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Abstract

Background: Alzheimer’s disease affects ~13 % of people in the United States 65 years and older, making it the
most common neurodegenerative disorder. Recent work has identified roles for environmental, genetic, and
epigenetic factors in Alzheimer’s disease risk.

Methods: We performed a genome-wide screen of DNA methylation using the Illumina Infinium
HumanMethylation450 platform on bulk tissue samples from the superior temporal gyrus of patients with
Alzheimer’s disease and non-demented controls. We paired a sliding window approach with multivariate
linear regression to characterize Alzheimer’s disease-associated differentially methylated regions (DMRs).

Results: We identified 479 DMRs exhibiting a strong bias for hypermethylated changes, a subset of which
were independently associated with aging. DMR intervals overlapped 475 RefSeq genes enriched for gene
ontology categories with relevant roles in neuron function and development, as well as cellular metabolism,
and included genes reported in Alzheimer’s disease genome-wide and epigenome-wide association studies.
DMRs were enriched for brain-specific histone signatures and for binding motifs of transcription factors with
roles in the brain and Alzheimer’s disease pathology. Notably, hypermethylated DMRs preferentially overlapped
poised promoter regions, marked by H3K27me3 and H3K4me3, previously shown to co-localize with aging-
associated hypermethylation. Finally, the integration of DMR-associated single nucleotide polymorphisms with
Alzheimer’s disease genome-wide association study risk loci and brain expression quantitative trait loci
highlights multiple potential DMRs of interest for further functional analysis.

Conclusion: We have characterized changes in DNA methylation in the superior temporal gyrus of patients
with Alzheimer’s disease, highlighting novel loci that facilitate better characterization of pathways and
mechanisms underlying Alzheimer’s disease pathogenesis, and improve our understanding of epigenetic
signatures that may contribute to the development of disease.
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Background
Alzheimer’s disease (AD) is the most common neurode-

generative disorder and the leading cause of dementia in

the elderly [1]. Diagnosis of AD is based on the presence

of neurofibrillary tangles and amyloid plaques [2], and

symptoms typically include memory loss and impaired

cognitive ability. Although the pathological hallmarks

associated with dementia-related symptoms in AD ap-

pear largely similar between both the early-onset and

late-onset forms of the disease, their underlying etiolo-

gies contrast [3]. Whereas early-onset AD is a familial

autosomal dominant disorder caused by rare, highly

penetrant mutations in one of a small set of genes (APP,

PSEN1, and PSEN2), the more common late-onset form

of the disease (accounting for 90–95 % of cases) occurs

sporadically, and risk is determined by complex under-

lying mechanisms [3–6]. Estimates based on twin con-

cordance rates suggest heritability of late-onset AD is as

high as 70 %, implicating major roles for genetic as well as

non-genetic factors [6]. Indeed, through candidate gene

studies, as well as more recent genome-wide association

studies (GWASs) and whole-exome sequencing, both

common and rare variants associated with the late-onset

form of AD have been identified [7–11]. Collectively,

however, common GWAS variants account for only a

modest proportion (~30 %) of the underlying variance

in disease susceptibility [12]. Several environmental

factors are also thought to play a role [5, 6], yet exactly

how these contribute to risk, onset, and progression

remains poorly defined.

Recently, there has been increasing interest in the role

of epigenetic mechanisms in the interaction between the

genome and environment in human diseases [13, 14],

including AD [15, 16]. Epigenetic alterations can be

defined as modifications to DNA that impact gene

expression and phenotype without a change in the

nucleotide sequence. These changes can arise within

cells of an individual and be maintained through mitosis

[17], as well as passed from parent to offspring meiotic-

ally [18]. One of the best-studied epigenetic modifica-

tions involves changes in DNA methylation at CpG

dinucleotides. The establishment of DNA methylation is

essential for normal cell development and differentiation

[19], and impacts many key cellular processes, including

gene regulation [20], X chromosome inactivation [21, 22],

and genomic imprinting [23]. The application of genome-

wide methylation profiling techniques has led to a rapid

increase in the characterization of methylation patterns

across the genome, and has facilitated the identification of

differentially methylated regions (DMRs) associated with

evolutionary processes [24], human aging [25–29], cancer

[30, 31], and complex disease [32–35].

Several lines of evidence point to the influence of

DNA methylation in AD pathogenesis [15], including

direct connections between AD and DNA methylation

that have been observed both globally and at specific

loci. For example, differences in tissue-wide methylation

patterns in disease-relevant brain regions have been

reported in patients with AD compared to controls, as

well as in monozygotic twins discordant for AD [36, 37].

Locus-specific examples from targeted gene studies also

demonstrate a role for DNA methylation changes in

AD and include observed disease-associated differences at

ribosomal RNA gene promoters [38], genome-wide LINE-

1 elements [39], and known AD susceptibility genes [40].

More recently, three epigenome-wide studies (EWAS)

have been conducted in AD, collectively generating DNA

methylation profiles from three different brain regions of

patients with AD [41–43], observing both cross-tissue and

tissue-specific effects. Importantly, each of these studies

discovered differentially methylated CpGs outside of well-

established AD genetic risk loci, highlighting the potential

utility of EWAS in the characterization of novel genes and

pathways underlying disease processes.

In the present study, we have used the Illumina Infi-

nium HumanMethylation450 array platform to conduct

a genome-wide screen of DNA methylation in the super-

ior temporal gyrus (STG) of 34 patients with AD and 34

controls, a brain region recently demonstrated to be a

site of significant AD-associated gene dysregulation [44].

