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DNAmethylation is a well-known epigenetic modification that plays a crucial role in gene regulation, but genome-wide anal-

ysis of DNAmethylation remains technically challenging and costly. DNAmethylation-dependent restriction enzymes can

be used to restrict CpG methylation analysis to methylated regions of the genome only, which significantly reduces the

required sequencing depth and simplifies subsequent bioinformatics analysis. Unfortunately, this approach has been ham-

pered by complete digestion of DNA in CpG methylation-dense regions, resulting in fragments that are too small for ac-

curate mapping. Here, we show that the activity of DNA methylation-dependent enzyme, LpnPI, is blocked by a fragment

size smaller than 32 bp. This unique property prevents complete digestion of methylation-dense DNA and allows accurate

genome-wide analysis of CpGmethylation at single-nucleotide resolution. Methylated DNA sequencing (MeD-seq) of LpnPI

digested fragments revealed highly reproducible genome-wide CpGmethylation profiles for >50% of all potentially meth-

ylated CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite sequencing (WGBS). MeD-seq

identified a high number of patient and tissue-specific differential methylated regions (DMRs) and revealed that patient-spe-

cific DMRs observed in both blood and buccal samples predict DNA methylation in other tissues and organs. We also ob-

served highly variable DNA methylation at gene promoters on the inactive X Chromosome, indicating tissue-specific and

interpatient-specific escape of X Chromosome inactivation. These findings highlight the potential of MeD-seq for high-

throughput epigenetic profiling.

[Supplemental material is available for this article.]

Execution and maintenance of specific gene expression patterns

in eukaryotic cells rely on epigenetic mechanisms, of which DNA

methylation is the best studied (for review, see Smith and

Meissner 2013). Normal methylation is essential for embryonic

development, aging, and phenotype; aberrantmethylation is close-

ly associated with disease. Mammalian DNAmethylation is mainly

restricted to cytosines in the context of a CpG dinucleotide

(Ramsahoye et al. 2000). Many gene regulatory regions, including

promoters and enhancers, showa relative highdensity ofCpGdinu-

cleotides. These CpG islands are often devoid of CpG methylation

and can become targets of de novo methyltransferases, resulting

in inactivation of the associated gene(s) (Deaton and Bird 2011).

CpG islandmethylation represents a crucial epigenetic mechanism

in development, tissue maintenance, and disease development.

Despite huge efforts to understand the role of DNA methyla-

tion, only a few studies describe genome-wide methylation pro-

files of human tissues and cell types due to technological

challenges and high costs associated with establishing thesemeth-

ylomes (Zhang et al. 2013; Roadmap Epigenomics Consortium

et al. 2015; Schultz et al. 2015). These technologies are not well

suited for high-throughput analysis and consist of several meth-

ods, many based on chemical conversion of nonmethylated cyto-

sines into thymidines (for review, see Stirzaker et al. 2014). This

bisulphite conversion step is either followed by sequencing

(whole-genome bisulfite sequencing [WGBS]) (Mill et al. 2006)

or by hybridization of the converted material to a chip with a spe-

cific set of probes that cover a wide range of CpG islands (e.g., the

Infinium 450K technology) (Sandoval et al. 2011). Alternatively,

bisulfite conversion and sequencing is preceded by a size selection

step (reduced representation bisulfite sequencing [RRBS])

(Meissner et al. 2005). Unfortunately, WGBS requires that the ge-

nome is sequenced at 10 times coverage and necessitated the de-

velopment of a demanding bioinformatics pipeline to align all

possible sequence combinations. In addition, Infinium 450K and

RRBS technologies only provide data for a limited subset of meth-

ylated CpGs. Alternative enrichment technologies, such as MeDIP

and Methyl-cap technologies are based on me-CpG recognizing

antibodies or methyl-binding proteins (Wilson et al. 2006;

Brinkman et al. 2010). Although the bisulphite conversion step

is omitted for thesemethods, pull downofmethylatedmaterial in-

troduces noise and an unwanted bias toward detection of CpG

dense regions (Methyl-cap), or toward CpG poor regions

(MeDIP); additionally, these methods do not allow single-nucleo-

tide resolution (Bock et al. 2010; Carvalho et al. 2012).

Here, we present a novel method to perform DNA methyla-

tion analysis genome wide that provides single-nucleotide resolu-

tion without the need for deep sequencing. This method makes

use of a DNA methylation-dependent restriction enzyme, LpnPI,

which specifically cuts 16 bp downstream from methylated and/
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or hydroxymethylated CpGs, thereby focusing the sequencing re-

sources to methylated regions only. Previous attempts applying

methyl-dependent restriction enzymes to study genome-wide

methylation were hampered by complete digestion of methylated

CpG-dense regions, resulting in fragments too small for accurate

mapping (Huang et al. 2013). In contrast, we found that LpnPI ac-

tivity is restricted by a short template size, generating fragments

that are consistently ≥32 bp, allowing accurate identification of

DNA methylation in both CpG dense and CpG sparse regions ge-

nomewide. This Methylated DNA sequencing (MeD-seq) assay in-

terrogates DNA methylation of >50% of all CpGs genome wide,

providing a robust, convenient, and reliable alternative for existing

technologies that can be implemented in standard high-through-

put pipelines for determining the DNA methylome.

Results

Whole-genome DNA methylation analysis using LpnPI,

MspJI, and FspEI

The MspJI family of Mrr-like modification-dependent restriction

endonucleases cleave DNA after recognition of modified cytosines

in a sequence-specific manner (Zheng et al. 2010; Cohen-Karni

et al. 2011). Cleavage occurs at a fixed position (N12/N16) down-

stream from the methylated and/or hydroxymethylated cytosine,

leading to around 32-bp DNA fragments, if symmetrically methyl-

ated at the CpG dinucleotide. In previous studies, MspJI and FspEI

have been applied to interrogate DNA methylation genome wide,

but implementation of these assays in high-throughput pipelines

failed due to complete digestion, and therefore underrepresenta-

tion, of methylated CpG-rich templates. Here, we tested a third

MspJI family member, LpnPI, and compared genome-wide DNA

methylation maps and characteristics with MspJI and FspEI. This

analysis encompasses restriction enzyme digestion and adaptor li-

gation, size selection, PCR amplification, and sequencing (Fig. 1A),

followed by in silico analysis involving a CG filter, to retrieve the

correct fragments and reduce noise, subsequent alignment, and

DMR calling (Fig. 1B).

