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Recent reports indicate that copy number variations (CNVs) within the human genome contribute to nucleotide

diversity to a larger extent than single nucleotide polymorphisms (SNPs). In addition, the contribution of CNVs to

human disease susceptibility may be greater than previously expected, although a complete understanding of the

phenotypic consequences of CNVs is incomplete. We have recently reported a comprehensive view of CNVs among

270 HapMap samples using high-density SNP genotyping arrays and BAC array CGH. In this report, we describe a

novel algorithm using Affymetrix GeneChip Human Mapping 500K Early Access (500K EA) arrays that identified

1203 CNVs ranging in size from 960 bp to 3.4 Mb. The algorithm consists of three steps: (1) Intensity pre-processing

to improve the resolution between pairwise comparisons by directly estimating the allele-specific affinity as well as to

reduce signal noise by incorporating probe and target sequence characteristics via an improved version of the

Genomic Imbalance Map (GIM) algorithm; (2) CNV extraction using an adapted SW-ARRAY procedure to

automatically and robustly detect candidate CNV regions; and (3) copy number inference in which all pairwise

comparisons are summarized to more precisely define CNV boundaries and accurately estimate CNV copy number.

Independent testing of a subset of CNVs by quantitative PCR and mass spectrometry demonstrated a >90%

verification rate. The use of high-resolution oligonucleotide arrays relative to other methods may allow more precise

boundary information to be extracted, thereby enabling a more accurate analysis of the relationship between CNVs

and other genomic features.

[Supplemental material is available online at www.genome.org. The array data from this study have been submitted

to GEO under accession nos. GSE5013 and GSE5173.]

In the last several years following completion of the human ge-

nome sequence (International Human Genome Sequencing Con-

sortium 2004), new progress in unraveling the complexities of

the genome’s architecture has revealed a remarkable degree of

structural variation present among normal individuals (Fredman

et al. 2004; Iafrate et al. 2004; Sebat et al. 2004; Sharp et al. 2005;

Tuzun et al. 2005; Conrad et al. 2006; Hinds et al. 2006; Locke et

al. 2006; McCarrol et al. 2006). Structural variants include a va-

riety of molecular alterations such as duplications, deletions, and

inversions, and are distinct from the genetic sequence diversity

represented by single nucleotide polymorphisms (SNPs) (Feuk et

al. 2006a,b; Freeman et al. 2006). Just as the genome-wide hap-

lotype map has now provided the framework to identify the

genetic basis of complex diseases, pathogen susceptibility, and

differential drug responses (International HapMap Consortium

2005), a thorough map that catalogs and indexes structural

variants (and, in particular, copy number variants [CNVs]) in the

human genome is a necessary prelude to understanding their

role in the context of both the normal and disease state. Al-

though there are increasingly clear examples of how CNVs can,

for example, influence susceptibility to HIV infection (Gon-

zalez et al. 2005), modulate drug responses (Ouahchi et al. 2006),

or contribute to genomic microdeletion and duplication syn-

dromes (Inoue and Lupski 2002), a comprehensive biological

understanding of the roles of CNVs is not yet currently available.

While several different molecular techniques can be used for

CNV detection, array-based experimental approaches still offer

the most efficient and cost-effective method for global, high-

resolution scans of structural features of the genome (Sharp et al.
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2005; Speicher and Carter 2005; Hoheisel 2006; Urban et al.

2006).

High-density DNA oligonucleotide arrays allow unsurpassed

levels of genetic information to be acquired in single experiments

(Fodor et al. 1991, 1993; Pease et al. 1994). These arrays, coupled

with a DNA target preparation method termed whole-genome

sampling analysis (WGSA), which involves PCR-mediated com-

plexity reduction, have successfully been used to simultaneously

genotype >10,000 SNPs on a single array and 100,000 SNPs on a

two-array set (Kennedy et al. 2003; Matsuzaki et al. 2004a,b).

Recently, by changing the choice of restriction enzymes and by

increasing the information capacity of the arrays, highly accurate

genotyping of 500,000 (500K) SNPs has been enabled on a pair of

arrays (http://www.affymetrix.com). In addition to multiplexed

SNP genotyping, these arrays, in concert with the development

of specialized algorithms, have been used to detect genome-wide

DNA copy number changes that include loss of heterozygosity

(LOH), deletions, and gene amplification events (Bignell et al.

2004; Huang et al. 2004, 2006; Zhao et al. 2004; Ishikawa et al.

