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Abstract

Estimates of effective population size in the Holstein cattle breed have usually been low de-
spite the large number of animals that constitute this breed. Effective population size is in-
versely related to the rates at which coancestry and inbreeding increase and these rates
have been high as a consequence of intense and accurate selection. Traditionally, coan-
cestry and inbreeding coefficients have been calculated from pedigree data. However, the
development of genome-wide single nucleotide polymorphisms has increased the interest
of calculating these coefficients from molecular data in order to improve their accuracy. In
this study, genomic estimates of coancestry, inbreeding and effective population size were
obtained in the Spanish Holstein population and then compared with pedigree-based esti-
mates. A total of 11,135 animals genotyped with the lllumina BovineSNP50 BeadChip were
available for the study. After applying filtering criteria, the final genomic dataset included
36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals
included 31,203 animals. These individuals represented only the last five generations in
order to homogenise the amount of pedigree information across animals. Genomic esti-
mates of coancestry and inbreeding were obtained from identity by descent segments
(coancestry) or runs of homozygosity (inbreeding). The results indicate that the percentage
of variance of pedigree-based coancestry estimates explained by genomic coancestry esti-
mates was higher than that for inbreeding. Estimates of effective population size obtained
from genome-wide and pedigree information were consistent and ranged from about 66 to
79. These low values emphasize the need of controlling the rate of increase of coancestry
and inbreeding in Holstein selection programmes.

Introduction

It is well known that the effective size of a population (N,) is usually less than its census size as
there are often deviations from the assumptions of the idealized population by having unequal
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sex ratios, variation in family size, unequal numbers in successive generations and overlapping
generations [1]. A clear example of this is given by the Holstein cattle breed that despite being
numerically very large (millions of animals spread across the world), shows a N, of the order of
100 [2, 3] when calculated from the rate of inbreeding (AF) computed from pedigree data.

Holstein dairy cattle have dominated the milk production industry over decades. Intense
and accurate artificial selection practised over many years has resulted in high rates of genetic
gain for milk production traits. This has implied an extreme use of a limited number of elite
sires of high genetic merit for production traits via artificial insemination. However, the high
rates of gain have been accompanied by large increases in the rates at which inbreeding and
coancestry (Af) accumulate and, consequently, by large reductions in N,. This has led, in the
last decades, to an increasing awareness of the need of measuring and controlling the loss of ge-
netic variation and the increase in inbreeding to mitigate its negative effects [4]. These include
inbreeding depression in production traits and reproductive ability [5, 6, 7, 8] and an increase
in the prevalence of undesirable genetic disorders such as the complex vertebral malformation
(CVM) [9], deficiency of uridine monophosphate synthase (DUMPS) [10], brachyspina syn-
drome (BS) [11] and Bovine leucocyte adhesion deficiency (BLAD) [12].

With the advances in high-throughput genotyping techniques and the development of chips
containing thousands of SNPs at a reasonable cost, the implementation of genome-wide evalu-
ation [13] has become routine in many large scale commercial Holstein breeding programmes
[14, 15]. As high levels of accuracy can be achieved at an early age, generation intervals can be
shortened leading to faster gain [16]. Although genomic selection leads to decreased rates of in-
breeding per generation in comparison with BLUP selection [17, 18, 19], it is not inbreeding
free. Thus, the need for measuring and controlling inbreeding remains [17].

Traditionally, coancestry and inbreeding coefficients have been estimated from pedigree
records. However, the dense marker chips that have been developed for cattle with the main
purpose of increasing selection responses, can be also used for obtaining genome-wide esti-
mates of coancestry and inbreeding. Genomic estimates are expected to be more accurate than
pedigree-based estimates because they i) reflect the actual percentage of the genome that is ho-
mozygous (inbreeding) or the actual percentage of the genome shared by two individuals
(coancestry) whereas pedigree-based estimates are only expectations of such percentages; and
ii) are able to capture relationships due to very distant common ancestors that pedigree-based
estimates ignore [20].

In livestock species, genomic estimates of inbreeding have been obtained for different cattle
[8,21,22,23,24], sheep [25] and pig [26, 27] breeds, but estimates of genomic coancestry are
rare [28]. However, both inbreeding and coancestry are of fundamental importance in animal
breeding programmes. Although inbreeding depression depends on the levels of inbreeding
and not on coancestry, in scenarios with non-random mating such as those in most cattle
breeding programmes, the rate at which genetic variability is lost is better measured by Af than
by AF [29].