DNA obtained from human fibroblasts was digested and frag-

ments blunted, followed by adaptor ligation and amplification (10

cycles after library preparation). Isolated fragments were se-

quenced on an Illumina HiSeq 2500 platform resulting in at least

2×107 reads per digest (Supplemental Table S1). As expected,

MspJI/FspEI/LpnPI recognition sites were enriched at the six-

teenth base pair position in the single-ended reads, and only reads

with a CpG dinucleotide at this position were aligned (Fig. 1B,C).

For all restriction enzymes, ∼37%–44% of the reads could be

mapped to unique sequences; only ∼1% could not be aligned

(Fig. 1D). Close inspection of our sequencing data in loci with

known differentially methylated regions (DMRs), indicated a clear

loss of reads emanating from CpG-dense regions in MspJI and

FspEI digested samples (Fig. 1E), as has been reported before

(Huang et al. 2013; Wang et al. 2015). Importantly, complete

digestion of heavily methylated regions was not observed for

LpnPI. This difference in digestion characteristics was observed

for CpG islands, and also for 2-kb regions surrounding the tran-

scription start site (TSS) (Fig. 1F; Supplemental Fig. S1A).

Comparison of LpnPI, MspJI, and FspEI read counts indicated an

increase in LpnPI reads from medium and highly methylated

CpG islands and TSSs, and many more hypermethylated CpG is-

land and TSS DMRs in LpnPI digested compared to MspJI or

FspEI digested samples (Fig. 1F; Supplemental Fig. S1A). In less

Figure 1. MeD-seqwet laboratory and bioinformatics platform. (A) Genomic DNA is digestedwith LpnPI, followed byDNA repair, adaptor ligation to 32-
bp fragments, size fractionation, amplification, and sequencing. (B) Sequencing reads are trimmed, filtered based on the CpG sequence, and aligned to the
genome. (C ) Nucleotide frequency plotted against the position in the sequencing reads, showing enrichment of CG nucleotides around 16–17 bp from the
start. (D) Alignment of LpnPI, MspJI, and FspEI CpG-filtered MeD-seq reads obtained using fibroblast DNA. (E) Sequencing read profiles of the HOXA and
KCNQ1 loci obtained with fibroblast DNA using LpnPI, MspJI, and FspEI. (F) Pearson correlation analysis of MeD-seq read counts of TSSs for LpnPI-MspJI
(left), LpnPI-FspEI (middle), and FspEI-MspJI (right) comparisons. (G) Pearson correlation analysis of read counts of TSSs for technical replicates digestedwith
LpnPI (left) and MspJI (right).
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denselymethylated gene body sequences, the correlation between

the different enzymes was much higher for all comparisons

(Supplemental Fig. S1B). Comparison of two technical LpnPI rep-

licates, revealed a very high correlation in CpG island, TSS, and

gene body methylation (Fig. 1G; Supplemental Fig. S1C,D), which

was much less pronounced for MspJI replicates, suggesting that

MspJI digestion is variable and less reproducible. This analysis

again indicated a reduction inCpG island andTSS reads fromhigh-

ly methylated regions for MspJI relative to LpnPI, which was not

observed in gene bodies (Supplemental Fig. S1E). We conclude

that methylated DNA sequencing with LpnPI (MeD-seq) leads to

reproducible detection of DNA methylation in CpG-dense and

CpG-sparse regions genome wide. In contrast, use of MspJI, and

to a lesser extent FspEI, leads to complete digestion of methylated

CpG-dense regions and underrepresentation of these regions in ge-

nome-wide DNA methylation analyses. We therefore continued

our MeD-seq studies with LpnPI.

LpnPI digestion produces templates >32 bp

Close examination of CpG-filtered and aligned reads indicated

that LpnPI recognized more CpG sequences than MspJI and

FspEI. Interestingly, reads were also identified at places where the

previously reported LpnPI recognition sequence SmCDS (S = C/G

and D = A/T/G) was absent (Cohen-Karni et al. 2011). To deter-

mine the exact recognition sequence, we therefore applied tetra-

nucleotide filters and by visual inspection identified LpnPI

recognition motifs, which can be summarized as CmCG, mCGG,

and GmCGC (Supplemental Fig. S2). No low or intermediate levels

of enrichment were found for other sequences. LpnPI-mediated

MeD-seq therefore detects CpG methylation at more than 16.5

million sites of the approximately 30 million CpG sites present

in hg38 from UCSC.

Applying this CmCG, mCGG, and GmCGC (LpnPI) filter on

reads obtained from LpnPI-digested fibroblast DNA, we also ob-

served fragments that were significantly larger than the expected

32 bp (Fig. 2A). Close examination of these fragments indicated

a second LpnPI recognition site positioned 16 bp of the 3′ end of

the same fragment, thus retaining LpnPI sites on both 5′ and 3′

ends (Fig. 2B). These longer fragments are observedmuchmore fre-

quently than fragments <32 bp, indicating that LpnPI digestion is

inhibited when fragments become smaller than 32 bp. Based on

these findings, we included shorter or larger fragments than the

expected 32–33 bp containing two LpnPI sites in our studies.

Alignment of sequencing reads that passed our LpnPI filter showed

that 34% could be mapped to unique sequences; only 3% could

not be aligned (Fig. 2C). In addition, reproducibility was high,

with a Pearson’s correlation of 0.95 and 0.94 for technical and bi-

ological replicates examining CpG islands (Fig. 2D), and 0.92 and

0.91, respectively, for a 2-kb region surrounding transcriptional

start sites (TSSs) (Supplemental Fig. S3A).

To test the efficiency of LpnPI digestion on methylated tem-

plates, the analysis was repeated with 100%methylated DNA, gen-

erating 50 million reads, of which almost 70% passed the LpnPI

filter. Alignment of these reads resulted in an even higher percent-

age of 45% uniquely aligned reads; only 2% could not be mapped

(Fig. 2C). Genome-wide examination of the distribution of

mapped reads revealed CpG methylation patterns specific for fi-

broblasts, different from profiles obtained with 100% methylated

DNA, indicating regions, such as the HOXA cluster, showing re-

duced methylation in fibroblasts (Fig. 2E; Supplemental Fig.

