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Genome-wide DNA methylation 
analysis of the porcine 
hypothalamus-pituitary-ovary axis
Xiao-Long Yuan1,2, Zhe Zhang1, Bin Li1, Ning Gao1,3, Hao Zhang1, Per Torp sangild2 & Jia-Qi Li1

Previous studies have suggested that DNA methylation in both CpG and CpH (where H = C, T or A) 
contexts plays a critical role in biological functions of different tissues. However, the genome-wide 
DNA methylation patterns of porcine hypothalamus-pituitary-ovary (HPO) tissues remain virtually 
unexplored. In this study, methylomes of HPO tissues were profiled to investigate their differences and 
similarities. We found that HPO methylomes displayed tissue-specific methylation patterns in both 
CpG and CpH contexts. At gene locations, the methylation and density of CpGs was negatively linked 
at transcription start sites but positively linked at transcription end sites. The densities of CpGs and 
CpHs at CpG island (CGI) locations were negatively correlated with their methylation. Moreover, the 
methylation interactions between CGIs and genes showed similar pattern in the CpG context but tissue-
specific pattern in the CpH context. CpGs located in CGIs, upstream regions and exons were protected 
from methylation dynamics, whereas CGI shores, CGI shelves and intergenic regions were more likely 
to be targets of methylation changes. The methylation dynamics enriching in a tissue-specific manner 
appeared to maintain and establish the biological functions of HPO tissues. Our analyses provided 
valuable insights into the tissue-specific methylomes of porcine HPO tissues.

DNA methylation is one of the best understood epigenetic regulatory mechanisms1. There has recently been 
rapid development of biotechnology for the detection of DNA methylation, and genome-wide DNA methylation 
pattern profiles have been described for a number of species2–4, tissues5 and cell types6, even at a single-cell res-
olution7. These profiles have provided useful insights into the epigenetics of chromatin and the mechanisms of 
aging8, cell differentiation9, fetal development5 and tissue-specific maintenance10. In mammalian genomes, DNA 
methylation occurs predominantly at CpG sites. In general, CpGs within CpG islands (CGIs) and promoters, 
which are regions with a relatively high CpG content, are more likely to show hypomethylation11, whereas CpGs 
in gene bodies and outside CGIs show hypermethylation12. Both hypo- and hypermethylation are closely associ-
ated with transcription activities13. Furthermore, dynamic CpG methylation changes among different tissues are 
underrepresented in promoter and CGI regions, but overrepresented in gene bodies and outside CGIs5, 14, which 
supports the maintenance of tissue-specific functions.

The majority of non-CpG (CpH, where H = C, T or A) sites are unmethylated in mammalian genomes. 
However, several studies have revealed that CpH sites indeed become methylated and that their methylation is 
dynamic during the processes of brain development14, 15 and stem cell differentiation16. In the neuronal genome, 
during the development from a fetus to a young adult, CpH methylation increases to become the dominant form 
of methylation and is involved in the chromosome inactivation15. Moreover, CpH methylation has been reported 
to be negatively correlated with gene activity in the brain genomes of humans15, mice17 and birds (great tits)18, 19.  
These findings suggest that both CpG and CpH methylation play an important role during the mammalian devel-
opment and morphogenesis.

According to a previous study20, CGIs are defined as the C-rich and G-rich genomic regions >= 200 bp in 
length, with a C + G content >= 50% and an observed/expected ratio of CpGs >= 0.6. In human and mouse 
genomes, CGIs encompass approximately 60% of gene promoters20, 21, and their conserved methylation levels and 
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locations demonstrate that CGIs are the cis-regulatory sequences and serve as genome landmarks in evolution20, 21.  
Generally, CGIs that are located at gene promoters are protected from methylation dynamics and exhibit consist-
ently low hypomethylation, which is closely associated with the active transcription11, 22. However, CGIs within 
gene bodies are frequently susceptible to methylation dynamics and display tissue-specific hypermethylation21, 23,  
which is associated with higher gene expression in somatic tissues24, 25, with the exception of the brain18, 26. 
Additionally, this hypermethylation of CGIs overlaps significantly with the trimethylation of H3K4 to regulate 
tissue-specific alternative transcripts21, 23. These observations suggest that the methylation of CGIs might interact 
closely with the biological functions of genes to determine tissue-specific methylation patterns.

In many regards, pigs and humans share similar genome and physiological characteristics, and previous stud-
ies have demonstrated that porcine genome-wide DNA methylation patterns are similar to those observed in 
humans. This finding supports the notion that pigs are a useful and stable biomedical model12, 27. In both pigs 
and humans, the hypothalamus-pituitary-ovary (HPO) axis is one of the key endocrine systems involved in the 
regulation of reproduction. The stimulation and regulation of gonadotropin-releasing hormone, gonadotropin 
and steroid hormone syntheses within the HPO axis are critical for the development and establishment of sec-
ondary sexual characteristics and the reproductive capacity. Nevertheless, few investigations have focused on the 
genome-wide DNA methylation profile of the porcine HPO axis.