The objective of this study was to obtain genomic estimates of coancestry and inbreeding
coefficients and N, in the Spanish Holstein population. Genomic estimates were then com-
pared to those based on pedigree information.

Materials and Methods
Genomic and pedigree data

Genomic information from 11,135 animals belonging to the Spanish Holstein population was
analyzed in this study. These individuals were genotyped with the Illumina BovineSNP50
BeadChip (versions v1 or v2). Only SNPs common to both chip versions were selected for the
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Fig 1. Distribution of genotyped animals by year of birth.

doi:10.1371/journal.pone.0124157.g001

analysis (52,340 SNPs). SNPs positions within the genome were obtained from the UMD 3.0
bovine genome assembly [30]. Unmapped SNPs (523) and those mapped on chromosomes X
orY (1,056) were excluded. In addition, 14,068 SNPs with missing genotypes for more than 5%
of the individuals were discarded. After that, 566 animals with more than 5% missing geno-
types for the remaining 36,693 SNPs were also removed. The final dataset included 36,693 au-
tosomal SNPs and 10,569 animals (9,990 bulls and 579 cows). The distribution of genotyped
animals by year of birth is shown in Fig 1.

The pedigree data set, provided by the Spanish Holstein Association (Conafe), was con-
structed with all known ancestors of genotyped individuals and comprised 35,473 animals. The
software Endog [31] was used to calculate the average numbers of generations traced (14.50),
full traced generations (2.56) and equivalent complete generations (6.12). The generation inter-
val (L) was calculated as the average age of parents when their offspring was born. The average
generation intervals for sires of bulls, dams of bulls, sires of cows and dams of cows were 6.06,
3.88,5.24 and 3.77, respectively. The average weighted L across paths and years was 4.2 years.
We observed that L has decreased across time. The average L for the periods 1960 to 1979,
1980 to 1999 and 2000 to 2013 were 5.1, 4.2 and 3.3, respectively.

Genomic estimates of inbreeding and coancestry

Genomic estimates of inbreeding coefficients were obtained from runs of homozygosity
(ROHs) which are long, uninterrupted stretches of homozygous genotypes [20]. Specifically,
the inbreeding estimator, Fropy, is the proportion of the genome that is in ROH. For individual
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i, Frop, was calculated as

"ROH; I
o 2 :k:1 ROH

F, . =
ROH; lg ’
where 1, is the total number of ROHs in individual 4, Iy, is the length of the k™ ROH in in-
dividual i in base pairs and I, is the total length of the genome in base pairs.

The criteria used for defining a ROH were as follows: (i) the minimum length that constitut-
ed a ROH was 4 Mb; (ii) the minimum number of SNPs was 30; (iii) the minimum density was
1 SNP per 100 kb; (iv) the maximum distance allowed between two consecutive homozygous
SNPs in a run was 1 Mb; and (v) a maximum of two missing genotypes and one heterozygous
genotype within a particular ROH were permitted. The choice of 4 Mb for the minimum length
permitted for defining a ROH was based on the results of Ferencakovi¢ et al. [26] who showed
that Frop based on shorter segments systematically overestimates autozygosity when using the
[lumina BovineSNP50 BeadChip.

The coancestry coefficient based on IBD segments (fszi) between individuals i and j was cal-
culated as

Y Y
- (a,, b,
k=1 a=1 bj:1 SE(,k( ir ])
41

4

fSEG,j =

)

where I (a;, b;) is the length of the k™ shared IBD segment measured over homologue a of in-
dividual i and homologue b of individual j and ng; is the total number of IBD segments be-
tween individuals i and j. The criteria for defining an IBD segment were equivalent to those

used for defining a ROH. Both Fy,, and fSEG,_]_ were obtained using the software developed by
de Cara et al. [32].

In order to calculate coancestry coefficients based on IBD segments, haplotypes need to be
inferred from genotype data. The phase inference was performed using the software BEAGLE
[33] that uses localized haplotype clustering and fits the data through an Expectation-Maximi-
zation (EM) algorithm. Each chromosome was phased independently using the default param-
eters (10 iterations). After haplotype inference, fSEGU was obtained as explained above.

