISO), and lycopene β-cyclase (LCYB) genes [24]. In citrus, CrMYB68 directly represses the
transformation of α-and β-carotene by regulating the expressions of CrBCH2 and CrNCED5
promoters [25]. AdMYB7 is overexpressed in kiwifruit, which regulates the LCY-β promoter,
thus increasing carotenoid and chlorophyll pigment contents [26]. In Medicago truncatula,
an R2R3-MYB TF, MtWP1 was identified in an alfalfa flower color-isolation population, and
MtWP1 regulates carotenoid accumulation by combining MtTT8 and MtWD40-1 [27]. These
studies revealed that R2R3-MYB TFs regulate carotenoid biosynthesis. However, very little
is known about the R2R3-MYB TF regulation of carotenoid metabolism in wolfberry [5].

An increasing number of R2R3-MYB genes were recently identified in various plant
species, including Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), pepper
(Capsicum annuum), potato (Solanum tuberosum), plum (Prunus salicina), Chinese Bayberry
(Morella rubra), tea (Camellia sinensis), Liriodendron, pineapple (Ananas comosus), Chinese pis-
tache (Pistacia chinensis), and ginkgo (Ginkgo biloba) [28–38]. However, there are no reports
about the R2R3-MYB gene family in wolfberry. Moreover, there is less information about
R2R3-MYB than other Solanaceae genes where the R2R3-MYB gene family is identified,
except wolfberry. This study first identified R2R3-MYB genes in wolfberry and performed a
comprehensive analysis of the R2R3-MYB gene family in five Solanaceae species, including
wolfberry, tomato, pepper, potato, and eggplant, to provide insights into the functional
divergence among different species.

To date, genome sequences of five Solanaceae species have been sequenced and
released, including wolfberry (L. barbarum), tomato (S. lycopersicum), pepper (C. annuum),
potato (S. tuberosum), and eggplant (S. melongena) [39–43]. These genomic resources are
informative for comparative analyses of the R2R3-MYB gene family among the Solanaceae
species. Accordingly, this study involved genome-wide identification of R2R3-MYB genes
in the five sequenced Solanaceae species. The evolutionary history of R2R3-MYB genes
involved the comprehensive analysis of phylogeny, gene structure, conserved domains,
and gene duplication events. Moreover, the study investigated the expression patterns of
LbaR2R3-MYB genes by analyzing transcriptome data and quantitative-real time (qRT)-
PCR analysis from fruit development stages. Furthermore, co-expression networks were
constructed. The results indicate that two LbaR2R3-MYB genes probably regulate carotenoid
metabolism. This study elucidates the evolutionary and functional roles of the R2R3-MYB
family genes in wolfberry and other Solanaceae species.

2. Results
2.1. Identification and Sequence Analysis of R2R3-MYB Genes in Five Solanaceae Species

Members of the R2R3-MYB gene family were searched using two strategies: a BLASTP
search using 124 AtR2R3-MYB sequences as queries and an Hidden Markov Model (HMM)
search using the MYB domain file (PF00249). A total of 1326 MYB candidate genes were
retrieved from the five Solanaceae species. The retrieved sequences were aligned to the
SMART, Pfam, and CDD databases to identify R2 and R3 domains. The 716 sequences that
lacked both R2 and R3 domains were removed. Thus, 610 R2R3-MYB genes were identified
(Table 1) in wolfberry (137), tomato (133), pepper (108), potato (109), and eggplant (123)
(Table S1).
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Table 1. Genomic information and identified R2R3-MYB gene numbers in five Solanaceae species.

Common
Name

Scientific
Name

Chromosome
Number (2n)

Genome
Size

Genome Gene
Number

R2R3-MYB
Genes

Wolfberry L. barbarum 24 1.67 Gb 33,581 137
Tomato S. lycopersicum 24 785 Mb 34,075 133
Pepper C. annuum 24 3.3 Gb 35,336 108
Potato S. tuberosum 24 844 Mb 39,031 109

Eggplant S. melongena 24 1.07 Gb 36,568 123

The R2 and R3 amino acid sequences from the five Solanaceae species were used for
multiple sequence alignments. In Figure S1, we observed different amino acid frequencies
for each position of the R2 and R3 domains, confirming the conserved nature of these
domains. All R2R3-MYB genes had three conserved tryptophans in the R2 domain and
two in the R3 domain, where a hydrophobic amino acid replaced the first tryptophan.
This observation is consistent with other studies of the R2R3-MYB gene family in potato,
Japanese plum, and watermelon [31,32,44].