To investigate the genome-scale DNA methylation of porcine HPO tissues, we profiled the methylomes of 
porcine HPO tissues using reduced representation bisulfite sequencing (RRBS), and compared their methylation 
profiles to describe the differences and similarities across HPO tissues in both CpG and CpH contexts. Next, we 
attempted to localize CGIs to gene locations and to characterize CGIs based on genic features to examine the 
interactions between genes and CGIs among HPO methylomes. Then the methylation dynamics of HPO tissues 
were explored, and these methylation dynamics were then associated with the biological functions of HPO tis-
sues. These analyses provide valuable insights into the tissue-specific methylation pattern of porcine HPO tissues.

Results
Genome-wide DNA methylation of porcine HPO tissues in the CpG context. The detected CpG 
and CpH sites that were covered by at least five reads and coexisted across all tissues were considered for further 
analysis. The average methylation levels in the CpG context were 57.62%, 55.60% and 55.44% for the hypothal-
amus (H), pituitary (P) and ovary (O), respectively (see Supplementary Fig. S1a and Table S1). The CpG meth-
ylation levels in HPO tissues all presented a bimodal distribution (Fig. 1a), but the distributed features of these 
three tissues could be clearly distinguished from each other in the bimodal peaks. Comparison of the three tissues 
revealed that O exhibited the most CpGs with methylation levels ranging from 0 to 20% (O: 30.05%, P: 27.98%, H: 
27.86%); P exhibited the most CpGs with methylation levels ranging from 60% to 90% (O: 31.38%, P: 39.93%, H: 
31.76%); H exhibited the most CpGs with methylation levels higher than 90% (O: 25.82%, P: 18.84%, H: 27.78%) 
(Fig. 1a). The average methylation levels of the detected CpGs among the different genomic features are shown in 
Fig. 1b,c and Table S1. The average methylation levels of the different genomic features in H were all significantly 
higher than those in O (Fig. 1b,c). With the exception of CGIs and upstream regions, the average methylation 
levels of the genomic features in H were also significantly higher than those in P (Fig. 1b,c). The average methyla-
tion levels of CpGs located at CGIs and upstream regions displayed the lowest methylation levels, when compared 
with the other CGI- or gene-related regions (Fig. 1b,c, and Table S1), respectively.

Genome-wide DNA methylation of porcine HPO tissues in the CpH context. Among HPO tis-
sues, the distribution of CpH methylation levels was nearly the same, presenting a single-peak distribution, and 

Figure 1. Genome-wide DNA methylation of porcine hypothalamus-pituitary-ovary tissues. Distribution 
of methylation levels in the CpG (a) and CpH (d) contexts. Mean methylation levels of CpGs in CGI-related 
regions (b) and gene-related regions (c). Mean methylation levels of CpHs in CGI-related regions (e) and gene-
related regions (f). *Denotes p-value < 0.05, **denotes p-value < 0.01.
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more than 99.67% of the detected CpHs were hypomethylated (<20%) (Fig. 1d). The average CpH methylation 
level of H was 0.79%, which was higher than those of P (0.61%) and O (0.55%) (see Supplementary Fig. S1b and 
Table S1). The average methylation levels of the detected CpHs among different genomic features are shown in 
Fig. 1e,f and Table S1. The average methylation levels of CpHs located at CGIs and upstream regions in P were 
almost the same as in H (Fig. 1e,f, and Table S1), but higher than in O. The average methylation levels of CpHs 
located at CGIs and upstream regions were lower, when compared with those located in the other CGI- and 
gene-related regions (Fig. 1e,f and Table S1). Interestingly, the methylation level of CpHs located in exons in P 
was the highest when compared with those in H and O (Fig. 1e and Table S1). These results suggest that CpG and 
CpH methylation exhibits tissue-specific patterns among HPO methylomes.

DNA methylation patterns of CpG and CpH in CGI and gene locations. The methylation patterns 
of CpGs and CpHs were profiled to investigate the differences and similarities at the locations of genes and CGIs 
among HPO methylomes (Fig. 2). The DNA methylation levels at gene and CGI locations in H were higher, com-
pared with that in P and O (Fig. 2a,b). Additionally, the DNA methylation levels at gene and CGI locations in P 
were almost the same as in O (Fig. 2a,b). In the CpH context, the methylation tendencies at gene and CGI loca-
tions in the HPO methylomes were similar to those for CpGs (Fig. 2c,d). H showed the highest CpH methylation 
level, and O displayed the lowest (Fig. 2c,d). Interestingly, the CpH methylation level in the beginning portion of 
the gene body was higher in P than in H (Fig. 2c). These results indicated that the methylation patterns of CpGs 
and CpHs were tissue specific.