S3B). Our data demonstrate that 75%of all 16.5million LpnPI sites

are recognized using 100%methylatedDNA (Fig. 2F). The presence

of LpnPI sites that are not digested might be explained by the

coverage or localization of these sites in close proximity to other

LpnPI sites, where digestion is prevented by the use of flanking

LpnPI sites. Consistent with this last hypothesis, we found an in-

crease in nondigested LpnPI sites in CpG-dense regions around

the TSS, which was higher than expected based on chance

(Supplemental Fig. S3C). Examination of our digestion products

also revealed a digestion bias toward preferential digestion of

methylated CCGG over the other recognition sequences (Supple-

mental Fig. S3E). This bias was observed independent from the

number of PCR cycles used for the library amplification, explain-

ing the peaks observed in our analysis by an enzyme digestion

bias together with prevention to digest fragments smaller than

32 bp (Supplemental Fig. S3D).

We conclude that LpnPI recognizes ∼50% of 30 million pos-

sible methylated CpG and detects most of the CpG islands and

TSSs (Fig. 2G). For gene body methylation, this number is lower

due to loss of small genes with overlapping TSS windows. Repeat

elements like LINEs, SINEs, and LTRs contain LpnPI sites in vari-

able amounts (40%−70% contain at least one site) and, if methyl-

ated, can be detected although less efficiently then CpG islands

and TSSs. CpG dinucleotides recognized by LpnPI are distributed

similarly to all CpG dinucleotides, showing strong enrichment

near gene promoters and CpG islands (Fig. 2H). MeD-seq therefore

robustly detectsDNAmethylation genomewide, facilitating detec-

tion of differential DNA methylation in CpG islands, transcrip-

tional start sites (TSSs), and gene bodies.

MeD-seq versus other methods

Whole-genome methylation profiles have been established with

different methodologies. WGBS examines >95% of the CpGs ge-

nome wide, whereas MeDIP and the 450K Infinium bead-chip in-

terrogate 16% and 2% of the CpGs genome wide, respectively

(Bock et al. 2010; Stirzaker et al. 2014). To validate our findings

and compare MeD-seq to the WGBS, MeDIP, and Infinium 450K

technologies, we performed MeD-seq on LpnPI-digested DNA iso-

lated from human ES cells (HUES8). More than 30 million reads

were generated, of which a minimum of 15 million filtered reads

were aligned to the genome (Supplemental Table S1).

WGBS examines twice the number of CpGs present in the ge-

nome, but visual inspection of the methylation tracks, in densely

and sparselymethylated regions in the genome, revealed compara-

ble profiles of our data set with published WGBS and MeDIP se-

quencing and 450K data sets obtained with DNA of huES-H1

(Fig. 3A; Supplemental Fig. S4A; Schultz et al. 2015). MeD-seq cov-

erage of CpG islands and TSS was high (Supplemental Fig. S4B).

MeD-seq only detects methylated templates; therefore, the lack

of reads in a significant percentage of CpG islands and TSS in

HUES8 DNA likely represents biological activity of these elements

(Supplemental Fig. S4B). Indeed,MeD-seq reads on fullymethylat-

ed DNA revealed a much higher coverage, with a distribution bet-

ter thanmost alternative techniques (Bock et al. 2010). Comparing

MeD-seq and WGBS, we found a very high correlation for both

CpG islands (Pearson 0.87) and TSS (Pearson 0.76) (Fig. 3B–D).

In contrast, especially for CpG islands, both MeD-seq:MeDIP and

WGBS:MeDIP comparisons revealed a lower correlation, which is

likely the consequence of a preference of MeDIP to detect gene-

poor regions (Fig. 3D; Supplemental Fig. S4C; Bock et al. 2010).

We also comparedMeD-seq to the Infinium450K technology

platform (Fig. 3A; Supplemental Fig. S4A). As the 450K technology
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only examines a few CpGs per CpG island or TSS, we divided the

450K counts into 10 different bins according to the methylation

ratio obtained. MeD-seq read counts in a 100-bp window around

CpGs, with at least 10 LpnPI sites, examined by the 450K technol-

ogy were then plotted per bin. This analysis indicated a strong cor-

relation between the 450K and MeD-seq technologies (Fig. 3E;

Supplemental Fig. S4E). In contrast, this correlation was absent

when MeD-seq read counts obtained with 100% methylated

DNA were plotted against binned 450K scores obtained with

DNA fromhuES1 (Fig. 3F). These results indicate thatMeD-seq pro-

vides high-coverage genome-wide DNA methylation profiles.

DNA methylation profiling of human tissues

Examination of our data after in silico dilution of our data ob-

tained for iPS cells and fibroblasts indicated that we approach sat-

uration in DMR detection using between 73 and 53million LpnPI-

filtered reads. Interestingly, a 10-fold reduction in LpnPI-filtered

reads still results in a Pearson’s correlation above 0.77 for all TSS

and CpG island comparisons, indicating that even at a very low se-

quencing depth, we were able to call DMRs with high confidence

between different samples (Fig. 4A; Supplemental Fig. S5A). This

indicated that a sequencing depthof a fewmillion readswill be suf-

ficient to detect the most significant differentially methylated

CpG islands and TSSs. To test applicability of MeD-seq at low se-

quencing depth for genome-wide DMR detection, we performed

MeD-seq on blood, saliva, thymus, ovary, liver, and brain from

10 female individuals, for which most tissues or organs were avail-

able (Fig. 4B). Per sample, 15 million reads were generated, of

which a minimum of 7 million filtered reads were aligned to the

genome (Supplemental Table S1).