2.2. The Classification, Gene Structure, and Motif Composition of LbaR2R3-MYB Genes

A maximum-likelihood (ML) phylogenetic tree was constructed using full-length
R2R3-MYB protein sequences from wolfberry and Arabidopsis to classify the wolfberry
R2R3-MYB genes. This study employed Arabidopsis R2R3-MYB proteins as a reference to
classify and categorize wolfberry R2R3-MYB members into 31 subgroups (designated C1
to C31) using sequence similarity (Figures 1a and S2). The defined clades in Arabidopsis
were labeled in the evolutionary tree. Previous studies with high bootstraps supported
the largest subgroups (A1 and A3) in this study. Nevertheless, some subgroups (A7 and
A31) were not retrieved from the phylogenetic tree of AtR2R3-MYB proteins. Twenty-five
LbaR3-MYB proteins did not fit into any subgroup.

The exon–intron structure analysis of the 137 LbaR2R3-MYB genes indicated that
introns disrupted most of their coding sequences, except for one gene from subgroup
A25 and three from subgroup A26 (Figure 1b). The number of exons in LbaR2R3-MYB
genes ranged from one to twelve, with an average of 3.0. Among these, 85 LbaR2R3-MYB
genes had three exons, accounting for approximately 62% of the LbaR2R3-MYB gene family,
whereas 14% of the LbaR2R3-MYB genes had more than three exons. Most LbaR2R3-MYB
genes clustered in related groups with similar exon-intron structures, such as A1, A6, A9,
A10, A21, and A22 (Figure 1b).

Subsequently, the MEME program identified 20 conserved motifs among wolfberry
R2R3-MYB proteins (Table S2). Most of the LbaR2R3-MYB DNA-binding domains contained
motifs 1, 2, 3, 4, 5, and 8 (Figure 1c). The R2R3-MYB domain is highly conserved; thus,
R2R3-MYB members within the same subgroup usually have similar motif composition, but
different subgroups vary greatly. Moreover, some subgroup-specific motifs were detected,
probably required for subgroup-specific functions. For instance, motifs 17 and 18 were only
found among subgroup A13, whereas motif 10 was unique to subgroup A31. These results
indicate the divergence of LbaR2R3-MYB TFs.

2.3. Comparative Phylogenetic Analysis of the R2R3-MYB Family in Five Solanaceae Species

A maximum-likelihood phylogenetic tree was constructed using all R2R3-MYB protein
sequences from Arabidopsis and the five Solanaceae species. Figures 2 and S3 show the con-
densed and complete phylogenetic trees. The comparative phylogenetic analysis divided
R2R3-MYB proteins from the six species into 36 subgroups (designed as C1 to C36). The tree
topology showed that only subgroup C3 included R2R3-MYB proteins of all five Solanaceae
species. Meanwhile, subgroup C35 included members from all Solanaceae species except
wolfberry. There were no wolfberry-specific subgroups. Particularly, subgroup C18 was
only present in Arabidopsis and not in Solanaceae species.
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Figure 1. Phylogenetic relationship, conserved protein motifs, and gene structure in LbaR2R3-MYB 
genes. (a) The maximum-likelihood (ML) phylogeny includes 137 R2R3-MYB proteins from wolf-
berry, grouped into 31 subgroups, sequentially designated as C1 to C31. The corresponding MYB 

Figure 1. Phylogenetic relationship, conserved protein motifs, and gene structure in LbaR2R3-MYB
genes. (a) The maximum-likelihood (ML) phylogeny includes 137 R2R3-MYB proteins from wolfberry,
grouped into 31 subgroups, sequentially designated as C1 to C31. The corresponding MYB subgroup
names in Arabidopsis are also marked. (b) Gene structure of wolfberry R2R3-MYB genes. Yellow
boxes indicate exons; black lines indicate introns. (c) The motif composition of wolfberry R2R3-MYB
proteins. Twenty different motifs are displayed in different colored boxes. The length of proteins can
be estimated using the scale at the bottom.
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Figure 2. A phylogenetic tree of R2R3-MYB proteins. A total of 137 proteins from wolfberry (Lba), 
133 from tomato (Sl), 108 from pepper (Ca), 109 from potato (St), 123 from eggplant (Sme), and 124 
from Arabidopsis (At) were used. The full-length amino acid sequences of R2R3-MYB proteins were 

Figure 2. A phylogenetic tree of R2R3-MYB proteins. A total of 137 proteins from wolfberry (Lba),
133 from tomato (Sl), 108 from pepper (Ca), 109 from potato (St), 123 from eggplant (Sme), and 124
from Arabidopsis (At) were used. The full-length amino acid sequences of R2R3-MYB proteins were
aligned using Muscle and the phylogenetic tree was constructed using the maximum-likelihood
method. R2R3-MYB proteins from the six species clustered into 36 subgroups (triangles) desig-
nated as C1 to C36. Four proteins did not fit well into subgroups (lines). The tables on the right
indicate the number of subgroup members in each species. The uncompressed tree is available in
Supplementary Figure S3.