2005; Laframboise et al. 2005; Nannya et al. 2005; Slater et al.

2005; Beroukhim et al. 2006; Komura et al. 2006).

We have recently used two complementary experimental

approaches, namely, BAC-based array CGH and high-density

SNP genotyping arrays, to produce a first-generation global CNV

map of the human genome, based on analyses of the HapMap

population (Redon et al. 2006). Here we describe in detail the

algorithm that was developed for this study to assess CNVs using

probe intensity information from the GeneChip Human Map-

ping 500K EA (Early Access) arrays. The algorithm is predicated

on improved intensity normalization methods originally used in

the Genomic Imbalance Map (GIM) (Ishikawa et al. 2005)

coupled with an optimized SW-ARRAY algorithm (Price et al.

2005) and a graph-theory based extraction of CNV results from a

large reference set. Using this approach, we have identified 1203

CNVs and obtained a high rate of verification for these calls using

multiple independent methods. The high-density SNP genotyp-

ing arrays afford a level of resolution that allows CNV boundaries

to be called with relatively high precision at a genome-wide level.

Results

The 500K EA arrays, a pre-commercial version of the GeneChip

Human Mapping 500K Array Set, contain 534,500 SNPs on two

genotyping arrays (see Methods for details of the assay). To mini-

mize the impact of cross-hybridization, probes were removed

whose central 21 bases perfectly matched additional locations in

the genome, with the exception of segmental duplications,

which are enriched for CNVs. Probes corresponding to NspI or

StyI restriction fragments in which the enzyme recognition site

contains a SNP were also removed. These steps trimmed the total

probe content to 474,642 SNPs (88.8% of the original) with a

relatively minor effect on genome coverage (Supplemental

Fig. 1).

CNV calling algorithm

Overview

In contrast to the detection of copy number changes in tumor

samples, where DNA from the same individual can be used as a

reference, the use of matched samples is not possible for CNV

detection in normal individuals. Similarly, the use of a single

reference, as is often used in BAC-array CGH, is limited by the

inability to determine whether a copy number change is from the

test or the reference sample. Thus we have developed an algo-

rithm that builds on GIM and SW-ARRAY, two methods based on

pairwise comparisons of array data, with the goal of accurately

defining CNV regions using a large set of reference samples. GIM,

which has been used previously for identification of copy num-

ber changes in cancer cells, focuses predominantly on intensity

processing and reduces noise due to probe and restriction frag-

ment sequences using a polynomial regression (Ishikawa et al.

2005; Midorikawa et al. 2006). Subsequent to GIM, SW-ARRAY

identifies copy number changes using an adapted Smith-

Waterman algorithm by finding isolated islands of substantially

higher (or lower) intensity ratios and assigns significance to each

finding by a permutation test (Price et al. 2005).

The algorithm described here contains three major parts as

depicted in Figure 1. Intensity pre-processing includes probe se-

lection, noise reduction, normalization, and merging signal ra-

tios from the NspI and StyI arrays. CNV detection begins with

pairwise comparisons of probe intensities for all possible pairs of

samples (i.e., 269 comparisons for each HapMap sample), which

are then merged to extract candidate CNV regions for each

sample. Homozygous deletions are detected separately using an

alternative approach that relies on the discrimination ratio be-

Figure 1. Flowchart overview of the algorithm. Red, blue, and yellow
boxes indicate that the process was carried out for each array, each
sample pair, and each CNV region, respectively. GIM is used for intensity
pre-processing, SW-ARRAY is used for pairwise CNV detection, and the
maximum clique algorithm is used for CNV extraction.
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tween alternate SNP alleles in lieu of SNP genotypes (see Supple-

mental Methods for details). The copy number inference step

uses signal ratios and SNP information to more precisely define

CNV boundaries and the copy number within each region. The

final step uses a maximum clique algorithm to define the diploid

samples for any given region based on the results from the large

reference data. Through a comparison of the test sample to the

diploid subset, precise boundaries and accurate copy number in-

ferences can be drawn (Fig. 2). Critical aspects of the CNV calling

algorithm are highlighted in detail below.