Inter-tissue DMRs were identified by calling CpG island and

TSS-specific DMRs in between tissues, combining all filtered and

mapped reads per tissue (Supplemental Table S1). Significant

DMRs were called by using χ
2 test values followed by Bonferroni

or FDR-Benjamini-Hochberg (P < 0.05) correction, revealing a

Figure 2. Detection of DNA methylation genome wide. (A) Histogram showing sequencing read size of all reads (dark blue) and reads that passed the
LpnPI filter (light blue) obtained with MeD-seq applied on human fibroblast DNA. (B) Sequencing reads larger (top) or shorter (bottom) than 32–33 bp
shown in F display two LpnPI recognition sequences 16–17 bp from the end. (C) Alignment of LpnPI-filtered MeD-seq reads obtained using fibroblast
DNA (left) and 100% methylated DNA (right). (D) Pearson correlation analysis of MeD-seq read counts of CpG islands for technical (left) and biological
(right) replicates. (E) MeD-seq DNA methylation profiles of the HOXA cluster obtained with fibroblast DNA (top two panels) and 100%methylated control
DNA (bottom two panels). (F) Ratio of digested LpnPI sites in CpG islands and TSSs for 100%methylated control DNA (top) and fibroblast DNA (bottom). (G)
Overview and characteristics of LpnPI sites in CpG islands, TSSs (2 kb), gene bodies, and repetitive elements genomewide. Detection percentages are based
on 100%methylated DNA. (H) Gene density plots showing distribution of LpnPI sites and CpG dinucleotides shown in 100 bins before the TSS, in the gene
body, and behind the transcription stop.
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high number of DMRs (Table 1). This analysis revealedmanymore

DMRs for buccal DNA compared to all other combinations ana-

lyzed. Interestingly, interpatient comparison of CpG island and

TSS methylation in the same organs and tissues indicated promi-

nent patient-specific hypermethylation of several regions in the

genome. Hypermethylated CpG islands and TSSs were observed

between patients and to a lesser extent in intra-patient compari-

sons (Fig. 4C,D; Supplemental Fig. S5B). These patient-specific dif-

ferentially hypermethylated TSSs and CpG islands represented

methylated ribosomal RNA gene clusters, including 5S, 28S

rRNA, pRNA, and micro-RNA genes located to Chromosomes 1

and 21, likely representing copy number variations of ribosomal

RNA gene clusters (Fig. 4E). Other differentially methylated re-

gions include the DUX4 gene clusters, which are located in highly

repetitive regions on several chromosomes, known to be subject to

copy number variations (Caburet et al. 2005; Leidenroth et al.

2012).

CpG island or TSS-specific DMRs were used to test whether

differential DNA methylation profiles can direct unsupervised hi-

erarchical clustering of tissues. To limit the number of DMRs, we

excluded buccal-specific DMRs, and only included DMRs showing

a 10-fold difference in DNA methylation levels or more. In addi-

tion, we excluded CpG islands and TSSs with more than 1000

and 200 reads, respectively, to exclude patient-specific DMRs asso-

ciated with repetitive DNA. This approach revealed 1987 differen-

tially methylated CpG islands. Unsupervised cluster analysis,

using differentiallymethylated CpG islands, clusteredmost tissues

and organs together as separate groups, with some notable excep-

tions, possibly related to patient-specific methylation profiles

(blood and liver) or differences in the composition of cell types

within an organ (Fig. 4F). Examination of DNAmethylation tracks

confirmed the presence of DMRs in important loci, such as the

HOX and TBX loci, both involved in segmentation of the early em-

bryo (Fig. 4G; Acampora et al. 1987). Unsupervised clustering us-

ing read counts observed in a 2-kb TSS window of all HOX and

TBX genes revealed a picture nearly identical to experiments in-

cluding all CpG islands, showing preferred clustering of the

same tissues, with the exception of some, that show clustering of

organs of the samepatients (Supplemental Fig. S5C). This indicates

that MeD-seq provides a robust and sensitive methodology to

study the methylome at a low sequencing depth.

DNA methylation profiles of accessible versus inaccessible tissues

Several studies have investigated whole-genome DNA methyla-

tion analysis on easily accessible tissues such as blood or saliva

Figure 3. MeD-seq versus WGBS, MeDIP, and the Infinium 450K technology. (A) MeD-seq, WGBS, and MeDIP DNA methylation profiles and Infinium
450K scores for a representative locus on Chromosome 19, obtainedwith human ES cell DNA.MeD-seq andMeDIP read count or relative DNAmethylation
level (0–1) is shown for all CpG sites. Infinium 450K scores: (dark blue) high CpGmethylation; (light blue) intermediate DNAmethylation; (green) lowDNA
methylation (based on B-value scores). (B) Correlation plots for MeD-seq:WGBS (left) and MeD-seq:MeDIP (right) comparison of CpG islands. (C ) As in B,
but now for TSS. (D) Overview of Pearson (P) and Spearman (S) correlation scores for different comparisons. (E) MeD-seq reads in a 100-bp windowplotted
against Infinium 450K scores binned in 10 different groups with increasing methylation scores for ES cell DNA. (F ) As in B, but now with MeD-seq reads
obtained from 100% methylated control DNA using 450K bins obtained with ES cell DNA.
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(van Dongen et al. 2015; Boström et al. 2016; Houtepen et al.

2016; Montano et al. 2016; Li et al. 2017). However, it is unclear

how well changes in methylation in these tissues correspond to

changes in other tissues or organs in the body (Huang et al.

2016). Tissue-specific DMR analysis indicated that many DMRs

are tissue specific and might not be useful in predicting DNA

methylation in other organs. Nevertheless, interpatient compari-

son of DMRs in the same organs also revealed a variable but

high number of patient-specific DMRs in all organs tested

(Supplemental Fig. S6A–D). To better understand the interdepen-

dence of these patient-specific DNA methylation patterns be-

tween organs, we identified interpatient-specific DMRs by first

establishing pooled data files from all available tissues per patient

(Fig. 5A). For this analysis, we excluded buccal samples as these

samples showed many more hypermethylated DMRs compared

to other tissues. We made a distinction between TSS and CpG is-

lands with more or less than 200 and 1000 reads, respectively, re-

sulting in 0–1644 patient unique DMRs consistent in all tissues

(Fig. 5B,C). As this number is dependent on the number of pa-

tients included, we also determined patient-specific DMRs that

showed consistent DMRs in all tissues but were not unique. This

analysis revealed between 1500 and 3500 differentially methylat-

ed TSSs, and between 1100 and 14,000 differentially methylated

CpG islands (Fig. 5B,C). Interestingly, in contrast to TSS DMRs,

many more differentially methylated CpG islands were found in

the group with fewer than 1000 reads, indicating that most

Figure 4. Tissue-specific DMRs. (A) DMR counts for TSSs and CpG islands and Pearson correlation analysis of TSSs upon in silico dilution startingwith 150
million reads. (B) DNA was collected of available organs (green) from 10 different female patients. (C) Correlation analysis of TSS read counts between
blood samples of different patients. (D) Correlation analysis of TSS read counts between different organs of the same patients. (E) MeD-seq tracks of ribo-
somal RNA cluster in DNA of blood and thyroid from patients 8, 3, and 4. (F ) Unsupervised hierarchical clustering of tissues based on differentially meth-
ylated CpG islands. Statistical significance was called by χ2 testing and Bonferroni correction, the Z-scores of the read count are shown in the heatmap. (G)
MeD-seq tracks of the HOXB and HOXD loci displaying differential methylation in TSS and CpG islands in different tissues.