Most clades included members from all six species, but the R2R3-MYB proteins were
not equally represented in the six species within any given clade. Some subgroups (C4,
C5, C6, C13, and C19) contained more abundant R2R3-MYB from Solanaceae species than
from Arabidopsis, while several subgroups (C32 and C33) contained fewer Solanaceae
R2R3-MYB proteins. Moreover, many clades from wolfberry had more R2R-MYB proteins
than the other four Solanaceae species.

2.4. Analysis of Gene Duplication Events and Chromosomal Distributions of the R2R3-MYB
Gene Family

Multigene families originate from gene duplication and are the proven prominent
feature of plant genome evolution [45]. Five modes of gene duplication, including whole-
genome duplication (WGD), tandem duplication (TD), proximal duplication (PD), trans-
posed duplication (TRD), and dispersed duplication (DSD), were analyzed in the five
Solanaceae species to investigate the origin of the R2R3-MYB family genes.
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The study investigated different gene duplication events and identified their contri-
butions to expanding the R2R3-MYB gene family. There were 842 duplicated gene pairs
in the five Solanaceae species. DSDs (358 gene pairs), WGDs (213 gene pairs), and TRDs
(159 gene pairs) were the maximum number of gene pairs, suggesting that the expansion
of the R2R3-MYB gene family was mainly associated with DSD, WGD, and TRD events.
In contrast, only 49 and 72 PDs and TDs were identified in the R2R3-MYB gene family.
The number of WGD-pairs in wolfberry (63), tomato (54), and eggplant (51), which shared
a recent lineage-specific WGD event, are greater than potato (21) and pepper (24). The
disparity indicates the importance of WGD events in the R2R3-MYB family expansion in
wolfberry, tomato, and eggplant. DSD and TRD events occurred more frequently in pepper,
which had not experienced recent WGD events, suggesting the importance of single-gene
duplications in expanding the R2R3-MYB family during the long-term evolution of these
genomes (Figure 3 and Table S4).
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The study also analyzed the distribution of R2R3-MYB genes on the chromosomes of 
five Solanaceae species. For wolfberry, 137 R2R3-MYB genes were randomly distributed 
on 12 chromosomes. The wolfberry chromosome 1 had the highest number of genes (21) 
compared with the other chromosomes. However, chromosome 10 had only four R2R3-
MYB genes. There was no significant correlation between the chromosome length and the 
number of LbaR2R3-MYB genes (Figure S4). Similarly, the R2R3-MYB genes were ran-

Figure 3. The number of R2R3-MYB gene pairs derived from different gene duplication events in
the five Solanaceae species. (a) The phylogenetic relationship among the five Solanaceae species.
(b) The number of different models of duplicated gene pairs in each species. The x-axis represents the
number of duplicated gene pairs. The y-axis represents species. Whole-genome duplication (WGD),
tandem duplication (TD), proximal duplication (PD), transposed duplication (TRD), and dispersed
duplication (DSD).

The study also analyzed the distribution of R2R3-MYB genes on the chromosomes of
five Solanaceae species. For wolfberry, 137 R2R3-MYB genes were randomly distributed
on 12 chromosomes. The wolfberry chromosome 1 had the highest number of genes
(21) compared with the other chromosomes. However, chromosome 10 had only four
R2R3-MYB genes. There was no significant correlation between the chromosome length
and the number of LbaR2R3-MYB genes (Figure S4). Similarly, the R2R3-MYB genes were
randomly distributed in the other four Solanaceae species (Figure 4). The study further
identified intra-genomic synteny blocks for each species. There were 153 syntenic gene
pairs among the five Solanaceae species (Figure 4). Of these, wolfberry (Figure 4a), tomato
(Figure 4b), pepper (Figure 4c), potato (Figure 4d), and eggplant had 48, 38, 16, 16, and
35 syntenic pairs, respectively (Figure 4e and Table S4).

The comparative syntenic map of wolfberry associated with Arabidopsis and four
other Solanaceae species was constructed. The study also identified the orthologous
R2R3-MYB genes to infer the evolutionary mechanisms of LbaR2R3-MYB genes (Figure 5).
A total of 80, 26, 77, 87, and 17 orthologous gene pairs were identified between wolfberry
and tomato, pepper, potato, eggplant, and Arabidopsis, respectively. Interestingly, some
collinear gene pairs were only found between wolfberry and specific species. For example,
the collinear gene pairs Lba08g01691-Solyc10g083900.2.1 and Lba11g00940-Capana07g001606
were only available between wolfberry and tomato and between wolfberry and pepper,
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respectively. Forty-one LbaR2R3-MYB genes had collinear relationships with other selected
four Solanaceae species. However, 79 LbaR2R3-MYB genes were associated with Solanaceae-
specific collinear gene pairs but absent between wolfberry and Arabidopsis (Table S5). The
formation of these species-specific collinear gene pairs might be related to the evolutionary
mechanism in Solanaceae species. Additionally, some LbaR2R3-MYB genes were associated
with two or more orthologous gene pairs. For example, Lba02g02412 is orthologous to
Solyc04g078420.1.1, PGSC0003DMT400008569, and Smechr0202641.1.
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2.5. Nonsynonymous (Ka) and Synonymous (Ks) Substitutions per Site and Ka/Ks Analysis of the
R2R3-MYB Family Genes