Intensity pre-processing

When intensity signals are compared from two individuals with

different SNP genotypes, the signal ratio may be artificially

skewed because of differences in the allele-specific probe affini-

ties. Although the original version of GIM does not consider such

comparisons, the current algorithm directly estimates the affinity

differences using signal ratios between probe A and B in the AB

genotype group and corrects the comparison accordingly. This

increases the average number of SNPs used in any pairwise com-

parison from 256,257 to 429,104, resulting in a 67.5% improve-

ment in resolution. GIM has also been improved through the use

of robust BIC (Qian and Kunsch 1996; Komura et al. 2006) to

remove signal fluctuations due to probe sequences, restriction

fragments, and long-range genomic context surrounding each

SNP (see Supplemental Methods for details). In addition, a new

normalization step based on the recognition sites of the two re-

striction enzymes has been added to account for variation attrib-

uted to the differences in the intensity ratio distributions across

restriction fragments with various recognition sites (Supplemen-

tal Fig. 2). To eliminate this difference, median scaling across

recognition sites was applied to both enzymes, resulting in a 64%

reduction in intensity ratio variation for a typical example

(Supplemental Fig. 2C,D).

Modification of SW-ARRAY for CNV detection

To define CNVs, intensity values from two separately processed

arrays must first be merged. Because each array contains unique

Figure 2. Overview of copy number inference. (A) Pairwise comparisons of five different DNA samples (a–e) in a given candidate CNV region. The
x-axis represents the SNP positions, and the blue lines are log2 signal intensity ratios for any given pair. The red line indicates the significant CNVs
detected by SW-ARRAY. (B) Summary of the comparisons of any given sample to the remaining four samples. Based on the physical location of copy
number changes, the frequencies are calculated for each sample, and consecutive CNV regions are extracted. Each row represents a single sample, and
each column represents the frequency of a given SNP. The frequency of a particular SNP is the number of times that it is called a CNV in all four pairwise
comparisons. (C) Graph theory (the maximum clique algorithm) is applied to the frequency summarization results presented in B. In this example,
samples c, d, and e, which have the lowest frequency and represent the maximum clique, are defined as the diploid group. (D) Density (the proportion
of comparisons where a CNV is called) is calculated based on the diploid samples found by the maximum clique algorithm, and the boundary of the
CNV region in each nondiploid sample is determined. (E) Copy number is determined based on the median ratio of each CNV region.
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outliers, the merged error distribution is non-Gaussian, making it

difficult to define CNV regions based solely on the raw intensity-

ratio distributions. For this reason, SW-ARRAY (Price et al. 2005),

a nonparametric, dynamic programming algorithm, was adapted

to identify copy number changes (Fig. 3A,B,C). In all cases, we

used data generated from three replicates of NA15510, a DNA

sample that has been extensively characterized by fosmid end-

sequencing (Tuzun et al. 2005) and three replicates of a desig-

nated reference genome (NA10851) to define an optimized set of

parameters that maximize reproducibility (percentage of CNVs

called >50% of time in all pairwise comparisons) and minimize

false-positive signals.