Genomic estimates of homozygosity and similarity

We also obtained genomic estimates of molecular homozygosity and molecular similarity on a
SNP-by-SNP basis. The genomic similarity between individuals was obtained by applying Mal-
écot’s definition [34] to the marker loci; that is, the molecular similarity between individuals i
and j (SSNPX,J_) is the probability that two alleles at a given locus taken at random from each indi-
vidual are equal (IBS). Analogously, the genomic homozygosity of individual i (Hy, ) is the

probability that the two alleles carried by this individual at a given locus are IBS. In this study,
Ssup, Was calculated as

Sow, = (1/n)Y K )OI L ) /4 ]

where 7, is the number of SNPs and I, is the identity of the k™ allele from individual i with
i

the m™ allele from individual j at SNP s, and takes a value of 1 if both alleles are identical and 0
otherwise. The genomic homozygosity of individual i was calculated as Hgy, = 2S5, — 1,and

was equal to the proportion of homozygous SNPs.
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Pedigree-based estimates
The pedigree-based coancestry (fPED[J) and inbreeding (Fyyy, ) coefficients for the genotyped in-

dividuals were calculated by going back only five generations in the pedigree in order to ho-
mogenise the amount of pedigree information across individuals. This data set included 31,203
animals. Estimates of both coefficients were obtained using the software PEDIG [35] with the
option that implements the algorithm of Meuwissen and Luo [36].

Rates of change in coancestry and inbreeding, and effective population
size

Rates of change in genomic and pedigree-based inbreeding per year (AFrop(y) and AFpgpy,), re-
spectively) were computed by regressing the natural logarithm of (1—F) for each individual on
the year of birth. The slopes of these regressions are approximately equal to ~AFgop,) and -
AFpgp(y). Rates of change in inbreeding per generation (AFgoy and AFpgp) were calculated by
multiplying the rates per year by the generation interval. Finally, estimates of N, were obtained
from the rate of change in inbreeding per generation as N g roy = 1/2AFroy and Neg ppp = 1/
2AFpgp. Rates of change in coancestry per year (Afsge(y) and Afpgp(y)), and per generation
(Afseg and Afpgp), and effective population size (Nes seg = 1/2Afspg and Neg ppp = 1/2Afpep)
were also computed following the same approach as for inbreeding. Rates of change in genomic
homozygosity (AHgnp(y) and AHgyp) and similarity (ASgyp(,) and ASgyp), and the correspond-
ing estimates of N, (N snp = 1/2AHgnp, and N s snp = 1/2ASgnp) were also obtained.

Results

Table 1 shows the mean, range, variance and coefficient of variation for the genomic homozy-
gosity, similarity, inbreeding and coancestry coefficients. As expected, the molecular homozy-
gosity and similarity coefficients were much higher than the inbreeding and coancestry
coefficients. The reason is that the former (that are obtained on a SNP-by-SNP basis), do not
discriminate alleles that are IBD or IBS. Estimates of F and f, based on ROHs and IBD seg-
ments, respectively, were close to the pedigree-based coefficients, indicating that they reflect
well IBD. The highest coefficients of variation were observed for pedigree-based estimates.
Table 2 shows the relationships between the genomic homozygosity and similarity, and dif-
ferent inbreeding and coancestry coefficients. The correlation between Frog and Fpgp was
higher than that between Hgyp and Fppp but still relatively low. Actually, 33% and 26% of the
variance in Fpgp can be explained by Froy and Hgyp, respectively. The highest correlation was

Table 1. Mean, range (minimum and maximum values), variance and coefficient of variation (CV) for
different estimates.

Mean Range Variance Ccv
Frow 0.0770 0.0000-0.2660 0.0010 0.4125
Fpep 0.0422 0.0000-0.2786 0.0007 0.6316
Hsnp 0.6451 0.4890-0.8769 0.0002 0.0206
fsea 0.0780 0.0000-0.5712 0.0006 0.3106
freD 0.0439 0.0000-0.4180 0.0005 0.5173
Ssnp 0.6447 0.5474-0.8366 0.0001 0.0148

Fron: inbreeding based on ROHSs; Fpep: pedigree-based inbreeding; Hsyp: SNP-by-SNP-based
homozygosity; fseg: coancestry based on IBD segments; frep: pedigree-based coancestry; Sgyp: SNP-by-
SNP-based similarity

doi:10.1371/journal.pone.0124157.t1001
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Table 2. Intercept (a), regression coefficient (b) and correlation (R) between different estimates.