The Ks value estimates the evolutionary history of WGD events. The mean Ks values
of WGD-derived gene pairs in wolfberry, tomato, pepper, potato, and eggplant were 1.14,
1.11, 1.36, 1.35, and 1.35, respectively. Lower Ks values of WGD-derived gene pairs in
the five Solanaceae species suggested that the genes were duplicated and retained from
recent WGD events (Figure S5). The Ka/Ks ratios of the duplicated gene pairs in wolfberry,
tomato, pepper, potato, and eggplant were <1, indicating that R2R-MYB genes evolved
under strong purifying selection. However, five gene pairs (Lba09g01300 and Lba09g01301
(Ka/Ks ~2.55), Lba06g00593 and Lba03g02818 (Ka/Ks ~1.31), PGSC0003DMT400015155 and
PGSC0003DMT400015156 (Ka/Ks ~1.59), SmeSca00628.1 and SmeSca00696.1 (Ka/Ks ~1.05),
and SmeSca00639.1 and SmeSca00696.1 (Ka/Ks ~2.11) in wolfberry, potato, and eggplant)
had higher Ka/Ks ratios, suggesting a complicated evolutionary history. For wolfberry, the
mean Ka/Ks values for WGD, TD, PD, TRD, and DSD gene pairs were 0.24, 0.54, 0.61, 0.31,
and 0.30, respectively (Figure 6 and Table S6). The PD gene pairs had the highest Ka/Ks
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ratio compared with other types of duplicated gene pairs, indicating that PD evolved at a
higher rate than the other gene pairs (Figure 6).
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2.6. Expression of Carotenoid-Biosynthetic Genes and R2R3-MYB DEGs in Wolfberry

RNA-seq data determined the expression profiles of LbaR2R3-MYB differentially ex-
pressed genes (DEGs) and carotenoid biosynthesis genes (CBGs) in RF fruits at five de-
velopment stages: 12 (S1), 19 (S2), 25 (S3), 30 (S4), and 37 (S5) days after full bloom
(DAF). A total of 45 (32.8%) DEGs of the LbaR2R3-MYB gene family (adjust p-value < 0.01,
|log2-fold change| > 1) were identified and expressed in five developmental stages (Table S7).
The expression values clustered the LbaR2R3-MYB DEGs into four main groups, I to IV
(Figure 7a). Most genes in group I were highly expressed in all the fruit development
stages. Except for two genes (Lba05g00371 and Lba05g00389): group II had a lower expres-
sion, while group III contained five LbaR2R3-MYB genes, which were highly expressed at
12 DAF and 19 DAF. The expression levels of ten LbaR2R3-MYB genes increased gradually
with fruit development. These results suggest that LbaR2R3-MYB genes regulate wolfberry
fruit development.
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(a) LbaR2R3-MYB DEGs expression level. (b) CBGs, including PSY: phytoene synthase; PDS: phytoene
desaturase; ZDS: ζ-carotene desaturase; ZISO: 15-cis-ζ-carotene isomerase; CRTISO: carotenoid
isomerase; LCYB: lycopene β-cyclase; LCYE: lycopene ε-cyclase; BCH: β-carotene hydroxylase;
CYP97A: cytochrome P450-type β-hydroxylase; CYP97C: cytochrome P450-type monooxygenase;
ZEP: zeaxanthin epoxidase; and VDE: violaxanthin de-epoxidase. Log2 (FPKM +1) values were
displayed according to the color code (Top right). The red and blue colors represent the highest and
lowest expression levels, respectively.

The study also analyzed the expression levels of CBGs in the carotenoid biosynthesis
pathway (Figure 7b). Genes BCH1, PSY1, PDS, ZDS, ZISO, and CYP97A were highly
expressed in the late stages (25 DAF to 37 DAF) of fruit development (Table S8).