Four subsets of parameters were extensively studied includ-

ing (1) intensity ratio threshold value, (2) significance cutoff,

(3) constraints on number of SNPs and number of restriction

fragments used to define a CNV, and (4) density optimization

(Fig. 3). For the intensity ratio threshold, we first used samples

with different numbers of X chromosomes, and observed an av-

erage intensity ratio of 1.3 between two versus three copies. The

use of 1.3 as a stringent cutoff results in detection of 50% of the

single-copy gains (based on the X chromosome data) with mini-

mal false-positive signals. We then tested 31 threshold values

evenly distributed between 1 and 1.3 using the three replicates of

NA15510 and NA10851 and found the optimal threshold to be

1.12 (Fig. 3A). The significance value of 0.01 was derived using a

similar approach (Fig. 3B). To increase the confidence of a CNV

call, we introduced the new requirement that multiple probes on

different fragments show consistent intensity change. Two com-

binations were examined, namely, four SNPs on three restriction

fragments (4 SNPs:3 fragments) or three on two (3 SNPs:2 frag-

Figure 3. Parameter tuning. Several parameters were optimized for SW-ARRAY and CNV extraction including (A) intensity ratio threshold, (B) statistical
significance, (C ) number of SNPs and restriction fragments required for calling a CNV, and (D) density cutoff (the fraction of positive pairwise
comparisons necessary for calling a CNV). For each parameter, CNVs were called from pairwise comparisons between NA15510 and NA10851 (A,B,C )
or population-wide comparisons (D) for each sample. In A and B, the percentage of CNVs called more than half of the time (red line) is compared to
the percentage that have been positively validated (blue line), or negatively validated, false positives (green line in B with the y-axis on the right-hand
side). The final values chosen were 1.12 for the intensity ratio threshold, and 0.01 for the P-value (indicated by the vertical black lines). In C, the size
distribution of CNVs detected using the 3 SNPs:2 fragments criterion (with a mean length of 300 kb) is compared to the 4 SNPs:3 fragments criterion
(mean length 326 kb). In D, the number above each bar is the percentage of validated CNVs and validated diploid regions within certain density bins.
A 10% density cutoff was chosen for further analyses. For any given cutoff, a false positive is defined as the percentage of all validated diploid regions
that are incorrectly called as a CNV with a density that is greater than the cutoff; false negative is defined as the percentage of validated CNVs that are
missed because their density is lower than the cutoff.
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ments). The former was chosen because the number and size of

CNVs is similar using the two settings (Fig. 3C), while the repro-

ducibility increased from 44% to 48% and the self–self false posi-

tives decreased 58% with the 4 SNPs:3 fragments setting.

CNV extraction based on a given density cutoff (the fraction

of times that the region is called as a CNV when compared with

reference samples) is a new parameter added during the summa-

rization step to allow confident CNV regions to be extracted from

a given test sample and a large reference set. To optimize this

parameter, CNVs were called from the same triplicate experi-

ments with NA15510 and NA10851 as described above, but this

time they were compared to all 270 HapMap samples as a refer-

ence set. Independently verified regions that include both CNVs

and diploid regions were placed into different density bins (Fig.

3D). The 10% cutoff gave the optimal result with 7.7% false posi-

tives and 33.3% false negatives.

Figure 4. CNV boundary determination. In A,B,C, the x-axis is the sequential order of the SNPs both within and outside the CNV region; the y-axis
represents individual samples. In D, the x-axis represents the intensity ratio, and the y-axis is the sample frequency. (A) Diploid density distribution for
HapMap CNVID 1166 at chr22:23932716–24371067. In the left-most column, CNV samples detected by the algorithm are shown in red, the diploid
samples selected by the maximum clique algorithm are shown in black, and samples that display the intensity trend but do not meet the CNV extraction
criteria are shown in white. (B) Median ratio distribution in the same region as shown in A. The median ratios were calculated based on the diploid
samples with the same genotype. The similar pattern with A indicates that the CNV regions were successfully detected by the algorithm. (C) The diploid
density (blue solid line) and median ratio (green dotted line) smoothed with a 10 probe window of sample 1 (top graph) and sample 2 (bottom graph)
indicated by the purple arrows in A and B. The 10% and 90% boundaries are shown as dashed red lines. (D) The intensity ratio histogram of all 270
samples in the same CNV region depicted in A, B, and C shows clear clusters that correspond to one, two, three, and four copies of the region. The
histogram is compressed in the middle range of the y-axis as represented by the wavy double line.

CNV detection using high-density DNA arrays

Genome Research 1579
www.genome.org

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Copy number inference: Identification of diploid samples

In order to accurately identify gains and losses in common CNV

regions, each sample’s CNV copy number was calculated by com-

parison only with diploid samples, which were initially identified

by a maximum clique algorithm as the largest copy number

group. To confirm that the two-copy group was identified cor-

rectly, we used SNP genotypes to calculate the level of heterozy-

gosity and the A/B ratio for each CNV region with the assump-

tion that single-copy losses should be homozygous while three-

copy number regions should show heterozygous A/B ratios

significantly different from 1. For regions that did not satisfy

these assumptions, the largest group remaining after removing

the previously defined set was reselected as the diploid group.

The majority of CNV regions did not deviate from expectations,

and in the end only a small percentage (5.8%) of CNVs required

a re-evaluation of the diploid set.

CNV boundary determination

When individual CNVs are called for each sample, the borders

are not always the same for the 269 comparisons (Figs. 2A, 4).

Because of this variability, a density cutoff is assigned to each

boundary as a measure of the confidence associated with the

border position. In this case, the density cutoff is based on the

maximum density, which is defined as the largest density value

for any SNP in that CNV region after comparison with the dip-

loid samples. Thus, the 10% and 90% boundaries are the outer

SNP positions of the segments that maintain at least 10% or 90%

of the maximum density, respectively (Fig. 4).