Table 1. Tissue-specific DMRs

DMRs Blood Brain Buccal Liver Ovary Thyroid

Blood 5941 11,725 2096 6253 3896
Brain 2190 2959 6177 8225 8166
Buccal 10,607 2070 9109 14,733 13,404 CpG islands
Liver 1536 2962 5852 4321 2953
Ovary 3408 3815 13,412 2457 3024
Thyroid 1828 3213 12,984 1749 1305

TSS (2 kb)

The number of tissue-specific TSS and CpG island DMRs called after Bonferroni correction.
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patient-specific DMRs are found in unique nonrepetitive CpG is-

lands that do not overlap with TSSs.

For many studies, DNA isolated from blood is the only source

for genetic and epigenetic profiling in relation to disease. To test

how predictive interpatient-specific blood DMRswere for the pres-

ence or absence of DNA methylation in the inaccessible tissues,

thyroid, liver, and ovary, we first determined interpatient-specific

DMRs in blood and related these to DMRs present in other organs

(Fig. 5D). This analysis indicated a wide variability of blood-pre-

dicted TSS and CpG island-associated DMRs in other tissues rang-

ing between 4% and 73% (Fig. 5E–G). This variability was present

in all tested tissues and was unrelated to blood as source material,

as similar variability was observed in inter-organ comparisons

(Supplemental Fig. S6E,F). To test whether we could enhance pre-

diction of bloodDMRs present in other tissues, we also determined

buccal DMRs for patients for which both blood and buccal samples

were available. This indicated that TSS DMRs present in DNA ob-

tained from buccal swabs predict DMRs in other tissues more reli-

ably than blood (Supplemental Fig. S6G–J). By selecting blood-

specific DMRs also present in buccal samples of the same patients,

prediction of patient-specific DMRs increased to percentages

between 42% and 98% (Fig. 5H; Supplemental Fig. S6K–M). For

TSSs, most of these highly predictive DMRs representedmulticopy

gene loci, suggesting that most of the patient-specific DMRs

represent copy number variations (Fig. 5I). In contrast, CpG island

DMRs present in tissues and organs predicted by overlapping

DMRs in blood and buccal represent nonrepetitive unique regions

andmight represent patient-specific differential regulation of gene

expression. We conclude that most interpatient-specific DMRs are

also tissue specific, and therefore unreliable predictors for DNA

methylation profiles in other tissues in the human body.

Nevertheless, use of DMRs detected in two accessible tissues facil-

itates reliable prediction of DMRs present in other tissues and

organs.

Escape of X Chromosome inactivation

In all female mammalian cells, one of the two X Chromosomes is

inactivated. X Chromosome inactivation (XCI) involves a multi-

tude of epigenetic mechanisms in gene silencing, including DNA

methylation of TSSs and/or CpG islands on the inactive X

Chromosome (Xi). In human fibroblasts, up to 15%of genes locat-

ed on the Xi escape XCI to some degree, categorized in 203 genes

that are completely or near completely silenced (groups 0–1), 69

genes showing different degrees of partial escape (groups 2–7),

and 40 genes that display near complete or complete escape to

XCI (groups 8–9) (Carrel and Willard 2005). It has been shown

that these levels of escape correlated with increased gene body

methylation and reduced CpG methylation at TSSs (Schultz et al.

2015). Our MeD-seq studies on organs and tissues were performed

on female material to be able to study XCI escape in different tis-

sues. Analysis of TSS and gene body methylation with expression

levels of genes ranked in four different expression groups, using

available expression data, confirmed an anti-correlation between

TSS methylation and gene expression genome wide, although

this anti-correlation did not discriminate between genes expressed

at middle and high expression levels (Fig. 6A; Supplemental Fig.

S7A). Previous studies showed that genes escaping XCI are ex-

pressed at reduced levels (<50%) compared to the copy located

on the active X, and expression of escaping genes might therefore

Figure 5. Patient-specific and unique DMRs. (A) MeD-seq data was pooled per patient to call interpatient-specific and unique TSS and CpG island DMRs
that show differential methylation consistent in all tested tissues. (B) Overview showing the number of patient-specific and patient-unique TSS and CpG
island DMRs identified. TSS and CpG island DMRs with a read count of more or less than 200 and 1000, respectively, are shown separately. (C) MeD-seq
tracks showing patient-specific differential methylation of the ADAM3A TSS and patient-unique methylation of two CpG islands. (D) Patient-specific TSS
DMRs were determined for blood that showed consistent DMRs in other organs tested. (E) Percentage of blood-specific TSS DMRs also present in liver,
ovary, and thyroid in patient comparisons. (F ) Percentage of blood-specific CpG island DMRs also present in liver, ovary, and thyroid in patient compar-
isons. (G) MeD-seq tracks showing blood-specific DMRs present in all organs (left), no other tested organ (ZNF529, middle), or some organs (DUSP22,
right). (H) Percentage of CpG island DMRs present both in blood and buccal and also present in liver, ovary, and thyroid. (I) Correlation plots showing
blood TSS DMRs also present in buccal (top) and blood CpG island DMRs also present in buccal (bottom) for patients 3 and 4.

Boers et al.

94 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222885.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222885.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222885.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222885.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222885.117/-/DC1


mostly fall in the lower and middle expression classes (Carrel and

Willard 2005). Indeed, comparisonof the TSSMeD-seq read counts

between groups 0–1, 2–7, and 8–9 confirms an anti-correlation be-

tween XCI escape and DNA methylation (Fig. 6B). In contrast,

gene body methylation appeared variable, showing tissue-specific

profiles with no clear relationship between methylation and ex-

pression, indicating that gene body methylation cannot be used

as a reliable readout for gene expression in all tissues. Analysis of

TSS methylation of all X-linked genes, and close examination of

genes known to be subject to XCI (HPRT, MECP2, and RNF12

[RLIM]), showing partial (PHF6) or full (USP9X, KDM5C) escape

of XCI, confirms the correlation between TSS methylation and

XCI in male and female fibroblasts (Fig. 6C,D; Supplemental Fig.