2.7. Co-Expression Analysis of Carotenoid-Biosynthetic Gene and LbaR2R3-MYBs

A co-expression network of carotenoid biosynthetic genes was constructed to investi-
gate the potential of LbaR2R3-MYB TFs for regulating carotenoid biosynthesis in wolfberry
(Figure 8). First, the expression levels of 45 LbaR2R3-MYB DEGs and 15 CBGs were used
to calculate Pearson’s correlation coefficients (PCCs). Gene pairs with |PCCs| < 0.80
and p > 0.05 were removed, and the remaining gene pairs were used to construct the co-
expression network. From the network, 15 CBGs, 32 LbaR2R3-MYB TFs, and 230 pairs were
constructed a co-expression relationship (Table S9 and Figure S6). Several LbaR2R3-MYB
TFs (8, 9, 8, 9, and 7) had a highly positive correlation with PSY1, BCH1, ZDS, PDS, and
ZISO genes, respectively, whereas some of LbaR2R3-MYB TFs (11, 8, 12, 11, 13) had a
highly negative with PSY1, BCH1, ZDS, PDS, and ZISO genes, respectively. These TFs
might regulate the expression of five important genes for accumulating carotenoids. For
example, gene BCH1 positively correlated with nine TFs and negatively correlated with
eight TFs. The coefficients of eight positively correlated TFs were >0.900, while eight
negatively correlated TFs were <−0.900 (Table S9).
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2.8. Gene Expression Analyses with qRT-PCR

Seven candidate-LbaR2R3-MYB genes were selected for qRT-PCR validation. The
results indicate that the expression of three LbaR2R3-MYB genes (Lba11g01830, Lba05g01910,
and Lba02g01219) highly correlated with the content of total carotenoids during RF fruit
development (Figure 9a). The expression of Lba11g01830 decreased from S1 (12 DAF) to
S2 (19 DAF) and increased sharply from S3 (25 DAF) to S5 (37 DAF) (Figure 9b). Surpris-
ingly, the relative expression, RNA-seq data, and the changes in total carotenoid contents
correlated with Lba05g01910 and Lba02g01219 from S3 (25 DAF) to S5 (37 DAF) (Figure 9c,d).
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Figure 9. The relative expression levels of seven LbaR2R3-MYB genes at different stages. The x-axis
indicates the five distinct periods. The y-axis indicates the relative expression and FPKM value. Data
are presented as mean ± SDs (n = 3). (a) Carotenoid contents; (b) Lba11g01830; (c) Lba02g01219;
(d) Lba05g01910; (e) Lba05g00433; (f) Lba06g00442; (g) Lba02g02412; (h) Lba05g00160.

We constructed a maximum-likelihood tree from three wolfberry R2R3-MYB genes
and seven characterized R2R3-MYB genes from other species. Two LbaR2R3-MYB genes
(Lba11g01830 and Lba02g01219) shared high sequence identity with the reported function-
known R2R3-MYB genes (Figure 10). Altogether, we speculate that these two LbaR2R3-MYB
genes are important in carotenoid biosynthesis.
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Figure 10. Phylogenetic analysis of candidate and seven function-known R2R3-MYB genes from other
species. The maximum-likelihood method was used to construct the phylogenetic tree. The Genebank
accession numbers are as follows: AdMYB7 (AXP34749.1), CrMYB68 (ASK51185.2), SIMYB72
(Solyc07g055000), EIRCP1 (KR053165.1), CpMYB1(XP_021903563.1), and MtWP1(Medtr0197s0010).
Three candidate-LbaR2R3-MYB genes (Lba02g01219, Lba11g01830, and Lba05g01910) are marked with
a red dot.

3. Discussion

The R2R3-MYB gene family is among the largest families in plants. To date, members of
the R2R3-MYB gene family have been identified and analyzed in different land plant species,
including four Solanaceae species: tomato, potato, pepper, and eggplant. The number and
composition of the R2R3-MYB gene family differ in different plants [29,34,35]. Ancient
polyploidy events (also known as WGDs) and additional recent lineage-specific WGDs have
presumably caused varying numbers of R2R3-MYB genes within land plants [46]. A recent
study sequenced and released the genome of the wolfberry (Lycium bararum L.), an econom-
ically important genus of the Solanaceae family [39]. However, this study identifies the first
R2R3-MYB gene family from the wolfberry genome and reports a comparative analysis
of the R2R3-MYB gene family in five Solanaceae species. The size of the R2R3-MYB gene
family is diverse in the five Solanaceae genomes. Surprisingly, the number of R2R3-MYB
genes in wolfberry (137) and tomato (133) is greater than pepper (108) and potato (109)
(Table 1), suggesting that pepper, potato, and eggplant experienced more frequent gene
losses. Wolfberry and tomato probably experienced lineage-specific WGD, while pepper,
potato, and eggplant did not. Therefore, this recent WGD event likely generated different
R2R3-MYB gene numbers in the investigated Solanaceae species.