HapMap CNVs

The CNV calling algorithm, with an optimized density cutoff of

10%, was applied to 270 HapMap samples, and 6469 sample-level

CNVs in total were identified with an average of 24 CNVs per

individual (Table 1; Redon et al. 2006). CNV calls were merged

and summarized into 1203 CNV events (where CNVs are merged

if they contain 30% SNP overlap) and 980 nonoverlapping CNV

regions (Redon et al. 2006; Supplemental material). The size dis-

tribution of the 1203 CNV events ranges from 1 Kb to 3.6 Mb,

with median size of 71 kb using the 10% boundaries, and the

majority of CNV regions contain between five and 20 SNPs

(Supplemental Table 1).

Mendelian inheritance

CNVs that were detected from 60 trios from the CEU and YRI

populations were analyzed for Mendelian inheritance, and 1229

regions in 60 offspring were identified as CNVs with an inferred

copy number of at least three for gains or at most one for losses.

The signal intensities were evaluated in the parents for these

regions, and 1185 (96.4%) of the CNVs were clearly inherited or

displayed a signal intensity profile in one of the parents that is

just below the threshold cutoff (Fig. 5A). In addition, 3.6% (44) of

CNVs do not show any signal indicative of a possible copy num-

ber alteration in one of the parents (Fig. 5B). The latter category

may represent de novo CNVs, CNVs present as gains and losses in

both parents of the trio (i.e., both parents have one chromosome

with two copies, and one chromosome with zero copies), or cell

line artifacts. Taken together, these data suggest that at least

96.4% of CNVs display Mendelian inheritance, confirming pre-

vious conclusions that CNVs are highly heritable (Locke et al.

2006).

Experimental validation and false-positive estimation of HapMap CNV

calls

In order to estimate the percentage of HapMap CNV calls that are

likely to be false positives, we used quantitative PCR (qPCR) and

mass spectrometry for experimental validation and compared

replicates of the same DNA sample (self–self comparisons). Ex-

perimental validation of CNVs called in three replicate experi-

ments for DNA samples NA15510 and NA10851 (each compared

to the HapMap reference set) indicated that the average percent

of false positives was 2.5% (Table 2). Similarly, self–self compari-

sons of 10 HapMap samples, each done in triplicate, identified an

average of 0.73 CNVs per experiment (Supplemental Table 3). In

addition, when these 10 samples are compared to the HapMap

reference set, 80% of the CNVs are called in all three replicates

(see Redon et al. 2006). Taken together, the above data indicate

that the false-positive signal due to intensity variability is <5%,

and that the reproducibility is consistently high.

HapMap CNVs called in only one individual (singletons)

represent a large percentage of the total CNVs found in the popu-

lation (Redon et al. 2006), yet may include a higher number of

false positives compared to CNVs called in multiple individuals.

Nevertheless, 36 out of 39 singleton CNVs that were tested were

experimentally validated, suggesting that singleton CNVs are

correctly called >90% of the time (Table 2).

Homozygous deletions, which are called using a separate

algorithm, were also tested and found to be correctly identified at

least 89% of the time, with 11% of homozygous deletion regions

giving rise to a PCR product using nonquantitative measure-

ments (Table 2). The reproducibility of the homozygous deletion

detection algorithm was assessed using the replicates of NA15510

Table 1. CNV coverage by chromosome

Chromosome

Sample-level CNVs CNV events

Gain Loss Gain Loss Gain + loss

1 287 314 26 44 19
2 84 135 35 37 6
3 367 125 27 39 5
4 89 310 27 43 9
5 186 158 21 34 2
6 195 314 22 42 7
7 70 75 22 38 4
8 109 317 22 48 8
9 51 179 17 43 6

10 125 161 18 39 10
11 90 365 14 59 5
12 204 122 26 24 2
13 15 60 9 26 1
14 224 125 12 29 2
15 268 133 25 24 17
16 41 126 11 24 7
17 264 53 10 10 3
18 14 77 7 17 1
19 231 170 15 16 10
20 8 28 6 13 0
21 11 80 4 7 3
22 24 26 3 8 3

X 47 12 22 7 1
Total 3004 3465 401 671 131

Sample-level CNVs refer to CNVs detected in individual DNA samples,
and CNV events refer to all independent CNVs. CNV events are merged
for regions sharing at least 30% of SNPs. Gain, Loss, and Gain + loss refer
to CNVs that are found only as insertions, only as deletions, or as both
insertions and deletions, respectively, in the HapMap set.
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and NA10851. In total, two homozygous deletion regions were

identified and validated (Redon et al. 2006). In each case, the results

were identical in all three replicates, and with the same bound-

aries, suggesting a high reproducibility for this calling algorithm.