S7C), absent for gene body methylation (Supplemental Fig. S7B).

We also detected TSS methylation of all three human RHOX

homeobox genes (RHOX1, RHOX2, and RHOX2B), which are

very difficult to analyze by arrays due to their repetitive nature

(Supplemental Fig. S7C). In addition, TSS-specific DNA methyla-

tion profiling detected X Chromosome loss and break point detec-

tion with DNA obtained from a fibroblast cell line harboring a

MLPA mapped 50 megabase deletion of the inactive X

Chromosome (Fig. 6E), indicating that TSS methylation can be

used as a benchmark for the XCI status of X-linked genes

(Barakat et al. 2015).

To study tissue-specific escape of XCI, MeD-seq reads were

combined per tissue and grouped according to escape groups.

Overall, completely and near completely silenced genes showed

the highest TSS DNA methylation levels (group 0–1), partially

Figure 6. Organ and patient-specific escape of XCI. (A) Gene density plots showing DNA methylation profiles for genes of four different expression
groups for liver (top) and brain (bottom). DNA methylation level is shown in 100 bins before the TSS, the gene body, and behind the transcriptional
stop. (B) TSS-specific MeD-seq reads (Log2) for genes subject to XCI (group 0–1), partially escaping XCI (groups 2–7), and nearly completely escaping
XCI (groups 8–9) in liver. (C) Bar graph showing the ratio of TSS methylation of X-linked genes, subject to XCI (group 0–1), partially escaping XCI (groups
2–7), and nearly completely escaping XCI (groups 8–9), in female versus male fibroblasts. (D) MeD-seq tracks displaying DNAmethylation in genes subject
to XCI (HPRT, top), partially escaping XCI (PHF6,middle), and escaping XCI (USP9X, bottom). (E) Ratio of TSS read counts for female X12 deletion and male
control fibroblasts along the X Chromosome. The sliding average of 10 TSSs is shown, and the exact break point determined by MLPA analysis is shown
below (light blue). (F ) Inter-organ DMRs were called and displayed according to the escape group. TSS DMRs are shown that were significant for all tissues
by Bonferroni testing, colored according to the Z-score. (G)MeD-seq tracks of TSS-specific DMRs for PHF6 andGLA that showhypomethylation in brain. (H)
Z-scores for TSSs of genes selected based on a brain-specific methylation pattern of 0–1, 2–7, and 8–9 genes shown in organs of individual patients.
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methylated genes showed lower levels of DNA methylation

(groups 2–7), whereas escaping genes showed the lowest level of

methylation (groups 8–9) (Fig. 6F). Intra-tissue comparison re-

vealed 126 (88 group 0–1; 27 group 2–7; 11 group 8–9) genes

that showed changes in methylation in all tissues, and 290 (191

group 0–1; 63 group 2–7; 36 group 8–9) genes showing changes

in at least one tissue (Fig. 6F–H; Supplemental Fig. S7C). In brain

we observed many more TSSs with decreased DNA methylation,

indicating more prominent escape of XCI in brain compared to

all other tissues analyzed. Our findings suggest that escape of

XCI can be modulated and is likely associated with expression

changes as brain-specific genes are reported to be enriched on

the X Chromosome. Close inspection of DNA methylation levels

of TSSs of genes expressed in brain, and showing brain-specific

methylation profiles, confirmed brain-specific hypomethylation

in individual patients, but also revealed heterogeneity inmethyla-

tion levels in brain and other tissues or organs (Fig. 6H). This

indicates that the level of escape of XCI is, at least to some

degree, patient and tissue specific, which might have important

implications with respect to manifestation of X-linked diseases

in women.

Discussion

We developed MeD-seq, a novel technology to interrogate CpG

methylation profiles genome wide that produces better coverage

and is more accurate and cost effective. MeD-seq has the potential

to be adapted for high-throughput analysis, and because of its

simplicity, can alleviate the burden of large-scale computational

analysis. Studies have attempted to apply methyl-dependent

restriction enzymes to establish genome-wide CpG methylation

profiles, but failed due to complete digestion of CpG-dense hyper-

methylated templates (Huang et al. 2013;Wang et al. 2015). In this

study we show that, in contrast to MspJI and FspEI, LpnPI activity

is limited by a small template size, possibly by steric hindrance,

thereby producing fragments of at least 32 bp in size. This enzyme

is therefore suitable for detecting DNA methylation profiles in

CpG-dense and CpG-poor regions. In addition, both MspJI and

FspEI have more specific recognition sites than LpnPI, and there-

fore recognize fewer CpGs genome wide. Also, in contrast to

LpnPI, not all MspJI and FspEI recognition sites are palindromic,

leading to a significant percentage of large fragments that are

more difficult to capture and analyze. In silico, LpnPI detects ap-

proximately 55% of CpGs present in the genome; experimentally,

41% of all CpGs were interrogated. Loss of methylated CpGs de-

tected was found to increase in CpG-dense regions. In addition,

we found a preference for digestion of CCGG over other LpnPI

recognition sequences, indicating that in hypermethylated re-

gions, LpnPI prefers digestion of specific methylated CpGs.

Nevertheless, our studies indicate that MeD-seq is very reproduc-

ible and this preference is consistent. Although this study focused

onCpGmethylation profiles,MeD-seq can also be applied to study

other forms of methylation. LpnPI digests hydroxymethylated

CpGs and also recognizes non-CpG methylation in the context

CCWGG, a common form of methylation in plants.

Due to cell-to-cell variability in the methylation state of any

given CpG site, whole-genome bisulfite sequencing (WGBS) re-

quires a daunting 10-fold sequencing coverage of the full genome

in order to provide a reliable assessment of CpG methylation.

MeD-seq provides a more cost effective alternative to WGBS since

fewer sites, only 16.5 million potentially methylated CpGs, need

to be interrogated in order to create an accurate profile. Thismeans

that in a mammalian cell with 70% methylation of all CpGs, ap-

proximately 11.6million reads represent the equivalent of a 1× ge-

nome-wide coverage when all LpnPI sites are recognized. Bisulfite

treatment of LpnPI fragments prior to sequencing could even fur-

ther increase complexity and depth of the data andwould limit the

WGBS technology tomethylated CpGs only. The present study in-

dicates that for general interpatient and inter-organ comparisons,

a coverage of 1× appeared to be sufficient to reliably detect DMRs

with high confidence. In fact, in silico analysis indicates that

reduction of the number of reads to 7 million still results in a

Pearson score of 0.89 when comparing different data sets.