Correlation of DNA methylation with CpG and CpH densities. The densities of CpGs and CpHs, 
along with gene and CGI locations, were also determined to explore their correlation with DNA methylation 
(Fig. 2 and Table 1). We found that the CpG density was negatively correlated with the DNA methylation pattern 

Figure 2. Methylation and density patterns of CpGs and CpHs at CGI and gene locations. Methylation and 
density patterns of CpG sites at the locations of genes (a) and CGIs (b). Methylation and density patterns of 
CpH sites at the locations of genes (c) and CGIs (d).

Correlation 
coefficients

CpG methylation and density CpH methylation and density

Hypothalamus Pituitary Ovary Hypothalamus Pituitary Ovary

Gene locations
−0.47 
(P = 9.41 × 10−6)

−0.47 
(P = 1.16 × 10−5)

−0.44 
(P = 4.34 × 10−5)

0.11 (P = 0.31)
0.39 
(P = 3.32 × 10−4)

0.07 (P = 0.52)

TSS (+/− 10 
bins around 
TSS)

−0.70 
(P = 4.57 × 10−4)

−0.69 
(P = 4.84 × 10−4)

−0.68 
(P = 7.76 × 10−4)

−0.30 (P = 0.18) 0.16 (P = 0.49) −0.30 (P = 0.12)

TES (+/− 10 
bins around 
TES)

0.97 
(P = 1.48 × 10−13)

0.98 
(P = 3.63 × 10−14)

0.98 
(P = 4.16 × 10−14)

0.78 
(P = 4.88 × 10−5)

0.73 
(P = 1.66 × 10−4)

0.64 
(P = 1.62 × 10−3)

CGI locations
−0.80 
(P = 1.27 × 10−14)

−0.80 
(P = 2.84 × 10−14)

−0.79 
(P = 1.05 × 10−13)

−0.90 
(P = 4.95 × 10−22)

−0.72 
(P = 5.82 × 10−11)

−0.80 
(P = 1.93 × 10−14)

Table 1. Correlation coefficients of DNA methylation with CpG and CpH densities. Correlation coefficients 
were calculated by Pearson’s correlation. Gene locations extended from Up5k to Down5k. CGI locations 
extended from Up2k to Down2k.
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at gene and CGI locations (Fig. 2a,b and Table 1). The CpG density was also negatively correlated with DNA 
methylation at the TSS (+/− 10 bins around TSS) (Fig. 2a and Table 1) but was positively correlated with DNA 
methylation at the TES (+/− 10 bins around TES) (Fig. 2a and Table 1). However, there was no obvious corre-
lation between the density of CpHs and their methylation at gene locations, except in P (Fig. 2c and Table 1). 
Although the CpH density was not significantly associated with DNA methylation at the TSS (+/− 10 bins 
around TSS) (Fig. 2c and Table 1), it was significantly associated at the TES (+/− 10 bins around TES) (Fig. 2c 
and Table 1). Moreover, the density of CpHs within CGI locations were negatively correlated with their methyla-
tion patterns (Fig. 2d and Table 1).

The correlations between the global CpG and CpH methylation of HPO tissues and the density of genes per 
1 Mb window were explored (Fig. 3 and Supplementary Table S2). Among the porcine HPO methylomes, both 
CpG and CpH methylation appeared to be negatively associated with gene density (see Supplementary Table S2). 
Furthermore, in the CpG context, the Pearson’s correlation coefficients of H vs. P, H vs. O, and P vs. O were 
0.92 (P < 2.22 × 10−16), 0.97 (P < 2.22 × 10−16) and 0.92 (P < 2.22 × 10−16), respectively. In the CpH context, the 
Pearson’s correlation coefficients were 0.40 (P < 2.22 × 10−16), 0.52 (P < 2.22 × 10−16) and 0.44 (P < 2.22 × 10−16) 
for H vs. P, H vs. O and P vs. O, respectively. The lower correlation coefficients in the CpH context compared with 
the CpG context indicate that the CpH methylomes are more variable than the CpG methylomes among HPO 
tissues.

Methylation patterns of CGIs located at different genic features. To investigate the interaction of 
the methylation between genes and CGIs among the porcine HPO methylomes, we divided the porcine genome 
into five genic features (upstream, exon, intron, downstream and intergenic) and then localized CGIs to these 
genic features (see Methods and Supplementary Fig. S2). The CpG and CpH methylation patterns of CGIs located 
at different genic features are depicted in Fig. 4, Supplementary Figs S3 and S4, to enable the evaluation of CpG 
and CpH methylation patterns of CGIs based on different genic features. In the CpG context, CGIs located at 
different genic features displayed different methylation patterns (Fig. 4a,b,c and Supplementary Fig. S3). The com-
parisons of the different genic features revealed that the methylation levels of CGIs located in upstream regions 
were the lowest (Fig. 4a), whereas those located in introns were the highest (Fig. 4a). Furthermore, the differences 
in methylation between CGIs and CGI shores were increased in upstream regions but reduced in introns (Fig. 4a 
and Supplementary Fig. S3). Compared with the whole CGIs (Fig. 2b), the methylation levels of CGIs located 
in exons and intergenic regions (Fig. 4a) exhibited small changes, but the methylation levels of CGIs located in 
downstream regions were decreased (Fig. 4a). These results suggested that genic features have an effect on the 
CpG methylation patterns of CGIs. Moreover, these effects displayed the same performance among the CpG 
methylomes of HPO axis (Fig. 4a,b and c).