Phylogenetic tree analysis displayed 610 R2R3-MYB proteins from the six analyzed
species categorized into 36 subgroups (C1–C36). The 610 R2R3-MYB proteins included
137, 133, 108, 109, 123, and 124 proteins from wolfberry, tomato, pepper, eggplant, and
Arabidopsis. Only Solanaceae contained the five species-specific subgroups (C1, C3, C34,
C35, and C36), suggesting their species-specific role in Solanaceae. Altogether, these
results indicate that wolfberry, tomato, pepper, potato, and eggplant are closely related
to Arabidopsis. Subgroup C18 only contained Arabidopsis R2R3-MYB proteins, further
establishing that the corresponding S12 subgroup of Arabidopsis was the Arabidopsis-
specific subfamily regulating glucosinolates biosynthesis [28,47]. This subgroup C18 of the
phylogenetic tree was similar to other species [48]. The unequal representation of R2R3-
MYB proteins within the divided subgroups suggested that R2R3-MYB gene expansion
events may be more active in certain plant species.
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Gene duplication is a major source of new genes in evolution that involves whole
genome/segmental duplication (WGD/SD), TD, PD, TRD, and DSD. Gene duplication
is crucial for gene family expansion and evolution. For example, DSD and WGD events
expanded the ADH, COMT, and SWEEET gene families [49–51], whereas TD events ex-
panded the HSP gene family [52]. The present study showed that DSD, WGD, and TRD
significantly expanded the R2R3-MYB gene family in the five Solanaceae species. More-
over, the Ka, Ks, and Ka/Ks analyses showed that the mean Ks values of WDG-derived
gene pairs were much lower in wolfberry and tomato than pepper, potato, and eggplant.
This observation supports a lineage-specific WGD event (~37 MYA) shared by wolfberry
and tomato. Additionally, wolfberry TRD-pairs had a higher Ka/Ks ratio, indicating that
TRD-derived R2R3-MYB genes experienced a rapid functional divergence.

Plant R2R3-MYB control diverse pathways, such as secondary metabolism (including
the carotenoid biosynthesis pathway), plant growth and development, biotic and abiotic
stresses [53]. For instance, tomato stamens and pistils predominately express the tomato
SlMYB33 gene, which regulates tomato flowering and pollen maturity. SlMYB75 positively
regulates the accumulation of anthocyanins by transcriptionally regulating downstream
genes [54]. Meanwhile, SlMYB102 participates in stress tolerance by regulating several
molecular and physiological processes [55]. Despite the diverse functions of the R2R3-
MYB gene family, this study focused on the roles of R2R3-MYB in regulating carotenoid
biosynthesis. The RNA-seq analysis identified 45 LbaR2R3-MYB genes and 15 carotenoid
biosynthetic genes at various expression levels in the five stages of wolfberry fruit develop-
ment. Subsequently, we constructed a co-expression network of carotenoid regulation. A
comprehensive analysis of transcriptome and co-expression identified seven LbaR2R3-MYB
genes that were validated by qRT-PCR. Previous studies demonstrated that the seven
R2R3-MYB TFs regulate carotenoid biosynthesis [23–27]. Indeed, the qRT-PCR expression
patterns of two LbaR2R3-MYB genes (Lba11g01830 and Lba02g01219) were consistent with
the carotenoid accumulation trend in fruit development, indicating that these two genes
may regulate carotenoid synthesis.

Therefore, a phylogenetic tree was constructed using full-length amino acids from the
seven R2R3-MYB TFs and the three candidate-LbaR2R3-MYB TFs (Lba11g01830, Lba05g01910,
and Lba02g01219). Lba11g01830 and Lba02g01219 were highly sequence identity with
CrMYB68 and AdMYB7 proteins, indicating that these two LbaR2R3-MYB genes regulate
carotenoid biosynthesis in wolfberry. Whether these R2R3-MYB TFs bind to promoter se-
quences of carotenoid biosynthetic genes (PSY, PDS, and ZDS) needs further analysis.

4. Materials and Methods
4.1. Plant Materials

All experimental materials were collected from the wolfberry germplasm of the Center of
Wolfberry Engineering Technology Research, Yinchuan, Ningxia (38◦38′49′ ′ N, 106◦9′10′ ′ E),
China. The fruits of L. chinense var. potaninii (RF) were collected at five different developmen-
tal stages, 12 (S1), 19 (S2), 25 (S3), 30 (S4), and 37 (S5) days after full bloom (DAF) (Figure S7).
All samples were ground in liquid nitrogen and stored at −80 °C for further study.