Building on previous EWAS in AD, which have primarily

focused on single CpG analysis, we applied our recently

developed pipeline that aims to identify DMRs harboring

multiple statistically significant CpGs exhibiting con-

cordant disease-associated changes in methylation [32].

Using this approach we have identified novel and robust

DMRs associated with >400 coding transcripts, many of

which have known roles in brain function and AD

pathology. Additionally, we show that identified DMRs

co-localize with other functional epigenetic signatures in

brain tissues, overlap with risk loci identified in AD

GWASs and previous EWASs, and harbor expression

quantitative trait loci (eQTLs) associated with changes

in brain gene expression.

Methods

Study subjects and sample preparation

Tissue samples from the STG of 34 patients with confirmed

late-onset AD and 34 non-demented controls matched by

age of death (AOD), race, and gender were obtained from

the Mount Sinai Brain Bank (www.mssm.edu/research/

labs/neuropathology-and-brain-banking). Each donor had

previously undergone a battery of pathological evaluations,

and diagnosis of AD was based on both clinical and neuro-

pathological criteria [44] (Additional file 1: Table S1).

Patients with AD had a mean clinical dementia rating of

3.3, a Braak Stage score average of 5.7 (see [44] for staging

classification), a mean cortical plaque density of 19.8 based
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on measurements from five cortical brain regions [44], and

a mean AOD of 79.1 years (range, 66–92 years). Controls

were determined to have negligible cortical plaque densities

(mean, 0.64), and either no evidence of or only mild clinical

symptoms of dementia (mean clinical dementia rating,

0.87; mean Braak Stage score, 1.4), with a mean AOD of

80.5 years (range, 66–95 years). Diagnostic and dementia

assessment consent procedures were approved by the insti-

tutional review boards of Mount Sinai Medical Center,

Jewish Home and Hospital, and the JJ Peters VA Medical

Center. Consents for brain donation were obtained in

writing from the legal next of kin of all donors.

Tissue dissections and sample preparations were

carried out following previously published protocols

(see [44–47]). Briefly, following dissections, samples

were subjected to proteinase K digestion and treatment

with RNAse A. Genomic DNA was then isolated using

standard phenol/chloroform extraction and ethanol

precipitation methods.

Infinium HumanMethylation450 BeadChip processing

One microgram of DNA from each sample was sodium

bisulfate-treated using the EZ DNA Methylation Kit

(Zymo Research, Irvine, CA, USA) and processed for

analysis on the Illumina Infinium HumanMethyla-

tion450 (Illumina, San Diego, CA, USA) array platform

at the Mount Sinai Icahn School of Medicine genomics

core facility (New York, NY, USA). Subjects were distrib-

uted across six BeadChips (12 samples/array) taking into

account AOD, gender, race, and case–control status to

mitigate anomalies resulting from potential batch effects.

The GenomeStudio Methylation Module Package (ver-

sion 1.9, Illumina) was used for initial data processing,

allowing for the calculation of methylation values

(expressed as β-values, ranging from 0 to 1) and detec-

tion P-values for 482,421 individual probes spanning the

22 autosomes and sex chromosomes. Owing to differ-

ences in sex chromosome number between males and

females, and the fact that our cohort was of mixed gen-

der, only autosomal loci were considered here.

Before proceeding to statistical analysis, data were

processed further following the pipeline developed by

Huynh et al. [32]. Probes meeting the following criteria

known to impact array performance were excluded: (1)

those mapping to more than one position in the human

reference genome (build NCBI36; hg18) using BSMAP

[48], allowing a maximum of two mismatches and three

gaps; and (2) those probes for which a 1000 Genomes

Project [49, 50] single nucleotide polymorphism (SNP;

minor allele frequency ≥ 0.05) mapped to within 5 base

pairs (bp) of the probe-targeted CpG. In addition, on a

per sample basis, individual β-values for a given CpG

were not considered if their detection P-value was > 0.01.

Data for the 461,272 remaining autosomal CpGs

passing our exclusion criteria in the 68 individuals were

color and background adjusted, and quantile normalized

using lumi and methylumi, implemented in R [51, 52]

(www.R-project.org). The Beta Mixture Quantile Method,

as implemented in BMIQ version 1.3 [53], was also ap-

plied to the data to correct Infinium I/II probe type bias.

Plots from principal component analysis using autosomal

methylation profiles from the 68 samples did not reveal

major batch effects or anomalous samples. Raw and proc-

essed data for all samples have been deposited in GEO

under accession GSE76105.

Identification of DMRs associated with Alzheimer’s

disease in the superior temporal gyrus

We first employed linear regression to delineate disease-

specific effects on methylation between cases and controls

at each of the 461,272 autosomal CpGs. Linear models

were developed to account for various independent

variables in addition to disease status, including AOD,

gender, race, array/batch, and neuronal/glial cell compos-

ition. Post-mortem interval was not included in the test

model because there was no significant difference ob-

served between cases and controls (t-test, P = 0.881). Cell

proportions were estimated from our bulk tissue samples

using the CETS R package, developed from 450 K array pro-

files of sorted neuronal and glial cell subsets from 59 adult

individuals [54]. When evaluating results of linear regression,

neuronal proportion (NP) was considered only for 154,874

CpGs previously reported to be differentially methylated be-

tween the two cell types [54]. For these CpGs, we used the

following model: β=AOD+ gender + race + array +NP+

disease status. For all remaining CpGs, NP was not included

in the model. CpGs exhibiting average increases in methyla-

tion within the AD group as compared to controls (based

on regression coefficients associated with disease sta-

tus) were defined as hypermethylated (hyper) and

those exhibiting decreases as hypomethylated (hypo).