The CpH methylation of CGIs based on different genic features also displayed different methylation patterns 
(Fig. 4d,e,f and Supplementary Fig. S4). Generally, comparisons of the different genic features revealed that the 
methylation levels of CGIs located in upstream regions were the lowest (Fig. 4d); the methylation levels of CGIs 
located in introns and intergenic regions were higher (Fig. 4d); the methylation levels of CGIs located in exons 
and downstream regions were intermediate (Fig. 4d). However, CGIs located in exons displayed higher methyla-
tion levels than those located in downstream and intergenic regions in P (Fig. 4e). The differences in methylation 
between CGIs and CGI shores were greater in H than in P and O (Fig. 4d,e and f). These results indicated that 
different genic features had different effects on the CpH methylation patterns of CGIs, and these effects showed 
different performances among the CpH methylomes of HPO axis (Fig. 4d,e and f).

Figure 3. Global methylation of CpGs and CpHs and gene density. The global CpG (a) and CpH (b) 
methylation levels in the hypothalamus (track 1), pituitary (track 2) and ovary (track 3), from outside to inside, 
were quantified per 1 Mb window. The density of genes (track 4) was also quantified per 1 Mb window. The 
labels outside of track 1 represent the chromosomes of the porcine genome.
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Methylation patterns of genes based on the different genic CGIs. The CpG and CpH methylation 
patterns of genes based on CGI locations are shown in Fig. 5, Supplementary Figs S5 and S6. The genes were clas-
sified into the CGI-Upstream, CGI-Exon, CGI-Intron and CGI-Downstream genes based on the localizations of 
CGIs (see Methods). In the CpG context, compared with the methylation pattern of whole genes (Fig. 2a), CGIs 
located at upstream regions tended to decrease the methylation level in upstream regions of the CGI-Upstream 
genes (Fig. 5a). CGIs located in exons had no clear influences on the methylation patterns of the CGI-Exon genes 
(Fig. 5a). CGIs located in introns appeared to increase the methylation level of the CGI-Intron genes (Fig. 5a). 
However, CGIs located in downstream regions appeared to decrease the methylation status in downstream 
regions of the CGI-Downstream genes. These results demonstrated that CGIs located in different genic features 
displayed different effects on the CpG methylation patterns of the associated genes. Moreover, these effects exhib-
ited similar performance among CpG methylomes of HPO axis (Fig. 5a,b and c).

Compared with the CpH methylation patterns of whole genes (Fig. 2c), CGIs located in upstream and down-
stream regions appeared to reduce the CpH methylation levels of the CGI-Upstream and CGI-Downstream 
genes, and the CGIs located at introns tended to increase the CpH methylation levels of the CGI-Intron genes 
in the H methylome (Fig. 5d). However, in the P methylome, CGIs located in upstream and downstream 
regions appeared to increase the CpH methylation levels of the CGI-Upstream and CGI-Downstream genes, 
and the CGIs located in introns tended to reduce the CpH methylation levels of the CGI-Intron genes (Fig. 5e). 
Additionally, the CpH methylation levels at gene locations based on different CGI locations overlapped with each 

Figure 4. Methylation patterns of CGIs located in different genic features. The CpG methylation patterns 
of CGI locations in the hypothalamus (a), pituitary (b) and ovary (c). The CpH methylation patterns of CGI 
locations in the hypothalamus (d), pituitary (e) and ovary (f).

Figure 5. Methylation patterns of genes based on different genic CGIs. The CpG methylation patterns at gene 
locations based on the different genic CGIs in the hypothalamus (a), pituitary (b) and ovary (c). The CpH 
methylation patterns at gene locations based on the different genic CGIs in the hypothalamus (d), pituitary (e) 
and ovary (f). Genes were classified into CGI-Upstream, CGI-Exon, CGI-Intron and CGI-Downstream genes, 
basing on the localization of the CGIs.
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other in the O methylome (Fig. 5f). These results suggested that CGIs located in different genic features affected 
the CpH methylation patterns of associated genes, and these effects showed tissue-specific patterns among the 
CpH methylomes of HPO axis.