Although this sequencing depth will be sufficient to call the

most significant DMRs for a thorough analysis of all DMRs or al-

lele-specific DNA methylation analysis based on associated SNPs

a higher sequencing depth of about 150 million reads is required.

The percentage of reads that passed the filter and could even-

tually bemapped was variable.We found this to be directly related

to DNA quality, dependent on the presence of degraded DNA.

Quality was low formost frozenmaterial samples; in contrast, sam-

ples obtained from fresh material (fibroblasts) resulted in >70%

reads that passed the filter and were mapped. In addition to cost-

effectiveness, MeD-seq also represents a simpler method, omits

noise and the need for pull down or bisulfite conversion steps, as

well as the need for additional software packages to analyze the

data as required for WGBS or RRBS. MeD-seq provides read

count–based data similar to RNA-seq, and succeeded in recapitulat-

ing ratio-based data obtained with WGBS, and the Infinium 450K

technology. Using a fully methylated reference and imprinted

gene loci, we were able to transform MeD-seq read counts into a

percentage of methylation for CpG islands or TSSs. However, for

DMRcalling, analyzing read counts provedmore robust thanusing

percentages of methylation. Similarly to enrichment-based ge-

nome-wide techniques detecting relative DNA methylation

changes, MeD-seq also requires downstream validation for biolog-

ical relevance of detected DMRs. Since LpnPI is methylation de-

pendent, unmethylated regions remain undetected. Therefore, a

modified LpnPI, recognizing unmethylated DNA or DNA irrespec-

tive of themethylation status, will be very useful, either to improve

methylation quantification from MeD-seq data or to prevent false

positive DMR detection based on aneuploidy, e.g., in the field of

cancer research. Alternatively, DNA methylation insensitive re-

striction enzymes could be applied in conjunction with LpnPI,

to provide reference sequences for normalization.

MeD-seq analysis of tissues of different patients revealed pa-

tient-specific DNA methylation profiles of highly repetitive genes

and regions such as ribosomal RNA and DUX clusters. Previous

work has shown that ribosomal RNA genes are located, as tandem

arrays, on the five acrocentric chromosomes in humans (Caburet

et al. 2005). A large subset of these genes are transcriptionally re-

pressed by DNA methylation and specific post-translational his-

tone modifications, and our patient-specific DNA methylation

profiles of these repetitive gene loci likely represent copy number

variations (Grummt and Längst 2013). In addition, we found that

MeD-seq can detect DNA repeat elements like LINEs, SINEs, and

LTRs when they are methylated; however, due to the low average

number of LpnPI sites, these short elements contain a higher se-

quence coverage that is required to detect DMRs at the loci than

currently used.

Our study also revealed many patient-specific DMRs present

in all tested organs. Most of these DMRs represented CpG islands

and suggest thatmost of the variability in CpGmethylation is con-

fined to distal gene regulatory regions rather than TSSs, despite the
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fact that 60% of TSSs are overlapping with CpG islands

(Illingworth et al. 2010). This is consistent with several other stud-

ies that indicate that variation and evolution of gene regulatory

landscapes is mostly related to genetic changes in enhancer ele-

ments and not in genic sequences (Andersson et al. 2014; Villar

et al. 2014). Differential DNA methylation is likely to contribute

to this variation by affecting enhancer activity. The nature of

this variation is unclear, but could be genetically or environmen-

tally instructed, and several of the identified DMRs might likely

represent metastable epi-alleles. Interestingly, interpatient com-

parison also revealed a subset of patient-specific DMRs that are pre-

sent in all tissues and organs. Using blood and buccal samples, we

were even able to reliably predict DMRs in other organs and tissues.

Although for TSS DMRs, this mostly revealed repetitive genes,

many CpG island DMRs predicted using a blood–buccal compari-

son represented single-copy genes, reiterating that patient-specific

variability in DNA methylation is mostly found in CpG islands

and not TSSs.

DNAmethylation and XCI are tightly linked, and the present

study supports previous findings indicating thatDNAmethylation

levels of TSSs of X-linked genes correlate directly with gene expres-

sion and the degree of escape (Schultz et al. 2015). Interestingly,

with the exception of liver, no consistent relationship between

gene body methylation and gene expression was found, contrast-

ing a previous study that concluded that gene body DNA methyl-

ation provided the best readout for XCI escape (Schultz et al.

2015). TSS methylation levels should therefore be preferred to pre-

dict gene expression levels and predict escape of XCI. This study

also reveals a high tissue and patient-specific variability in DNA

methylation of TSSs of X-linked genes, indicating that escape of

XCI is variable but is most pronounced in the brain. This finding

is likely related to the fact that many X-linked genes are brain spe-

cific and indicates that escape can bemodulated, whichhas impor-

tant implications for our understanding of X-linked diseases.

These present studies illustrate the power ofMeD-seq as a cost

effective, high coverage, accurate and reproducible DNA methyla-

tion detection platform. It provides the right technology to per-

form large population studies or extensive epigenomic profiling

that can be easily incorporated into the laboratory without signifi-

cant infrastructure or bioinformatics. With simple modifications,

this technology will also be amendable to retrieve DNA methyla-

tion profiles of FFPE-treated material or single cells, providing a

new exciting platform to address a wide range of biological

questions.

Methods

Human samples

All samples used in this study were obtained from the ErasmusMC

Tissue Bank, in accordance with the Dutch Law on Medical

Research and autopsymaterials, andwere only used for research af-

ter permission was obtained through signed informed consent

from the next of kin. Tissue samples were collected during autop-

sies performed at the Erasmus Medical Centre in Rotterdam, be-

tween June 2012 and August 2014 (de Hoon et al. 2015). Tissue

samples were snap frozen, and DNA was extracted using phenol-

chloroform purification. Blood samples could not be extracted

by peripheral vein puncture and were therefore obtained through

cardiac puncture. Ovarian samples were cut by hand from the

ovarian cortex, and only selected regions that did not contain vis-

ible follicles were obtained. Fully methylated human genomic

DNA was ordered from EpigenDX (Human High Methylated

DNA control, 80-8061-HGHM5, HS091514) and HUES8 were ac-

quired via NIH.