4.2. Identification and Sequencing of R2R3-MYB Genes in Five Solanaceae Species

The sequence of 124 AtR2R3-MYB proteins was retrieved from the Arabidopsis Infor-
mation Resource (https://www.arabidopsis.org/, accessed on 2 March 2021) to identify
R2R3-MYB TF family genes. The genome sequence of wolfberry (Lycium barbarum) and
genome annotation files were downloaded from the NCBI database (https://www.ncbi.
nlm.nih.gov/, accessed on 3 July 2021) with accession number PRJNA640228 [32]. However,
genome sequences of tomato (Solanum lycopersicum) and potato (Solanum tuberosum) were
downloaded from the Solanaceae Genomics Network (https://solgenomics.net/, accessed
on 2 July 2021). The genome sequence of Capsicum annuum-Zunla-1 was downloaded from
the China National Genebank (https://db.cngb.org/cnsa/, accessed on 2 July 2021). Addi-
tionally, the genome sequence of eggplant ‘HQ-1315’ (Solanum melongena) was downloaded

https://www.arabidopsis.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://solgenomics.net/
https://db.cngb.org/cnsa/
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from the Eggplant Genome Database (http://eggplant-hq.cn/Eggplant/home/index, ac-
cessed on 2 July 2021).

The study used two strategies to search for candidate R2R3-MYB genes. First, se-
quences of 124 AtR2R3-MYB proteins were used as queries for BLASTP searches against
local protein databases of the Solanaceae species with E-values < 1 × 10−10. Subsequently,
the MYB domain (PF00249) obtained from the Pfam database (http://pfam.xfam.org/, ac-
cessed on 5 July 2021) was used to construct a hidden Markov model (HMM) for searching
against protein databases with E-values < 1× 10−10 using the HMMER v3.3.2 software [56].
Finally, three databases, including SMART (http://smart.embl-heidelberg.de/, accessed
on 5 July 2021), Pfam (http://pfam.xfam.org/, accessed on 5 July 2021), and CD search
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 5 July 2021) con-
firmed the presence of the R2R3 domain [57–59]. The protein sequences without the
R2R3 domain and redundant sequences were manually removed. The ProtParam tool
(https://web.expasy.org/protparam/, accessed on 10 July 2021) predicted the isoelectric
point (pI) and molecular weight (MW) of all R2R3-MYB proteins based on their deduced
amino acid sequences.

4.3. Conserved Motif Analysis of R2R3-MYB Genes in Wolfberry

The Gene Structure Display Server (http://gsds.gao-lab.org/index.php, accessed on
10 August 2021) [41] graphically displayed the exon–intron organizations of the LbaR2R3-
MYB genes using Generic Feature Format Version3 (GFF3) annotation files of LbaR2R3-MYB
genes. The MEME suite (https://meme-suite.org/meme/, accessed on 10 August 2021) [60]
predicted the conserved motifs of LbaR2R3-MYB genes using the following parameters:
maximum numbers of different motifs, 20; minimum motif width, 6; and maximum motif
width, 50. The results were visualized using iTOL (https://itol.embl.de/, accessed on 10
August 2021) [61].

4.4. Conserved Motif Analysis of R2R3-MYB Genes in Wolfberry

Complete amino acid sequences of wolfberry, Arabidopsis thaliana, and the other four
Solanaceae species were aligned using the Muscle program with default parameters [62].
Then, a maximum-likelihood (ML) phylogenetic tree was constructed using IQ-TREE [63].
The best-fit substitution model, JTT+G, was determined by MEGA 6.06 [64] and incorpo-
rated in the IQ-TREE with 1000 bootstraps. OrthoFinder [65] constructed the taxonomy tree
of the five Solanaceae species, which was visualized using the iTOL [61] online tool and
Figtree v1.4.4 (https://tree.bio.ed.ac.uk/software/figtree/, accessed on 10 August 2021).

4.5. Identification of Gene Duplications, Chromosomal Location, and Collinearity Analysis

The DupGen_finder pipeline [66] further identified paralogous R2R3-MYB gene pairs
derived from WGD, TD, PD, TRD, and DSD. Briefly, Arabidopsis thaliana was selected as
the outgroup to identify duplicated gene pairs. Then, all of the species were subjected to a
BLASTP search against Arabidopsis thaliana. The simplified Gff3 files were generated using
Tbtools [67].

The genome annotation files provided the information on the chromosomal locations of
the R2R3-MYB genes in Lycium barbarum, Solanum lycopersicum, Capsicum annuum, Solanum
tuberosum, and Solanum melongena. Tbtools [67] analyzed collinear relationships between
wolfberry and the other five plant species. First, the BLASTP algorithm detected potential
homologous gene pairs between wolfberry and the other five plant species. Second, the
BLASTP results and the gene location information were uploaded to Tbtools to identify and
visualize syntenic chains. The syntenic gene pairs within each species were also identified
following the above steps. Genes located on unanchored scaffolds were not included.