Regression of a b R
Fpep on Frow 0.01 0.48 0.57
Fpep on Hsnp -0.62 1.03 0.51
Frow on Hsnp -1.29 2.12 0.88
feeD on fsea -0.01 0.73 0.78
freD on Ssnp -1.08 1.74 0.73
fsea on Ssnp -1.49 2.43 0.95

Fpep: pedigree-based inbreeding; Frop: inbreeding based on ROHSs; Hgyp: SNP-by-SNP based
homozygosity; feep: pedigree-based coancestry; fseg: coancestry based on IBD segments; Sgyp: SNP-by-
SNP based similarity

doi:10.1371/journal.pone.0124157.t002

that between Hgnp and Frop. Seventy seven percent of the variance in Froy can be explained
by Hgnp. Pearson’s correlation coefficients involving Sgnp, fseg and fpep were substantially
higher than those involving Hsnp, Froms, Fpep- In fact, 61% and 53% of the variance in fpgp is
explained by fsgg and Ssyp, respectively. Also, 90% of the variance in fsgg is explained by Ssyp.

Table 3 shows the rates of change in genomic homozygosity and similarity and in genomic
and pedigree-based inbreeding and coancestry per year and per generation, and the N, estimat-
ed from those rates. Despite the different scales of the SNP-by-SNP based measures when com-
pared with the inbreeding and coancestry coefficients (see Table 1), the rates of change were
very similar for all these parameters, as expected. Consequently, estimates of N, obtained from
ASgnp and from Afggc and Afpgp were very close. Rates of change in Hgyp, Fsgg and Fpgp were
also very close. Pedigree-based inbreeding rates were slightly lower than the corresponding
coancestry rates. Similarly, rates of genomic homozygosity were slightly lower than the corre-
sponding rates of genomic similarity. Consequently, estimates of N, obtained from rates of
change in molecular homozygosity and inbreeding were slightly higher than estimates obtained
from rates of change in molecular similarity and coancestry.

Given that L decreased over time, we also estimated N, for different periods (1960 to 1979,
1980 to 1999 and 2000 to 2013). Annual rates of homozygosity and inbreeding remained con-
stant across time, but N, increased as a consequence of the reduction in L. These estimates of
N, ranged from 61.3 to 65.4 for the period from 1960 to 1979, from 74.4 to 79.4 for the period
from 1980 to 1999, and from 94.7 to 101.0 for the period from 2000 to 2013.

Table 3. Rates of change in inbreeding, molecular homozygosity, coancestry and molecular similarity
per year (AFy), AHy), Afy) and ASy)), respectively, and per generation (AF, AH, Af and AS) using differ-
ent sources of information, and estimates of effective population sizes obtained from AF (N.g), AH
(Nen), Af (Ngs) and from AS (Nes).

ROHs or IBD segments SNP-by-SNP Pedigree
AF ) or AHyy, 0.0016 0.0016 0.0015
AF or AH 0.0067 0.0067 0.0063
Nor or Nagy 74.4 74.4 79.4
Afy, or AS ) 0.0016 0.0017 0.0018
Af or AS 0.0067 0.0071 0.0076
Ner Or Nes 74.4 70.0 66.1

doi:10.1371/journal.pone.0124157.t003
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Discussion

In this study, estimates of coancestry, inbreeding and N, obtained from genome-wide informa-
tion have been compared with those obtained from pedigree information in the Spanish popu-
lation of Holstein cattle. Our results confirm the small N, of the Holstein breed and the need of
controlling coancestry and inbreeding rates.

The correlation between Froy and Fpgp (0.57) obtained in the present study is in the range
of values obtained in previous studies. Feren¢akovi¢ et al. [22] found values ranging from 0.50
to 0.72 when analysing four different cattle breeds with the 50 K chip. Keller et al. [20] showed
that Frop is preferable to Fpgp and other measures of genomic inbreeding because it correlates
better with inbreeding depression. More specifically, for a N, similar to that estimated here for
the Holstein population, they predicted that the correlation between homozygous mutation
load and inbreeding coefficient was higher for Froy (0.60) than for Fpgp (0.25).