DNA preparation

DNA from either fibroblast, huES, or tissue samples was extracted

using phenol-chloroform (Sigma-Aldrich) extraction. If needed,

tissues were homogenized before lysis. After isopropanol (Sigma-

Aldrich) precipitation, DNA was washed with 70% ethanol and

dissolved in 20 mM Tris, pH 8.0. LpnPI, FspEI, and MspJI (New

England Biolabs) digestions were carried out according to the

manufacturer’s protocol. Reactions contained 1000 ng in a 30-µL

volume, and digestion took place overnight in the absence of

enzyme activators.

Sample preparation and next-generation sequencing

Digests of genomic DNA with LpnPI resulted in snippets of 32 bp

around the fully methylated recognition site that contains CpG.

These short fragments were either purified on TBE gel before prep-

aration or purified by Pippin system gel after preparation.

Gel purification was performed with 10% TBE gels using the

Xcell SureLock system (ThermoFisher). Sixty microliters of each

sample was loaded on the gel, leaving at least one empty well be-

tween samples. After running, gels were colored by ethidiumbro-

mide and scanned on a Typhoon Trio (GE Healthcare). DNA was

cut out based on ladder sizes at 30–40 bp and extracted from gel us-

ing gel breaker tubes and centrifugation. DNA was washed with

70% EtOH and dissolved in 10 mM Tris-HCl, pH 8.5. The 32-bp

DNA fragments were prepared for sequencing following the man-

ufacturer’s instructions using a Rubicon Genomics ThruPLEX

DNA-seq kit. Stem–loop adaptors were blunt-end ligated to re-

paired input DNA and amplified (4 +10 cycles) to include dual in-

dexed barcodes using a high fidelity polymerase to yield an

indexed Illumina NGS library.

For Pippin gel purification, the DNA concentrationwas deter-

mined by the Quant-iT High-Sensitivity assay (Life Technologies;

Q33120), and 50 ng ds DNA was prepared using the ThruPLEX

DNA-seq 96D kit (Rubicon Genomics, catalog #R400407).

Twenty microliters of amplified end product was purified on a

Pippin HT system with 3% agarose gel cassettes (Sage Science).

Multiplexed samples were sequenced on IlluminaHiSeq 2500

systems for single reads of 50 bp according to the manufacturer’s

instructions. Dual indexed samples were demultiplexed using

bcl2fastq software (Illumina).

WGBS, MeDIP, and Infinium 450K array

WGBS, MeDIP, and Infinium 450K data were retrieved from

ENCODE (https://www.encodeproject.org; WGBS; ENCFF263KSB

and 450K; ENCLB121ZZZ) and NBCI/SRA (https://www.ncbi.nlm.

nih.gov/sra/SRX020007; MeDIP).

MeD-seq data processing

Data processing was carried out using specifically created scripts in

Python. Raw FASTQ files were subjected to Illumina adaptor trim-

ming, and reads were filtered based on LpnPI restriction site occur-

rence between 13 and 17 bp from either 5′ or 3′ end of the read.

Reads that passed the filter were mapped to hg38 using Bowtie 2

(Langmead and Salzberg 2012). Mapped reads were used to assign

read count scores to each individual LpnPI site in the hg38 ge-

nome. SAM and BAM files were generated using SAMtools for visu-

alization. Gene and CpG island annotations were downloaded

from Ensembl (https://www.ensembl.org). Genome-wide individ-

ual LpnPI site scores were used to generate read count scores for the
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following annotated regions: TSS (1 kb before and 1 kb after), CpG

islands, and gene body (1 kb after TSS until transcription end

site [TES]).

LpnPI filter validation

Filter validationwas carried out in Python. Distribution of a specif-

ic DNA sequence in the trimmed reads was plotted and analyzed

for enrichment at the 16-bp position. Only CpG containing

sequences were tested based on previously published work

(Cohen-Karni et al. 2011) andwere summarized in an LpnPI recog-

nition sequence. Read length distribution was plotted for all

trimmed reads and filtered reads. Reads with a length outside the

expected 32–33bp were used to plot the LpnPI site distribution.

Data analysis

Data analysis was carried out in Python. Correlations between

data sets were calculated using the Pearson or Spearman coefficient

after log10 transformation of read counts, and outliers (Z-score

>5.0) were excluded and graphs created using matplotlib (Hunter

et al. 2007).

Genomic distribution of LpnPI sites was shown by generating

100 bins of 100 bp (10 kb), either upstream of the TSS or down-

stream from the TES. Gene body bins were generated using genes

with a minimal gene size of 100 bp and dividing each gene body

into 100 bins of 1% of the total gene body size. For each bin, the

number of LpnPI sites are plotted. To compare pre-TSS and post-

TES regions (10 kb) to the gene body regions, LpnPI site count

for each gene body bin are adjusted for gene size and 10-kb region.

Similarly, genomic distribution of read counts were shown by di-

viding the read count by the number of LpnPI sites in each bin

and adjusted for gene size. Subgroups were made based on RNA-

seq data from Expression Atlas 3.0 (Petryszak et al. 2016).

Comparison of MeD-seq data and 450K array data was done

generating 100-bp regions around the 450K probe, 50 bp flanking

both sides of the interrogated CpG by the assigned probe. Only re-

gions containing 10 or more LpnPI sites were used for comparison

with 450K array data. 450K array probes were put into 10 different

bins, based on percentage of methylation (0%–100%), and MeD-

seq read counts were plotted from the assigned probe regions.

Similar analysis was done between WGBS data using the same

100-bp regions. Scatterplot comparison between MeD-seq,

WGBS, and MeDIP-seq was preformed using log10 transformed

read counts (MeD-seq and MeDIP-seq) divided by the amount of

CpG sites present inside the 2-kb TSS or CpG island window and

compared with averagemethylation percentage (WGBS) in the ap-

propriate window.

DMR detection was performed between two data sets con-

taining the regions of interest (TSS, gene body, or CpG islands)

using the χ
2 test on read counts. Significance was called by either

Bonferroni or FDR using the Benjamini-Hochberg procedure

(Benjamini and Hochberg 1995). Differently methylated regions

were used for unsupervised hierarchical clustering; the Z-score of

the read counts was used for normalization and is also shown in

the heatmaps.

Data access

The data from this study have been submitted to the NCBI

Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra)

under accession number SRP100405.
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