Significant CpGs were clustered into DMRs using a 1

kilobase (kb) sliding window, modified from the genome-

tiling method described by Bock [55], and previously

developed and implemented by Huynh et al. [32]; a

window size of 1 kb was previously shown to be optimal

for Illumina Infinium HumanMethylation450 array data

based on correlations between methylation levels of

closely neighboring CpGs [32]. Fisher’s method was

used to combine one-sided regression P-values across

neighboring CpGs within a given 1 kb window, while

taking into account methylation state (i.e., hyper vs.

hypo). The positions of CpGs on either end of a signifi-

cant window demarcated the coordinates of each DMR.

Combined P-values for each window/DMR were cor-

rected using the Benjamini–Hochberg method for false

discovery rate (FDR) [56]; DMRs meeting a 1 % FDR

cutoff were used for downstream analyses.
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CpG/DMR annotation and overlap with genomic features

Probes/CpGs were annotated based on their overlap

with specific genomic features using BedTools version

2.1 [57]. Features included functional RefSeq (hg18)

genes and promoters (defined as ± 2 kb from the tran-

scriptional start site, TSS), where CpGs were considered

to be intergenic if they overlapped neither gene bodies

nor promoters; CpG islands (CpGi; UCSC/hg18 annota-

tion), shores (±2 kb from CpGi), shelves (±2 kb from

CpG shores), and sea (not within islands, shores, or

shelves); and DNaseI hypersensitivity sites and histone

marks (H3K9ac, H3K27ac, H3K27me3, H3K4me1, and

H3K4me3) in various human brain datasets generated

as part of the ENCODE and REMC projects and curated

as described previously [58, 59].

DMR enrichments in specific gene-related and CpGi-

related features were tested using the χ-square test, by

comparing the proportions of DMR-CpGs within the

genomic features to the overlap of these features with a

background list of 461,272 autosomal CpGs from the

450 K array. For instances in which DMRs overlapped

both a promoter and gene body, the promoter annota-

tion was given precedent. The enrichment of DMRs

overlapping ENCODE and REMC datasets was tested

using INRICH [60]; DMRs (hyper and hypo were con-

sidered separately) were used as test regions, the curated

histone marks were used as target regions, and again the

background set of 450 K CpGs was used as the map file.

INRICH estimates if the DMRs overlap curated histone

marks more than expected by chance; DMRs were per-

muted within the genome but matched to the associated

DMRs in terms of the number of DMR sites and the num-

ber of overlapping histone marks. Empirical P-values were

estimated based on 10,000 permutations.

RefSeq gene promoters (±2 kb TSSs) overlapped by

DMRs were assessed for potential enrichments of de-

fined transcription factor binding sites (TFBS) character-

ized in human lymphoblastoid cell lines (LCLs; n = 282

TFBS motifs), and a human medulloblastoma cell line

(n = 258 TFBS motifs). Specifically, we used LCL TFBS

reported by Pique-Regi et al. [61] characterized using

the CENTIPEDE algorithm, after removing binding

motifs lacking specifically assigned TFs; medulloblas-

toma TFBSs were defined as sites where evolutionarily

conserved binding motifs of human/mouse/rat TFs

overlapped regions of open chromatin based on DNaseI/

formaldehyde-assisted isolation of regulatory elements/

chromatin immunoprecipitation synthesis [58, 62].

The UCSC tracks used to compile the medulloblas-

toma dataset were found at http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeOpenChromSynth and

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/

tfbsConsSites. Enrichments were calculated by comparing

the counts of TFBSs within our set of DMR-associated

promoters to the number of counts occurring in a

background list of all RefSeq promoters overlapped by

all sampled 450 K probes. The significance of enrichments

was assessed using Fisher’s exact test (P-values were

Bonferonni corrected, with a threshold set to P < 0.01),

including only motifs found in at least 5 % of the 276

tested DMR-associated gene promoters. Gene ontology

(GO) enrichments for DMR-associated genes were assessed

using GOrilla [63].

Assessing DMRs in the context of GWAS SNPs and brain

eQTLs

The GWAS SNPs used were downloaded from the

NHGRI GWAS Catalog [64], using entries under

“Alzheimer’s Disease” (access date: December 2014),

including SNPs recently reported in a large meta-analysis

[11]; only SNPs with P-values < 10−6 were considered. To

generate brain eQTLs, we used the gene expression and

genotyping datasets Braincloud [65] [GEO accession

number: GSE30272], NIA/NIH [66] [GEO accession num-

ber: GSE15745], Harvard Brain Tissue Resource Center

[67] [GEO accession number: GSE44772], and UK Brain

Expression Consortium [68] [GEO accession number:

GSE46706]. Brain eQTLs were determined using methods

published previously [69]. To detect the overlap among

the index GWAS AD SNPs and eQTLs we used the

regulatory trait concordance (RTC) approach [70, 71].

The RTC method detects the overlap of disease-associated

variants with functional SNPs, accounting for the correl-

ation structure in the genome (i.e., linkage disequilibrium,

LD). RTC scores range from 0 to 1, with values ≥0.9 indi-

cating likely causal regulatory effects, as demonstrated

previously [70, 71]. For downstream analysis described

here we consider pairs of AD GWAS SNP–eQTLs with

RTC ≥0.9. The enrichment analysis of DMRs with AD-

associated eQTLs was conducted using the GoShifter

package (https://www.broadinstitute.org/mpg/goshifter/).

GoShifter estimates the significance of overlap between

trait-associated variants (AD-associated eQTLs) and epi-

genome annotations (DMRs), by generating null dis-

tributions of randomly shifting annotations locally

within a tested region. For this analysis we used

10,000 permutations.