As mentioned above, the precise delineation of CNV bound-

aries in each sample is challenging. Estimation of CNV ends can

be complicated by chromosomal mosaicism in cell culture, where

the CNV ends may exhibit differences from cell to cell, or, in the

case of high-frequency CNVs, the edges may be sample-specific,

making it difficult to define a single population consensus

boundary. Another possibility is that the variability is simply a

reflection of experimental noise. To test this idea, and to evaluate

the accuracy of border estimations given by the algorithm, a

representative sampling of CNVs was experimentally tested in

the regions between the flanking SNP and the 10% borders, the

10% and the 90% borders, and within the 90% borders (Supple-

Figure 5. Mendelian and non-Mendelian CNV inheritance. (A) Transmission of a single copy gain transmitted from a YRI mother (NA18870), to the
child (NA18872), and absent in the father (NA18871). These results were also confirmed by qPCR. (B) A single copy loss identified in a CEU child
(NA10831) that is not present in either parent (NA12156 or NA12155). Each plot shows the smoothed (50-kb window) signal ratio intensity on the y-axis
and the physical position of the probes on the x-axis.
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mental Table 4). In all six cases, the region between the highest

confidence 90% borders was confirmed as a true region of copy

number change. In four unique sequence CNVs (i.e., not in seg-

mentally duplicated regions), all eight 10% borders were con-

firmed. For these same CNVs, the regions flanking the 10% bor-

ders were altered in four out of eight cases. In contrast, for CNV

regions that contain segmental duplications, the border determi-

nations were not as accurate, and in all four examples the 10%

specific regions were not confirmed. This shows that borders of

CNVs in unique sequence regions can be determined with high

confidence, but less so for common CNVs, especially those asso-

ciated with segmental duplications. Thus, the accuracy of border

determination reflects the underlying genomic structure in re-

gions of CNV.

Discussion

We have developed a multistep algorithm that allows accurate

CNV calls to be derived from the GeneChip Human Mapping

500K EA arrays. The method described here has been developed

to reduce systematic noise and precisely extract significant inten-

sity information. It is substantially different from the previously

developed GIM algorithm in several aspects including (1) an in-

tensity pre-processing step, (2) an allele-specific ratio adjustment,

(3) the incorporation of new variables (restriction enzyme recog-

nition site normalization, signal ratio adjustment based on G:C

content of SNP-surrounding sequence) to remove systematic

noise, and (4) the use of a robust regression with Bayesian Infor-

mation Criterion (BIC) selection (Qian 1996) to simplify the cal-

culations without sacrificing the accuracy. SW-ARRAY, previ-

ously used only for large copy number changes associated with

cancer and disease, has been optimized to call CNVs. Most im-

portantly, the proposed algorithm enables comparisons of any

DNA test sample against a large reference set, which allows pre-

cise assignment of CNVs to the test sample and derives more

accurate estimates of the CNV boundaries. The CNV extraction

step is completely novel, and uses a scoring system implemented

following SW-ARRAY that summarizes all pairwise comparisons

with the large reference set. Since the copy number inference step

identifies diploid samples for any given region, there is no reduc-

tion in detection power of common CNVs.

When used with DNA samples from the HapMap popula-

tion, the approach described here led to the identification of

1203 CNV events spanning a broad

size range from <1 kb to >3 Mb (Re-

don et al. 2006). Although the 500K

EA platform has good resolving

power to identify CNVs <100 kb in

size, CNVs spanning segmental du-

plications are underrepresented be-

cause of the difficulty in developing

robust SNP assays in these regions

(Fredman et al. 2004). Future gen-

erations of oligonucleotide-based

copy number arrays can be de-

signed to minimize this discrep-

ancy and have appropriate repre-

sentation for segmentally dupli-

cated regions. For example, a new

high-density array that contains

multiple nonpolymorphic probes

for every predicted NspI fragment

and is used in conjunction with WGSA has been designed. This

array covers >1.3 million fragments with a median intermarker

distance of just less than 800 bp. Furthermore, >90% of genome-

wide segmental duplications have at least one of these fragments

within their boundaries. In addition to these higher-density ar-

rays, an alternative approach might involve the use of molecular

inversion probes (MIP), which have successfully been used for

copy number analysis and can specifically target selected regions

of the genome (Wang et al. 2005).