Different CpG methylation patterns of porcine HPO methylomes. To explore the dynamic meth-
ylation of CpG sites among HPO tissues, we first counted the consistently hypomethylated CpG sites (HypoCs, 
methylation level <= 20%, Fig. 6a) and hypermethylated CpG sites (HyperCs, methylation level >= 80%, 
Fig. 6b) across the HPO methylomes. We found that HypoCs and HyperCs were distributed differently across 
CGI- and gene-related regions (Fig. 6a and b). Among the CpGs located at CGIs and upstream regions, 52.72% 
and 57.37% were the HypoCs, which was higher than for the CpGs located at other CGI- and gene-related regions 
(Fig. 6a). Moreover, 21.71% and 13.12% of the CpGs located at CGIs and upstream regions were the HyperCs, 
which was lower than for the CpGs located at other CGI- and gene-related regions (Fig. 6b).

Then, 14,744, 33,809 and 29,759 differentially methylated CpG sites (DMCs) were identified for H vs. P 
(Fig. 6c), H vs. O (Fig. 6d), and P vs. O (Fig. 6e), respectively, representing 1.05%, 2.41% and 2.12% of all detected 
CpGs (Table 2). In the comparisons of HPO methylomes, CGIs, upstream regions and exons showed a significant 
underrepresentation of DMCs (relative enrichment = 0.42–0.65, P < 2.22 × 10−16), but CGI shores, CGI shelves 
and intergenic regions showed a significant overrepresentation of DMCs (relative enrichment = 1.15–1.66, 
P ≤ 4.48 × 10−12) (Table 2). However, DMCs of introns and downstream regions enriched in a tissue-specific 
manner among the comparisons of H vs. P, H vs. O, and P vs. O (Table 2). These observations suggested that 
DMCs were more likely to appear at CGI shores, CGI shelves and intergenic regions, but were depleted at CGIs, 
upstream regions and exons. Furthermore, these DMCs were likely to be more hypermethylated in H and P than 
in O (Fig. 6d,e). We also found that there were more hypermethylated DMCs in H than in P, except at CGIs and 
exons (Fig. 6c).

Biological functions of DMR genes in HPO tissues. Furthermore, 637, 1,884, and 1,511 differen-
tially methylated regions (DMRs) were identified for H vs. P, H vs. O, and P vs. O, respectively (Fig. 6f). We 

Figure 6. Differentially methylated CpGs and regions among HPO tissues. Distributions of the consistently 
hypomethylated CpG sites (a) and hypermethylated CpG sites (b) across HPO tissues. Distributions of 
differentially methylated CpG sites between the hypothalamus and pituitary (c), hypothalamus and ovary (d), 
and pituitary and ovary (e). Distributions of the differentially methylated regions among HPO tissues (f).
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found that DMRs were more likely to occur at CGI shores, CGI shelves, exons, introns and intergenic regions, 
but were likely to deplete at CGIs, upstream and downstream regions (Fig. 6f). To gain insight into the bio-
logical processes in which DMR genes might be involved, we performed the Gene Ontology (GO) enrichment 
analysis on genes whose upstream regions exhibited at least one DMR. The significant GO terms are shown in 
Supplementary Fig. S7. We found that the most significantly enriched terms were the morphogenesis (such as the 
organ morphogenesis, cell morphogenesis and anatomical structure morphogenesis), and development (such as 
the reproductive structure development, reproductive system development and vasculature development), cell 
differentiation and cellular developmental process. These results suggested that these DMR genes were enriched 
in a tissue-specific manner and were involved in biological functions of HPO tissues, indicating that DNA meth-
ylation might play an important role in establishing and maintaining the tissue-specific functions of HPO tissues.

Discussion
The proper collaboration among HPO tissues is required for general developmental and reproductive processes 
in pigs. There are many reports demonstrating that DNA methylation plays an important role in the establish-
ment and maintenance of tissue-specific functions5, 28 and morphogenesis14, 29. In this study, we profiled the 
genome-wide DNA methylation of porcine HPO tissues to describe and compare the similarities, differences and 
interactions of methylation between CGIs and genes among HPO methylomes. We found that the methylomes 
of HPO tissues are tissue-specific, and that the methylation patterns of CpGs and CpHs are highly associated 
with their densities at gene and CGI locations. CpH methylomes are more dynamic than CpG methylomes. CGIs 
located in different genic features display different methylation patterns. The interactions of the methylation of 
CGIs and genes showed similar patterns in the CpG context, but displayed tissue-specific patterns in the CpH 
context. The dynamics of CpG methylation are likely to deplete in CGIs, upstream regions and exons but occur 
more frequently in CGI shores, CGI shelves and intergenic regions (Table 2).