Technical validation of CpG methylation

Primers for locus-specific Sequenom MassARRAY Epi-

TYPER (Sequenom, San Diego, CA, USA) assays were

designed using the EpiDesigner primer design software

(http://www.epidesigner.com/start3.html). The same

bisulfite-converted DNA samples used for array analysis

were used for EpiTYPER PCR amplification following

manufacturer’s specifications, and post-PCR sample pro-

cessing and imaging were carried out at the Einstein Col-

lege of Medicine Genomics Core (New York, NY, USA).
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β-values generated by the two technologies were com-

pared using the Pearson’s correlation coefficient (r).

Results and discussion

Identification of DMRs in the superior temporal gyrus of

patients with Alzheimer’s disease

Although many brain regions are affected throughout

the progression of AD, an extensive study of gene

expression changes associated with late-onset AD sever-

ity across 15 brain regions recently found the STG to be

a site of significant gene dysregulation [44], motivating

our focus on this specific region in the present study.

We conducted genome-wide profiling of DNA methyla-

tion in STG bulk tissue samples from 34 patients with AD

and 34 non-demented controls. Quality control processing

(see “Methods”) ultimately resulted in high-quality methy-

lation data for 461,272 autosomal CpGs in each of the 68

individuals for differential methylation analysis. Before

proceeding to tests for differential methylation, we tested

the reproducibility of our 450 K array data by assessing the

extent of technical variation at CpGs within five genomic

regions using independent locus-specific EpiTYPER PCR-

based assays in 30–55 individuals from our cohort. Methy-

lation estimates for the six CpGs tested on both platforms

were significantly correlated between the two technologies

(P < 0.005; Additional file 2: Table S2).

Recent studies of genome-wide DNA methylation have

revealed considerable effects of age [25–29], gender [72],

ethnicity [73], and cellular composition [19, 54, 74, 75].

Although our disease and control samples were relatively

well matched for AOD, gender, and ethnicity, our esti-

mations of neuronal versus glial cell proportions re-

vealed a smaller proportion of neuronal cells in our AD

samples (AD mean = 0.247; Control mean = 0.303; t-test,

P = 0.00099; Additional file 3: Figure S1). This is consist-

ent with histological studies reporting neuronal loss in

the brains of patients with AD [76]. Thus, we used

multivariate linear regression to delineate significant

AD-associated effects on DNA methylation while ac-

counting for potential effects of these variables. It is

worth noting that when we repeated our analysis with-

out considering neuronal proportions using a t-test (data

not shown), we found that a large fraction of the CpGs

that were significantly associated with AD (~62 %) were

also found to have significant differences in methylation

(>5 %) between neuronal and glial cells [54], demonstrat-

ing the importance of incorporating cell composition

information into methylation studies in DNA extracted

from bulk tissue.

We first compared results from our linear regression

analysis to the top 100 CpGs recently reported from an

EWAS conducted in STG tissue in a separate cohort of

patients with AD and controls [42]. Of the 96 CpGs also

screened in our study, 22 (22.9 %) were found to be

differentially methylated with the same directional

change in patients with AD in our cohort (P < 0.05, one-

tailed). We also assessed the degree of methylation

differences associated with disease in our samples com-

pared to the Lunnon et al. [42] cohort for these same 96

CpGs, and observed a significant correlation between

the two datasets (r = 0.34; P = 0.00067; Additional file 4:

Figure S2). The extent of replication observed between

our two cohorts is comparable to that initially reported

by Lunnon et al. [42] between their samples and other

independent cohorts. The incomplete overlap across

studies is to be expected given the smaller sample sizes

studied to date. Analogous to what has been observed in

genetic studies such as GWAS, with increases in cohort

sizes, we should expect to see stronger and broader

reproducibility of EWAS results.

To increase power in EWAS using smaller disease

cohorts, several methods have recently been developed

to extend beyond single CpG analysis by leveraging

concordant statistical signals from neighboring CpGs to

identify DMRs [55, 77]. For our primary analysis, we

paired linear regression with a 1 kb sliding window

method [32] to search for regions of the genome

containing clusters of CpGs exhibiting similar changes

in methylation with disease, limiting the likelihood of

identifying false positives and allowing for the identifica-

tion of more robust DMRs. The distribution of all tested

autosomal CpGs and DMR-associated Fisher’s P-values

(FDR-corrected) are displayed in Fig. 1a. Based on a 1 %

FDR cutoff, we identified 479 DMRs, with an average

size of 927 bp (Additional file 5: Figure S3A). In total, these

DMRs included 4,565 CpGs, 48 % of which were independ-

ently significant based on linear regression (P < 0.05, one-

tailed), with an average of 4.63 significant CpGs per DMR

(min = 1, max = 24; Additional file 5: Figure S3B). Summary

data and annotation for all DMR-CpGs are provided in

Additional file 6: Table S3.

Globally, population-wide (AD and controls) β-value

averages across all 461,272 autosomal CpGs showed a

bimodal distribution (Fig. 1b), with the majority of

values falling either below 0.2 or above 0.8. The DMRs

identified in our study were strongly biased toward

hypermethylated changes (increased in AD; hyper-

DMRs = 321, hypo-DMRs = 158; Fig. 1c). Given that AD

is linked to aging, it is interesting that CpG DNA methy-

lation has also been shown to increase with age in

multiple studies of the human brain [25, 28]. Significant

AD-associated CpG methylation was also recently re-

ported to independently correlate with age [41]. We fur-

ther investigated potential links between AD-DMR

CpGs and aging in our dataset by assessing the effects of

sample AOD on methylation at the top significant CpG

within each DMR (hyper, n = 321; hypo, n = 158) in
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control samples (n = 34; ages = 66–95), again using multi-

variate linear regression to account for effects of gender,

ethnicity, array/batch, and neuronal/glial proportions. Of

the hypermethylated DMR-CpGs, ~21.8 % were

significantly associated with AOD (P < 0.05), compared to

only ~12 % of hypomethylated DMR-CpGs (Additional

file 7: Figure S4A). The degree of significance (−log10 P-

value) and absolute estimated regression coefficients

were also higher on average for hypermethylated DMR-

CpGs (Additional file 7: Figure S4B).