Molecular homozygosity and similarity coefficients calculated on a SNP-by-SNP basis were
much higher than pedigree-based inbreeding and coancestry coefficients because the latter
refer to a base population where no homozygosity exists. Thus, with the SNP-by-SNP based
method alleles that are IBD and IBS can not be distinguished. Several approaches have been
proposed to express these genomic coefficients in the same scale as pedigree-based coefficients
[37] but they require knowing the base population allele frequencies. However, given that these
frequencies are usually unknown, these methods are generally unaccurate [38, 39]. Another
reason for correcting the raw molecular homozygosity and / or similarity is that in genome-
wide evaluation methods, genomic relationship matrices are usually combined with pedigree-
based relationship matrices because SNP genotypes are not available for many animals includ-
ed in the evaluation procedure [21, 40, 41, 42]. Genomic matrices are usually corrected using
the frequencies estimated in the present population through the formula of VanRaden [43, 44].
An alternative would be to use genomic matrices based on IBD segments rather that are in the
same scale as pedigree-based matrices. This could represent an advantage over current ap-
proaches used in the context of genome-wide selection for predicting breeding values [45].

Here, estimates of molecular homozygosity, molecular similarity, genomic inbreeding and
coancestry were obtained using genotypes contained in the Illumina BovineSNP50 BeadChip.
A higher density cattle chip (i.e., the BovineHD BeadChip) containing 777,962 SNPs is also
commercially available and used in dairy cattle genetic evaluations. Although in principle it is
expected that increasing marker density would lead to an increase in the accuracy of genomic
predictions, there are indications that this is not the case at least when N, is low [46]. Low N, is
associated with high linkage disequilibrium and, thus, increasing marker density above a cer-
tain level may not improve significantly the accuracy of genomic evaluations [47]. In fact,
small differences have been detected in genomic prediction when comparing the high density
panel with the 50 K chip [48]. In a similar way, two different studies have showed that the use
of the high density chip does not lead to higher accuracies when estimating inbreeding [23, 49].
For three different cattle breeds, Ferencakovi¢ et al. [23] found similar correlations between
Fron and Fppp when using the 50 K chip (estimates ranging from 0.62 to 0.77) and when
using the high density cattle panel (estimates ranging from 0.61 to 0.75). Also, Purfield et al.
[49] analysed nine different cattle breeds and indicated that the percentages of the variance in
Fprp explained by Frop with the high density and 50 k chips were very similar (56% and 53%,
respectively).

As expected, rates of change in molecular homozygosity, and genomic and pedigree-based
inbreeding (and rates of change in molecular similarity, and genomic and pedigree-based coan-
cestry) were very similar [26, 38]. Rates of change were slightly lower for molecular homozy-
gosity and inbreeding than for molecular similarity and coancestry, and consequently, N,y and
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N, estimates were slightly higher than N, and N,yestimates. This result could be a reflection
of non-random mating (i. e. avoidance of matings between relatives) if the level of non-ran-
domness was not constant across generations [50].

For cattle, there is evidence that the levels of N, were large (of the order of tens of thousands
or more) following domestication [2, 3], but current N, in some modern breeds are of the
order of 100 [2, 3]. Estimates of N, obtained in this study across different time periods are close
to those previously published for other Holstein populations. Estimates of N, obtained from
pedigree data have ranged from 39 in the US population [51] to 115 in the Canadian popula-
tion [52]. Estimates obtained from genome-wide data have ranged from around 80 in the US
population [53] to 150 in the Australian Holstein cattle [54].

The small N, found in Holstein cattle reflects the fact that breeding strategies followed in
this breed have implied a very heavy use of few top sires and reinforces the need of controlling
the rate at which coancestry and inbreeding increase in selection programmes [2]. Both selec-
tion and mating strategies have been proposed in the past for controlling the rates of coancestry
and inbreeding. In particular, optimum contribution selection [55, 56] provides a useful tool to
manage the rate of accumulation of inbreeding. When applying this selection tool in cattle,
higher genetic gains are expected at a given rate of inbreeding [4]. Both objectives can be at-
tained using programmes where selection is based on classical BLUP-EBV's and those based on
genomic EBVs [19]. The application of the method in Holstein cattle would however require a
coordinated policy on the use of selected candidates and on breeding objectives [4]. This may
require the cooperation of breeders and artificial insemination organizations to ensure that the
correct animals and their contributions are identified [57, 58]. Recently, Pryce et al. [28] and
Sun et al. [59] have showed that mating strategies based on genomic information can reduce
progeny inbreeding when compared with strategies based on pedigree information. Thus,
dense genetic marker information is not only valuable for increasing accuracies of selection but
also for controlling the rate at which coancestry and inbreeding increase in dairy cattle breed-
ing programmes [19].
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