Among HPO methylomes, we found that methylation levels of CpGs and CpHs located at CGIs and upstream 
regions in H appeared to be equal to those in P but higher than that in O (Fig. 1b,c and Table S1). These specific 
methylation patterns of CGIs and upstream regions might be due to the different functions and morphologies of 
HPO tissues. We also found that the CpG located at CGIs and upstream regions were protected from methylation 
dynamics (Fig. 6 and Table 2). The HypoCs tended to be found in CGIs and upstream regions, rather than in 
other CGI- and gene-related regions (Fig. 6a), which was in line with results from 26 different human tissues11. 
Moreover, these HypoCs tended to be located near the TSSs and were highly associated with house-keeping 
genes11. Additionally, the HyperCs were depleted in CGIs and upstream regions, but occurred more frequently 
in other CGI- and gene-related regions (Fig. 6b). In total, 74.44% and 70.49% of the CpGs located at CGIs and 
upstream regions were HypoCs or HyperCs across the HPO methylomes; furthermore, the enrichments of DMCs 
located at CGIs and upstream regions ranged from 0.42 to 0.65 (Table 2), which were much lower than the enrich-
ments of DMCs located CGI shores, CGI shelves and intergenic regions (ranging from 1.15 to 1.66, Table 2). 
These results suggest that the differences of the CpG methylation are overrepresented in CGIs and upstream 
regions but underrepresented in CGI shores, CGI shelves and intergenic regions. These observations indicate that 
CGIs and upstream regions are protected from methylation changes, which are consistent with previous studies 
of different human tissues11, 22.

Nevertheless, CpGs located at exons were also observed to be protected from methylation dynamics among 
HPO methylomes (Fig. 6 and Table 2). We found that 68.92% of CpGs located at exons were HypoCs or HyperCs 
(Fig. 6a,b). Among the comparisons of HPO methylomes, the enrichment of DMCs located at exons ranged from 
0.47 to 0.51 (Table 2), which was much lower than the enrichments of DMCs located at CGI shores, CGI shelves, 
introns, downstream and intergenic regions. These results indicate that CpGs located at exons are also protected 

Detected 
CpGs

DMCs between Hypothalamus 
and Pituitary

DMCs between Hypothalamus 
and Ovary

DMCs between Pituitary and 
Ovary

Number Enrichment Number Enrichment Number Enrichment

Total 1,403,700 14,744 — 33,809 — 29,759 —

CGI 556,039 3,509
0.48 
(P < 2.22 × 10−16)

7,313
0.42 
(P < 2.22 × 10−16)

7,612
0.52 
(P < 2.22 × 10−16)

CGI shores 294,560 3,452
1.15 
(P = 1.20 × 10−12)

8,044
1.18 
(P < 2.22 × 10−16)

7,391
1.24 
(P < 2.22 × 10−16)

CGI shelves 98,913 1,262
1.23 (P = 4.48 ×  
10−12)

3,383
1.47 
(P < 2.22 × 10−16)

2,493
1.21 
(P < 2.22 × 10−16)

Upstream 175,419 1,189
0.61 
(P < 2.22 × 10−16)

2,308
0.51 
(P < 2.22 × 10−16)

2,529
0.65 
(P < 2.22 × 10−16)

Exon 228,324 1,340
0.51 
(P < 2.22 × 10−16)

2,848
0.47 
(P < 2.22 × 10−16)

2,661
0.51 
(P < 2.22 × 10−16)

Intron 369,473 4,359
1.17 
(P < 2.22 × 10−16)

9,303
1.06 
(P = 9.39 × 10−7)

7,838 1.00 (P = 0.95)

Downstream 89,868 919 0.97 (P = 0.42) 2,114 0.98 (P = 0.27) 1,706
0.89 
(P = 2.22 × 10−6)

Intergenic 540,616 6,937 1.42 (P < 2.2 × 10−16) 17,236
1.66 
(P < 2.22 × 10−16)

15,025
1.63 
(P < 2.22 × 10−16)

Table 2. Distribution of differentially methylated CpGs among HPO methylomes. The enrichment of DMCs 
for certain genomic regions was using with a two-tail Fisher’s exact test.
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from the methylation dynamics among HPO methylomes, which was not consistent with previous observations 
made in human blood, brain, muscle and spleen tissues30, and 17 other human tissues22. Interestingly, there were 
more hypermethylated DMCs in exons in P than in H, but the numbers of the hypermethylated DMCs in introns, 
upstream, downstream and intergenic regions in P were lower than in H (Fig. 6c). Moreover, H3K36me3 modi-
fications frequently occur at exons31, and the DNA methylation of exons is enriched with the binding of CTCF32 
and MeCP233, which affects alternative splicing and transcription. These observations suggest that the methyl-
ation of exons shows specific patterns among HPO methylomes and reveals a complex epigenetic role of exons 
in the maintenance and establishment of tissue-specific biological functions. In addition, among HPO tissues, 
we also found the CpG methylation level within introns was higher than in exons among HPO tissues (Fig. 1c). 
This result was in line with observations in other porcine tissues12 but contrasted with reports based on human 
genomes34. The contrasting methylation patterns of introns and exons observed in humans and pigs might be 
explained by the differences in the evolution of these two species. The differences in methylation between introns 
and exons also support their roles in regulating pre-mRNA splicing33, 35.