Similar to recent reports in AD and other complex

diseases [32–35, 41–43], excluding cancer, the average

Fig. 1 Genome-wide distribution and characteristics of differentially methylated regions identified in the superior temporal gyrus of patients with
Alzheimer’s disease (AD). a Manhattan plot showing -log10 P-values from the sliding-window analysis of autosomal CpGs in AD cases versus controls.
b Comparison of population level mean β-values for hypomethylated (blue, n = 1,260) and hypermethylated (red, n = 3,395) CpGs, and background
CpGs (black; all autosomal CpGs screened, n = 461,272). c Distribution of per CpG mean β-value changes associated with AD status (>0, red; <0, blue)
estimated by multiple regression, after regressing out effects of age, gender, race, and neuronal/glial cell proportions. Only data for CpGs within DMRs
that were independently significant by linear regression (P < 0.05; n = 2,220) are plotted
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effect of disease state on CpG methylation was modest

(Fig. 1c), with an average absolute β-value change of

0.021 at significant CpGs within DMRs. When only the

top CpG per DMR with respect to β-value change was

considered, this mean difference increased slightly to

0.03. Importantly, however, even modest differences in

methylation have been shown to associate with signifi-

cant alterations in gene expression [32, 34, 41–43].

Nonetheless, despite modest methylation differences,

we observed consistent changes amongst neighboring

CpGs within DMRs. For example, genomic regions for

two DMRs are plotted in Fig. 2, illustrating consistent

AD versus control group differences across each locus.

The 25 most significant DMRs by FDR-corrected P-value

and associated data are shown in Table 1, including the

physical relationship of each DMR to RefSeq gene annota-

tions. Eight of the genes overlapped by these top 25 DMRs

(LOC100507547, PPT2, PPT2-EGFL8, PRDM16, PRRT1,

C10orf105, CDH23, and RNF39) were also among genes

recently reported to be associated with the most signifi-

cantly differentially methylated CpGs in one or more of

three brain regions (entorhinal cortex, prefrontal cortex,

or STG) in patients with AD [42, 43].

In total, we found that ~92 % of DMR-CpGs directly

overlapped RefSeq gene transcript coordinates. However,

their distribution within different gene features depended

on methylation state. For example, compared to the distri-

bution of all 450 K array CpGs, CpGs within hyper-DMRs

were more commonly found in gene promoters (±2 kb

TSSs), whereas CpGs in hypo-DMRs were enriched in the

gene body of RefSeq transcripts (Fig. 3a). CpGs in

hyper-DMRs also showed preferential overlap with

CpGi’s (Fig. 3b).

Analysis of DMRs in the context of gene ontology and

functional genomic datasets in the human brain

The top DMR in our dataset (Table 1) overlapped the

RNA helicase gene MOV10L1. Although little is known

about the specific function of this gene in the brain, many

other genes associated with top DMRs have reported roles

in brain function, such as RNF39, KLK7, DUSP6, NAV2,

and NRG2. In the context of AD pathology, the protein

KLK7 (Fig. 2b; Table 1) was recently shown to cleave and

degrade β-amyloid (Aβ) and mitigate Aβ-mediated toxicity

in vitro [78], possibly consistent with the observed nega-

tive correlation between KLK7 expression and AD disease

severity [79]. DUSP6 was recently shown to be a target of

the AD-associated microRNA miR-125b, exhibiting de-

creased expression in AD brains; notably, knockdown of

DUSP6 in primary hippocampal neurons lead to a signifi-

cant increase in tau protein hyperphosphorylation, a key

hallmark of AD [80].

Fig. 2 Neighboring CpGs within significant differentially methylated regions (DMRs) exhibit consistent between-group differences in DNA
methylation. Zoomed -log10 P-value plots for chromosome 22 (a, upper panel) and chromosome 19 (b, upper panel). The positions of significant DMRs
corresponding to plotted green points in (a) and (b) are shown in the context of RefSeq gene annotations (hg18) for promoter regions of MOV10L1

(a, middle panel) and KLK7 (b, middle panel). The approximate positions of each DMR are indicated by red shaded boxes. Detailed images for each locus
(lower panels) showing individual CpG β-values, with Alzheimer’s disease (AD) samples shown in blue and control samples in gray. The AD and control
group mean β-values are indicated by solid blue and gray lines, respectively. Mb megabase
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It is also interesting that several of the top DMR-

associated genes are involved in adiposity, fat distribu-

tion, and the synthesis and metabolism of cholesterol

and lipids (PRDM16, TBX15, ELOVL1, and AGPAT1)

[81, 82]. GO enrichments in categories related to choles-

terol/lipid metabolism are among the highest observed

for AD risk genes identified by GWAS [83]; alterations

in the expression of related genes have been observed

previously in the same cohort studied here [84–86].

Experimental data also highlight the potential importance

of genes involved in these processes in AD pathology, with

alterations in lipid and cholesterol levels having been

observed in the blood, cerebrospinal fluid, and brains of

patients with AD [87, 88], and associated with cogni-

tive performance [89]. Furthermore, at the molecular

level, both cholesterol and lipids have important roles

in modulating the production and aggregation of Aβ

via interactions with well-known mediators of AD

pathogenesis and risk, such as APP, APOE, PSEN1,

and BACE1 [90, 91].