4.6. Ka and Ks Calculation

The nonsynonymous (Ka) and synonymous substitution rates (Ks) of syntenic gene
pairs were calculated using Tbtools with the Nei–Gojobori (NG) method [67]. Briefly,

http://eggplant-hq.cn/Eggplant/home/index
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
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the coding sequences and duplicated gene pairs were prepared first. The two files were
deposited into Tbtools to acquire readable results, including Ka, Ks, Ka/Ks, and p-value.

4.7. Expression Profiling of LbaR2R3-MYB Genes with RNA-seq

The raw RNA-seq reads were deposited in the NCBI database. The adapter sequences,
low-quality reads (quality score < 15), and poly (A/T) tails were removed from raw reads
using fastp [68]. The Hisat2 [69] software aligned clean reads to the reference genome and
feature counts estimated transcript abundances. The fragments per kilobase million (FPKM)
measured the expression levels of the R2R3-MYB genes. The expression level of each R2R3-
MYB gene was displayed in a heatmap using the R software (https://www.r-project.org/,
accessed on 3 September 2021).

4.8. Quantitative Real-Time PCR Analysis

Total RNA was extracted from the fruits of two wolfberry cultivars using the TRNzol
Universal Reagent (TIANGEN, Beijing, China) following the manufacturer’s instructions.
The RNA was resolved on 1% agarose gel for quality assessment and quantified using Nan-
odrop one (Nanodrop Technologies, Wilmington, DE, USA). Genomic DNA was eliminated,
and first-strand cDNA was synthesized using the Easycript one-step RT-PCR supermix
(Transgen Bio, Inc., Beijing, China). The qRT-PCR was conducted on a CFX96 TouchTM
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) using the perfectStartTM
Green qPCR Supermix (Transgen Bio, Inc., Beijing, China). The qPCR conditions were as
follows: 30 s at 95 ◦C, followed by 40 cycles of 5 s at 95 ◦C, 30 s at 60 ◦C, and 65–95 ◦C
melting curve detection. Standard curve analysis of serially diluted cDNA estimated the
qPCR efficiency, and LbACTIN was used for template normalization [5]. The relative abun-
dance was calculated using the comparative Ct (2−∆∆Ct) method. All qRT-PCR primers
were designed in Primer5.0 and listed in Table S10.

4.9. Total Carotenoid Extraction and Measurement

The extraction and determination of total carotenoids were performed as previously
described [70], with some modifications. Briefly, ~5 mg of fresh fruits were ground into fine
powder in liquid nitrogen and extracted three times using 150 mL tetrahydrofuran with
0.1% butylated hydroxytoluene (BHT) via ultrasonic treatment for 45 min at 7 W. After
centrifugation (4000× g for 10 min at 4 ◦C), the extracts were combined into a 50 mL tube
and mixed by shaking with 5 mL NaCl-saturated solution for 1 min, and the supernatant
was collected. The petroleum ether extraction solution was merged and condensed by
vacuum rotary evaporation at 35 ◦C. The concentrated carotenoids residue was dissolved
using methylene chloride. The absorbance of the solution against the black at 450 nm was
determined using UV-vis spectrophotometry (UV-1800, Shimadzu Co., Ltd., Kyoto, Japan).

4.10. Construction of Co-Expression Network

The co-expression network was constructed based on RNA-seq data and carotenoid
contents to investigate the regulatory network between structural genes of carotenoid
biosynthesis and R2R3-MYB TFs. First, Pearson’s correlation coefficients (PCCs) were
calculated to select the positive and negative correlations between the structural genes and
R2R3-MYB TFs. PCC values < 0.8 were removed, and the networks were visualized in
Cytoscape v3.8.2 [71].

4.11. Statistical Analysis

The experiments involved three biological replicates. Statistical significance (Student’s
t-tests) was analyzed using the R software, and a p < 0.05 was considered statistically significant.

5. Conclusions

In the present study, genome-wide identification and bioinformatic analyses of R2R3-
MYB genes in wolfberry (Lycium barbarum L.) and four other Solanaceae Species were
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performed. A total of 610 homologous R2R3-MYB genes were identified. Among them, 137
belonged to wolfberry. The R2R3-MYB genes are divided into 36 large clades following
the classification results from model plants. DSD, WGD, and TRD were the primary
forces driving the R2R3-MYB gene family expansion. Purifying selection was the main
evolutionary force on R2R3-MYB genes except for a gene pair with Ka/Ks values >1.
In addition, integrated bioinformatics analysis and experimental verification identified
two candidate-LbaR2R3-MYB genes (Lba11g01830 and Lba02g01219) related to carotenoids
accumulation. These results provide insights into the evolutionary history and a foundation
for understanding the molecular mechanisms underlying carotenoid biosynthesis.
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