Among HPO methylomes, we found that CpH methylation (Fig. 3b) was more variable than CpG methylation 
(Fig. 3a). Moreover, interactions of the methylation of CGIs and genes were expressed in a tissue-specific manner 
among HPO methylomes in the CpH context (Figs 4 and 5). These observations highlight the potentially impor-
tant epigenetic regulatory role of CpH methylation among HPO tissues. In this study, although the genome-wide 
DNA methylation patterns of HPO tissues were clearly illustrated, there were two main limitations. The first lim-
itation was that the comparisons of different methylation profiles were only performed among HPO tissues. The 
tissue-specific DNA methylation patterns among porcine HPO tissues will become clearer upon comparison with 
other tissues. Another limitation was that although RRBS is suitable for accurately capturing a comprehensive 
and representative fraction of CpGs36 and CpHs37 throughout the genome, the characterization of tissue-specific 
DNA methylation patterns among HPO tissues would be more complete if we were able to improve the coverage 
of the whole genome.

The functions and morphologies of HPO tissues are different from each other, and these characteristics might 
result in different DNA methylation patterns among HPO tissues. In the CGI- and gene-related regions, the 
methylation levels of O appeared to be the lowest, whereas those of H appeared to be the highest in a cytosine 
context (Table S1). The CpG methylation levels of the HPO methylomes all exhibited a bimodal distribution 
(Fig. 1a), as observed in previous studies38, 39 using RRBS, but the distributed features of these three tissues were 
clearly different from each other in the bimodal peaks (Fig. 1a). In addition, the average methylation levels of the 
CGI and gene locations were distinct from each other (Fig. 2). These observations that different tissues show dif-
ferent methylation patterns are consistent with previous studies30, 40 and suggest that there might be tissue-specific 
epigenetic gene regulatory mechanisms among different tissues. In the CpG context, the methylation of CGIs 
located in upstream regions was lower, compared with those in exons, introns, downstream and intergenic 
regions (Fig. 4a). These results are in line with previous studies showing that promoter CGIs are hypomethylated5,  
whereas intergenic and intragenic CGIs are preferentially susceptible to methylation in different tissues of 
humans21 and mice30. In conclusion, among HPO methylomes, both CpGs and CpHs display tissue-specific 
methylation patterns, and these tissue-specific patterns might play a vital role in guiding the establishment and 
maintenance of tissue-specific characteristics and functions of HPO tissues.

Methods
Sample preparation and ethics statement. Three HPO tissues were collected from three female 
Landrace × Yorkshire crossed gilts aged 180 days. Pig cares and experiments were approved by the Animal care 
and Use Committer of South China Agricultural University, Guangzhou, China (approval number: SCAU#2013-
10), and conductions were based on the Regulations for the Administration of Affairs Concerning Experimental 
Animals (Ministry of Science and Technology, China, revised in June 2004). Pigs were fed the same diet daily 
and reared in the same conditions and environments. HPO tissues were collected from these three pigs, and were 
frozen quickly in liquid nitrogen and then stored at −80 °C for further using.

RRBS library and sequencing. The library constructions and sequencing services were provided by 
RiboBio Co., Ltd. (Guangzhou, China).The genomic DNA of these three HPO tissues were extracted using a 
DNeasy Blood & Tissue Kit (Qiagen, Beijing), and then, after checking on the quality of the extracted DNA, one 
library was built for each tissue based on previously published RRBS studies36. The processes and procedures of 
RRBS libraries were briefed as follows. Firstly, the purified genomic DNA was digested overnight with MspI (New 
England Biolabs, USA). For the MspI digested segments, the sticky ends were filled with CG nucleotides and 3′ A 
overhangs were added. Secondly, methylated Illumina sequencing adapters with 3′ T overhangs were ligated to the 
digested segments, and the products obtained were purified. Then 110–220 bp fragments were selected and con-
verted by bisulfite using an EZ DNA Methylation Gold Kit (Zymo Research, USA). Lastly, libraries of 110–220 bp 
fragments were PCR amplified and each library was sequenced using one lane of an Illumina HiSeq 2500 and 
100 bp paired-end reads. The first two nucleotides were trimmed from all the second read sequences to blunt-end 
the MspI site. All reads were trimmed using Trim Galore (v0.4.0) software (Babraham Bioinformatics, http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and a Phred quality score of 20 as the minimum. The 
adaptor pollution reads and multiple N reads (where N >10% of one read) were removed to generate the clean 
reads. The quality control checks were performed by FastQC (v0.11.3) software (Babraham Bioinformatics). The 
clean reads were mapped to the porcine reference genome41 (Sscrofa 10.2, downloaded from Ensembl, http://
www.ensembl.org/Sus_scrofa/Info/Index), and then call the DNA methylation by Bismark (v0.14.5)42 with 
default parameters. For the overlapped reads, only the methylation calls of read 1 were used for in the process by 
Bismark with the option “—no_overlap”, in order to avoid scoring the overlapping methylation calls twice. The 
bisulfite conversion rates were calculated as the number of covered CpHs, which were unconverted, was divided 
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by the total number of covered CpHs43. The bisulfite conversion efficiencies of these nine libraries were 99.23%, 
99.15%, 99.17%, 99.47%, 97.57%, 99.41%, 99.47%, 99.45%, 99.40% for hypothalamus 1, hypothalamus 2, hypo-
thalamus 3, pituitary 1, pituitary 2, pituitary 3, ovary 1, ovary 2, ovary 3. Uniquely mapped reads were retained 
for further analyses. These nine RRBS data were submitted to European Nucleotide Archive (accession number: 
PRJEB16678). For cytosine sites, reads from specific strand where this cytosine located at were used to calculate 
the methylation levels.