To more broadly explore the potential function of genes

overlapped by AD-associated DMRs, we conducted GO

analysis using a list of 475 RefSeq genes containing DMRs

within their promoters and/or gene bodies. After FDR

correction (q < 0.2) and the removal of terms associated

with five or fewer genes, compared to a background list of

RefSeq genes overlapped by CpGs found on the 450 K

array, DMR-associated genes were enriched for 30 GO

terms linked to biological processes, three GO terms

linked to cellular components, and four GO terms linked

to molecular function (Fig. 4a; Additional file 8: Table S4).

Significant GO terms included “regulation of neuron

Table 1 Top 25 differentially methylated regions associated with Alzheimer’s disease in the superior temporal gyrus

Chr Start, hg18 End, hg18 DMR
length

Number
of CpGs

Associated
genes

DMR
P-value

DMR state Largest β
difference

Most significant
P valuea

CpG IDb

chr22 48870305 48871199 894 13 MOV10L1 4.26E-20 Hyper 0.069 1.19E-06 cg10828284

chr6 33352149 33354467 2318 53 B3GALT4 1.48E-14 Hyper 0.03 0.00141 cg13882090

chr12 88267918 88269805 1887 13 DUSP6 3.94E-11 Hyper 0.045 7.58E-05 cg05769889

chr1 119332644 119334449 1805 18 TBX15 1.27E-10 Hypo 0.039 0.00207 cg03942051

chr6 30202278 30203782 1504 31 intergenic (nearest
gene, TRIM40)

1.28E-09 Hyper 0.03 0.00084 cg08548396

chr6 30081535 30083688 2153 53 HLA-J, ZNRD1-AS1 3.65E-09 Hyper 0.05 0.00192 cg05187508

chr1 3181078 3183141 2063 12 PRDM16 6.99E-09 Hypo 0.038 6.17E-05 cg19263228

chr1 43606133 43607345 1212 12 ELOVL1 7.72E-08 Hypo 0.023 0.00037 cg06350161

chr22 44187332 44188708 1376 17 RIBC2, SMC1B 8.38E-08 Hyper 0.037 0.0008 cg22884516

chr19 56178712 56179781 1069 11 KLK7 8.38E-08 Hyper 0.038 0.0003 cg27497839

chr11 5573477 5574985 1508 10 TRIM6, TRIM6-TRIM34 1.64E-07 Hyper 0.098 0.001 cg00375457

chr12 131575796 131576836 1040 30 FBRSL1 1.79E-07 Hyper 0.028 0.00117 cg25694349

chr6 32252644 32254758 2114 39 AGPAT1, RNF5, RNF5P1 1.79E-07 Hypo 0.032 0.00267 cg11043450

chr2 70977195 70981085 3890 32 VAX2 2.83E-07 Hypo 0.021 0.0005 cg03711129

chr6 32225354 32230126c 4611 70 LOC100507547, PPT2,
PPT2-EGFL8, PRRT1

3.42E-07 Hyper 0.024 0.00044 cg01111041

chr10 73148990 73149855 865 6 C10orf105, CDH23 4.38E-07 Hypo 0.034 0.00036 cg18668540

chr6 168159909 168161482 1573 15 KIF25 4.91E-07 Hyper 0.063 0.00055 cg03873264

chr5 139207501 139208427 926 8 NRG2 7.06E-07 Hyper 0.035 1.63E-05 cg15992535

chr6 30146232 30147781 1549 40 RNF39 1.33E-06 Hyper 0.046 0.034 cg03293507

chr5 79021180 79021917 737 12 CMYA5 1.48E-06 Hyper 0.03 0.00351 cg23279355

chr13 32120874 32125755 4881 70 TNXB 2.43E-06 Hypo 0.025 0.00034 cg15786918

chr11 20089216 20089500 284 2 NAV2 2.93E-06 Hypo 0.032 1.41E-09 cg12711760

chr6 32912605 32914526 1921 28 TAP2 4.02E-06 Hyper 0.032 0.00039 cg03438552

chr19 9334057 9335129 1072 13 ZNF177, ZNF559-ZNF177 5.40E-06 Hyper 0.019 2.04E-05 cg17283453

chr6 30819377 30821226 1849 44 FLOT1,IER3 5.65E-06 Hyper 0.031 0.00012 cg13137376
a
P-value from per CpG linear regression before DMR/sliding-window analysis
bCpG corresponding to most significant P-value in DMR (a)
cDMR encompassing single nucleotide polymorphisms in linkage disequilibrium with Alzheimer’s disease genome-wide association study loci/brain expression

quantitative trait loci (see also Additional file 11: Table S7)

DMR differentially methylated region
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differentiation” (P = 2.93 × 10−5, enrichment = 2.39),

“axonogenesis” (P = 1.58 × 10−4, enrichment = 4.12), and

“regulation of neurogenesis” (P = 8.53 × 10−5, enrich-

ment = 2.13), associated with biological processes that

point to roles of DMR-genes in the development of

neurons and other cells in the nervous system. In

addition, as noted for several genes in the top DMR list,

multiple ontology terms associated with cellular metab-

olism were also enriched for DMR-associated genes

(Fig. 4a; Additional file 8: Table S4).