Efforts directed at a global characterization of CNVs are an

important first step toward understanding the role of CNVs in

the biology of the cell. The CNVs identified using this algorithm,

combined with the complementary data derived from the WGTP

platform, provide the framework for the first comprehensive glo-

bal map of human CNVs (Redon et al. 2006). This information

should also prove useful in better understanding the role of CNVs

in disease pathology and will provide a more detailed baseline for

discriminating DNA copy number changes in cancer cells. Lastly,

the data described here have been used to study the genetic cor-

relation between CNVs and SNPs (Redon et al. 2006). There is a

decreased level of linkage disequilibrium between CNVs and

SNPs, suggesting that SNPs are not an ideal surrogate for CNVs in

association studies (Hinds et al. 2006; Locke et al. 2006; McCarrol

et al. 2006; Newman et al. 2006; Redon et al. 2006). This implies

that CNVs need to be assessed independently in whole-genome

association studies. The algorithm described here, along with

high-density DNA oligonucleotide arrays, offers an optimal solu-

tion by providing both SNP genotype information as well as CNV

profiling in a single experiment.

Methods

Experiments

500K EA Arrays and the Whole-Genome Sampling Assay (WGSA)

The 500K EA arrays contain 534,500 SNPs on two enzyme-

specific arrays and are used in conjunction with whole-genome

sampling analysis (WGSA). Each array interrogates SNPs residing

on NspI or StyI PCR amplicons that range in size from 200 bp to

1000 bp. The method described here should be directly appli-

cable to the commercially available Affymetrix 500K array. As an

example, 97.5% of the CNVs identified in this study contain at

least four SNPs (the requirement for calling a CNV) that are pres-

ent on the commercial array.

Table 2. Independent verification of CNV calls

Sample set Group
CNVs
called

Validated
“positives”

Validated “negatives”
(% false positive)

Not
tested

NA15510 Rep1 14 13 1 (1/14 = 7.2%) 0
Rep2 13 13 0 (0/13 = 0%) 0
Rep3 18 18 0 (0/18 = 0%) 0
Average 15 14.67 0.33 (0.33/15 = 2.2%) 0

NA10851 Rep1 14 13 0 (0/13 = 0%) 1
Rep2 12 10 1 (1/11 = (9.1%) 1
Rep3 13 11 0 (0/11 = 0%) 2
Average 13 11.3 0.3 (0.3/11.67 = 2.8%) 1.3

HapMap
samples

Homozygous
deletions 37 33 4 (4/37 = 10.8%) 0

Singletons 713 39 3 (3/39 = 7.7%) 674

Independent validation of CNV calls made from two samples, NA15510 and NA10851 (each with three
replicates), as well as homozygous deletions and singletons called in the HapMap samples. Rep1, Rep2, and
Rep3 refer to the CNV calls when each sample replicate is compared to the HapMap reference set. The
HapMap CNVs tested include homozygous deletions and singletons.
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DNA from cell lines derived from the 270 HapMap individu-

als as well as NA15510 used for parameter tuning were purchased

from NIGMS the Human Genetic Cell Repository, Coriell Insti-

tute for Medical Research (Camden, NJ). For preparation of the

DNA prior to hybridization, we used the pre-commercial or early

access version of WGSA, which is identical to the manufacturer’s

commercial protocol (Affymetrix; http://www.affymetrix.com)

with the following modifications. For PCR, 5 µL of diluted,

adapter-ligated DNA and 3.5 µM primer were used in a total

volume of 100 µL, and three reactions were prepared for each

DNA sample per enzyme. Sixty micrograms of purified product

were fragmented and end-labeled using 0.57 mM DLR (GeneChip

DNA Labeling Reagent) and 105 U of TdT (Promega) for 2 h at

37°C. Hybridization onto the 250K Nsp and 250K Sty EA arrays

and subsequent washing steps were done exactly as described by

the manufacturer (Affymetrix).

For data quality assessment, genotype calls were generated

using the DM (Dynamic Modeling) calling algorithm with a cut-

off P-value of 0.17 (Di et al. 2005). Intensity information for each

probe set was extracted using Affymetrix software (http://www.

affymetrix.com). Any arrays giving rise to a call rate of <85% were

redone. Approximately 10% of samples were reprocessed based

on this criterion. In addition, 15 samples that showed high stan-

dard deviations of normalized intensity ratios were also repro-

cessed. Prior to GIM, genotype calls were generated using DM (Di

et al. 2005). For an average experiment, the resulting genotyping

quality was consistently high, with an average call rate of 96.8%

and concordance of 99.5% with HapMap Phase I genotypes

(Supplemental Table 3).