Annotation of CGI and gene location. Porcine CGI locations were downloaded from UCSC (http://
hgdownload.soe.ucsc.edu/goldenPath/susScr3/database/). CGIs were described as regions >200 bp in length, 
with a C and G percentage >0.5, and a ratio of the observed CpG/expected CpG >0.6. The expected CpG was 
calculated as (GC content/2)2. The +/− 2 kb regions outside of CGIs were defined as CGI shores, and the +/− 
2 kb regions outside of CGI shores were defined as CGI shelves. Gene locations were downloaded from Ensembl 
(http://www.ensembl.org/Sus_scrofa/Info/Index). Basing on gene locations of Ensembl, the porcine genome was 
separated into five genic features, which were upstream, exonic, intronic, downstream and intergenic regions 
(see Supplementary Fig. S2). The upstream region was 5 kb upstream region of the TSS. The exon was defined as 
the integration of 5′UTR, CDS and 3′UTR arranging from the TSS to the TES. The intron was determined as the 
integration of introns arranged from the TSS to the TES. The downstream region was 5 kb downstream region of 
the TES. The intergenic region was denoted as the outside regions of upstream, exonic, intronic and downstream 
regions.

According to previous studies on the localization of CGIs44 and fragments45 to genomic features, we localized 
CGIs to genic features. When more than 50% of a CGI overlapped with a specific genic feature, that CGI was 
classified with the specific genic feature (see Supplementary Fig. S2). For example, when the overlap ratio between 
a CGI and the upstream genome sequences was greater than 50%, that CGI was defined as an upstream CGI, 
and the related genes were referred to as the CGI-Upstream genes. When the overlap ratio between a CGI and 
exons was greater than 50%, that CGI was defined as an exonic CGI, and the related genes were referred to as the 
CGI-Exon genes.

Analysis and calculation. After DNA methylation calling by Bismark for these nine RRBS data, 1,403,700 
CpGs and 7,580,489 CpHs covered by at least five reads and coexisted across all tissues were remained for further 
analysis. The methylation level of a cytosine was calculated as the methylated reads of this cytosine divided the 
total covered reads. The methylation level of one kind of tissues was calculated by the average methylation level 
across the three replicates in each cytosine context. For the specific region, the methylation level was the average 
level of cytosines covered in this region. To profile the DNA methylation patterns at gene and CGI locations, 
the gene locations were divided into 20, 40 and 20 bins for Up5k, gene body and Down5k, respectively, and CGI 
locations were divided into 20, 20 and 20 bins for Up2k, CGIs and Down2k, respectively. These analyses were 
undertaken by Perl and R scripts.

The significant differences between two groups were tested using the Student’s test. Pearson’s correlation anal-
ysis was performed for all correlation analysis. The average CpG methylation and the numbers of genes were 
counted per 1 Mb window (on overlapping) to explore their Pearson’s correlation. The CpG methylation level of 
each 1 Mb window was calculated as the average methylation level of covered CpGs in this window. The gene den-
sity was the number of genes in each window. The DMCs and DMRs were calculated by the R package “DSS”46, 47. 
The CpGs, whose methylation levels changed more than 20%, were identified as DMCs according to a Wald test 
(P ≤ 0.01). DMRs were defined as the regions containing at least three continuing DMCs and more than 50 bp 
in length. The enrichment of DMCs for certain genomic regions was using with a two-tail Fisher’s exact test. The 
GO enrichment analysis of biological processes were undertaken by the R package “clusterProfiler”48 according 
to the over-representation test49 (P ≤ 0.05). The background of the GO enrichment analysis was the genes who 
exhibited at least one DMR.
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