We next assessed the association of our DMRs with

functional genome-wide datasets generated in non-

diseased brain tissue/cell lines. During development and

cellular differentiation, DNA methylation is known to

act in concert with chromatin alterations such as histone

methylation and acetylation to modify gene expression

programs [92]. Furthermore, the occurrence of histone

modifications can illuminate genomic regions with func-

tional properties in the context of disease [69]. Thus, to

explore whether our DMRs overlapped functional regions

relevant to the human brain, we tested for enri-

chment of AD DMRs in regions with repressive and

permissive histone modification profiles (H3K9ac,

H3K27ac, H3K27me3, H3K4me1, and H3K4me3) gen-

erated from fetal and adult bulk brain tissue, as well

as iPS-derived neurons (Fig. 4b; Additional file 9:

Table S5). We found significant enrichments for hyper

DMRs in poised promoters (corrected P = 0.001), also

referred to as bivalent domains, characterized by the

occupancy of H3K27me3 and H3K4me3. Bivalent do-

mains are generally thought to take on repressed

states, while remaining “poised” for activation, and

these regions are known to have important roles in

cell development and pluripotency [93]. It is interesting to

note that, although CpGs within poised promoters are

typically characterized by hypomethylation, increased

DNA hypermethylation associated with human aging has

been shown to occur preferentially in bivalent domains in

various tissues, including the brain [26, 29, 94]; such

changes have also been noted in cancer and cell culture,

and may suggest that hypermethylation of bivalent do-

mains results in a reduction of cell pluripotency [95, 96].

Given the strong connection between AD and aging,

the overlap observed here between DMRs and poised

promoters could have important implications for un-

derstanding molecular mechanisms underlying disease

onset and progression.

DNA methylation is also known to play complex roles

in TF binding, in some cases either hindering or facilitat-

ing interactions between DNA motifs and proteins [97].

Thus, we tested for enrichment in AD-DMR-associated

RefSeq gene promoters (n = 276) of TFBS from two

independent datasets, one curated from LCLs, and a

second brain dataset consisting of evolutionarily con-

served TFBSs residing within regions of open chromatin

(active) in a medulloblastoma cell line (see “Methods”).

After applying a multiple-testing correction and stringent

filter (Bonferroni P < 0.01), we noted 29 and 28 significant

TF motif enrichments for the medulloblastoma and LCL

datasets, respectively (Fig. 4c). The strongest enrichments

were found for motifs of NFAT in the medulloblastoma

dataset (fold-enrichment = 3.45, Bonferroni = 0.003), and

MAZR in the LCL dataset (fold-enrichment = 2.97;

Bonferroni = 2.18 × 10−10); the NFAT transcription factor

family, in particular, has demonstrated roles in AD path-

ology [98, 99]. Several other motifs/TFs known to regulate

A B

Fig. 3 Summary characteristics of differentially methylated region (DMR) CpGs in the context of gene and CpG island features. Proportion of
CpGs within hypermethylated DMRs, hypomethylated DMRs, and background CpG sets that fall within various gene (a) and CpG island
(b) feature annotations
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pathways involved in brain function were also identified,

such as PPARG, PPARA, and SP1. Specifically in the

context of previous findings in AD, SP1 has been shown

to regulate enriched gene sets that exhibit expression

changes associated with memory impairment in patients

with AD [100].

Analysis of DMRs in the context of Alzheimer’s disease

GWAS SNPs and brain eQTLs

Overlap between loci of differential methylation/expres-

sion, methylation QTLs and eQTLs, and GWAS regions

has been observed previously in complex disease. Such

findings demonstrate that in addition to the ability to

identify novel epigenetic signatures underlying risk or

disease progression, EWAS data also provide an oppor-

tunity to potentially inform the assignment of putative

function to genetic variants associated with disease risk,

and may help guide functional analyses of GWAS loci

[34]. Of the 479 DMRs identified, 15 fell within ±250 kb

of a previously reported GWAS SNP, including those

associated with CLU, DIP2C, FRMD4A, HLA-DRB1,

HLA-DQB1, CTNNA2, and KLK7 (Additional file 10:

Table S6); DMRs overlapping promoters of CLU and

FRMD4A fell within ±2 kb of a GWAS SNP.

Fig. 4 Differentially methylated genes (DMRs) are enriched in genes and functional genomic regions with relevance to Alzheimer’s disease
pathology. a Summary of gene ontology (GO) term enrichments for DMR-associated genes (n = 475). Significantly enriched terms (q < 0.2) are
ranked by estimated fold-enrichment, and colored according to their broader classification (“Molecular Function,” “Biological Process,” and “Cellular
Component”). The number of DMR-associated genes (min = 6; max = 268) categorized in each GO term are indicated by circle size. b Heat map of
raw P-values associated with enrichment analysis DMRs in regions characterized by individual and combined histone signatures in adult and fetal
brain/neuron datasets. Red boxes indicate significant enrichments after correction (corrected P < 0.05). c Significant enrichments of transcription
factor binding site motifs within DMR-associated RefSeq gene promoters, based on analysis of datasets curated separately in a medulloblastoma
cell line (upper panel) and a lymphoblastoid cell line (lower panel). Motifs are labeled along the x-axis, and are shown in ranked order in each
panel according to fold-enrichment. Bonferroni-corrected -log10 P-values are shown as asterisks
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To further investigate potential functional links with

AD GWAS, we integrated DMRs and brain eQTLs with

AD GWAS regions, using the regulatory trait approach

[70, 71]. We identified 129 risk AD loci that were associ-

ated with gene expression of at least one transcript at

RTC ≥ 0.9. We examined the enrichment of these AD-

associated eQTLs with DMRs using GoShifter. There

was no significant enrichment with DMRs (hypomethy-

lated or hypermethylated; empirical P > 0.3). However,

we found that three AD-associated eQTLs (and SNPs

with r2 > 0.8) fell inside of AD-DMRs (Additional file 11:

Table S7). This included eQTLs associated with the ex-

pression of AGPAT1, TAP2, and CLU. Additional file 12:

Figure S5A–C shows spatial relationships between

DMRs, GWAS SNPs, and eQTLs. Two of these DMRs

encompass SNPs in LD with a single GWAS SNP

(rs111418223) but two distinct eQTL signals, both of

which impact the expression of genes in the vicinity of

the Human Leukocyte Antigen (HLA) gene region.