Validation

Quantitative PCR

Primer Express v3.0 (Applied Biosystems) was used for primer

design, and, when possible, avoided segmental duplications,

SNPs, or simple repeats. The UCSC In-Silico PCR tool (http://

genome.ucsc.edu) was used to check for single amplicons. Mul-

tiplex real-time PCR reactions were performed using the ABI

Prism 7700 Sequence Detection System (Applied Biosystems) and

followed the manufacturer’s guidelines and cycling conditions.

For normalization, a VIC-labeled TaqMan probe to the RPPH1

locus (RNA moiety of RNase P) was used (PE Applied Biosystems).

At least three replicate reactions were run for each primer pair, and

the comparative CT method (User Bulletin #2; Applied Biosystems)

was used to calculate the fold change at each locus between the test

and reference samples. In addition, a t-test based on the �Ct values

was used to determine the statistical significance of the result. All

results that showed a fold change <0.9 or >1.10 as well as a P-value

<0.05 were considered to be significant. Detailed QPCR results are

presented as Supplemental material elsewhere (Redon et al. 2006).

Quantitative validation of CNVs using mass spectrometry

The determination of allele frequencies in test and reference sam-

ples was based on MALDI-TOF mass spectroscopy of allele-

specific primer extension products (MassArray Sequenom Inc.)

(Bansal et al. 2002; Mohlke et al. 2002; Downes et al. 2004). All

assays for the PCR and associated extension reactions were per-

formed as suggested by the manufacturer. At any given SNP, a

CNV is considered validated in a heterozygous individual if the

allele dosage ratios are statistically different from reference het-

erozygous individuals with no CNVs. DNA from individuals with

homozygous genotypes in the CNV region are mixed with refer-

ences homozygous for the alternate allele, and its allelic dosage

ratio is compared with heterozygous references to calculate the sig-

nificance of the deviations. The appropriate mixture procedure in

these samples is verified by distinct CNV-free loci. In all cases, a

P-value <0.05 (t-test) was considered significant. Detailed mass spec-

trometric results are presented as Supplemental material elsewhere

(Redon et al. 2006).

PCR validation of homozygous deletions

All 37 homozygous deletion regions were tested using PCR. PCR

consisted of 34 cycles of 94°C for 20 sec, 68° to 51°C for 20 sec

(0.5°C decrease/cycle), and 72°C for 60 sec. One to three DNA

samples that were called for the deletion were examined along

with three diploid reference samples. Visual inspection of agarose

gels stained with ethidium bromide was used to assess the pres-

ence or absence of the PCR product.

Summary of data analysis

The specific details of the CNV calling algorithm, including all

mathematical formulas, can be found in the online Supplemen-

tal material. Prior to CNV calling in the HapMap samples, cell

line artifacts were identified as any chromosomal segmental im-

balance with a deviation of normalized intensity ratios >0.025 (or

>0.05 for the X chromosome) for regions >5 Mb and that were

observed in only one sample. Thirty-six such regions were iden-

tified and removed prior to analysis (Redon et al. 2006). An ad-

ditional seven CNV events were removed based on loss of trans-

mitted allele (LTA) analysis as described in Redon et al. (2006).

(For a complete listing, see Supplemental material in Redon et al.

2006). In addition to cell line artifacts, immunoglobulin (Ig)

genes were removed from the analysis. These regions include IgK

at 2p11, IgL at 22q11, and IgH at 14q32 (Redon et al. 2006).

The parameters used for CNV calling required that four SNPs

on three restriction fragments gave rise to a signal intensity ratio

above 1.12 for insertions or 0.89 for deletions. CNVs were con-

sidered significant for P-values <0.01 using 5000 permutations of

the data (see Results). For data integration, only CNVs called in at

least 10% of the comparisons to the diploid samples were retained.

Data release

The raw data from this study are posted at the Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with accession

number GSE5013. The equivalent data for the commercially

available Affymetrix GeneChip Human Mapping 500K arrays are

also being released as part of this project (GEO accession no.

GSE5173). Publicly available software called GEMCA (Genotyp-

ing Microarray based CNV Analysis), which implements this

CNV calling algorithm, can be freely downloaded from http://

www2.genome.rcast.u-tokyo.ac.jp/CNV/.
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