TAP2 haplotypes have previously been shown to contrib-

ute to AD risk via interactions with APOE4 polymor-

phisms, with speculated involvement of TAP2 in

connections between herpes simplex virus-1 infection

and AD [101]. Both AGPAT1 and CLU have roles in

lipid/cholesterol metabolism. Specifically, variants in

AGPAT1 are associated with variation in levels of circu-

lating sphingolipids and phospholipids in human plasma

[82], and impairments of both Agpat1 expression and

cholesterol metabolism have also been observed in a rat

model of Huntington’s disease [102]. A role for CLU in

AD pathology has long been suspected, solidified by the

identification of variants contributing to AD risk by

multiple independent GWAS [103]. Several of these risk

variants have been linked to alterations of CLU expres-

sion and alternative splicing in AD [103–105].

Conclusions
We have conducted an epigenome-wide screen in the

STG of patients with AD to characterize clusters of

CpGs exhibiting concordant disease-associated changes

in DNA methylation. After accounting for effects of

sample age, gender, ethnicity, and neuronal/glial cell

proportions, we identified 479 autosomal DMRs, the

majority of which were defined by hypermethylation in

AD cases compared to controls. Although the degree of

average disease-associated methylation differences was

relatively modest within DMRs, this observation is consist-

ent with previous findings in AD and other complex disease

[41–43], including those shown to influence gene expres-

sion at both the transcript and protein levels [32, 41–43].

An important consideration is that, although we

accounted for potential effects of cellular composition

differences between AD cases and controls in our

characterization of differential methylation, additional

investigation will be required to assess whether the

methylation signatures observed are cell type-specific;

this is in fact a limitation of all AD EWAS studies

conducted to date using bulk tissue [16]. Despite such

limitations, our systems-level analyses of DMRs and

associated genes provided evidence for likely roles of

these regions in AD pathology. This included observed

enrichments of DMR-associated genes for GO terms

related to the development and function of neurons, as

well as cellular metabolism, both relevant to known

molecular and neurological impairments in AD, and

consistent with findings from AD transcriptome studies

and GWAS [83–86, 106].

We also found that DMRs were distributed non-

randomly in the genome, with biases in their co-

localization within gene and CpG island annotations,

as well as preferential overlap with specific brain

histone methylation signatures and gene promoters har-

boring brain-relevant TFs. Most notably, we found signifi-

cant enrichments specifically for hypermethylated DMRs

in poised promoters of the adult brain; these loci, cha-

racterized by the presence of both H3K27me3 and

H3K4me3, mark regulatory regions associated with devel-

opmental genes that have key roles in cellular differenti-

ation and pluripotency [93, 95]. Poised promoters have

also been shown to preferentially overlap CpGs that

become hypermethylated with age [26, 94]. Interestingly,

we found a strong bias for CpG hypermethylation among

AD-DMRs, and that these CpGs were enriched for age-

associated methylation changes in our control samples

when compared to CpGs within hypomethylated DMRs.

Taken together, these points highlight a potential inter-

play between disease-associated epigenetic alterations

and aging in AD pathology, and suggest more targeted

research in this area may be warranted.

Finally, our results indicate that the study of epigen-

etic signatures can aid in the characterization of novel

genomic regions associated with disease, particularly

those overlooked by alternative approaches. Future

challenges in the field include the development of

effective strategies for integrating epigenetic and tran-

scriptomic profiles with genetic datasets, as a means to

better understand the roles of different forms of

variation in AD [16].
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previously for the top 100 differentially methylated CpGs characterized in
the STG of an AD discovery cohort by Lunnon et al. [42]. Regression
analysis reveals a statistically significant relationship between case–control
β-value differences observed in the two studies (r = 0.34; P = 0.00067),
with the majority of compared CpGs showing concordant directional
changes in methylation associated with AD case status. The red line
represents the line-of-best-fit estimated using linear regression. (PDF 98 kb)
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DMRs identified in the SGT of AD patients. (A) The length in bp of 479
significant DMRs, ranked by size (minimum = 2 bp; mean = 927 bp;
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independently significant by linear regression (P < 0.05; minimum = 1;
mean = 4.63; maximum = 24), plotted in ranked order. (PDF 169 kb)
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Additional file 7: Figure S4. Significant CpGs within hypermethylated
DMRs are enriched for sites associated with aging in controls. (A) The
proportion of hypermethylated CpGs that are significantly associated
with control sample age is greater among CpGs within AD-associated
hypermethylated DMRs. Proportions of significant (P < 0.05, one-tailed)
and non-significant CpGs (P > 0.05, one-tailed), as determined by linear
regression, within each group (hyper vs. hypo) are indicated. (B) Distribu-
tions of –log10 P-values and absolute regression coefficients for effects of
sample AOD on CpG methylation, determined using linear regression,
after partitioning by DMR status. Hypermethylated CpGs are shown in red
(n = 321), and hypomethylated CpGs are shown in blue (n = 158). Means
for each metric are indicated by red (hyper) and blue (hypo) dotted lines.
(PDF 85 kb)
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Additional file 12: Figure S5. Genomic regions of three AD-DMRs
encompassing SNPs in LD with AD-GWAS risk variants and brain eQTLs.
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Additional file 11: Table S7, including positions of DMRs, AD-GWAS risk
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