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Abstract

Waterlogging causes extensive damage to maize crops in tropical and subtropical regions. The identification of tolerance
genes and their interactions at the molecular level will be helpful to engineer tolerant genotypes. A whole-genome
transcriptome assay revealed the specific role of genes in response to waterlogging stress in susceptible and tolerant
genotypes. Genes involved in the synthesis of ethylene and auxin, cell wall metabolism, activation of G-proteins and
formation of aerenchyma and adventitious roots, were upregulated in the tolerant genotype. Many transcription factors,
particularly ERFs, MYB, HSPs, MAPK, and LOB-domain protein were involved in regulation of these traits. Genes responsible
for scavenging of ROS generated under stress were expressed along with those involved in carbohydrate metabolism. The
physical locations of 21 genes expressed in the tolerant genotype were found to correspond with the marker intervals of
known QTLs responsible for development of adaptive traits. Among the candidate genes, most showed synteny with genes
of sorghum and foxtail millet. Co-expression analysis of 528 microarray samples including 16 samples from the present
study generated seven functional modules each in the two genotypes, with differing characteristics. In the tolerant
genotype, stress genes were co-expressed along with peroxidase and fermentation pathway genes.
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Introduction

In south and southeast Asia, approximately 18% of the land on

which maize is grown is severely affected by floods; in India, 25%–

30% of the production is lost annually for the same reason [1].

The plants wilt within a few hours to 2–4 days after exposure to

flooding [2]. Stomatal closure and the humid environment lead to

impaired root hydraulic conductivity [3]. Reduced edaphic

components (Mn2+, Fe2+, S22), volatile lower organic acids

(propionic and butyric), and gases such as ammonia, carbon

dioxide, ethylene, hydrogen sulfide, and methane [4] accumulate

in waterlogged soils and damage roots. Reduced availability of

oxygen in the rhizosphere severely constrains the plants’ capacity

to produce ATP by mitochondrial oxidative phosphorylation,

given that oxygen is the terminal electron acceptor [5]. Efficient

uptake of such essential macronutrients as nitrogen, phosphorus,

and potassium is affected by the reduced availability of ATP;

carbohydrate reserves are depleted [6]; and the activities of

enzymes that take part in the TCA cycle also decrease [7].

In response, plants employ alternative mechanisms such as

glycolysis to generate ATP and ethanolic fermentation to produce

the NAD+ required for sustaining the EMP pathway [8]. A set of

anaerobic peptides including aldolase, enolase, glucose-6-phos-

phate isomerase, glyceraldehyde-3-phosphate dehydrogenase,

sucrose synthase, and alcohol dehydrogenase have been identified

as being selectively induced under hypoxia in maize [9]. The

expression levels of a zinc finger-like protein, SKP1/ASK1-like

protein, and 20S proteasome subunit a-3 increased markedly after

2 h of minimal oxygen supply [10]. A low oxygen-sensing N-end

rule proteolytic pathway [11] and a gene, Sicyp51, believed to

confer tolerance to hypoxia were identified recently [12].

SNORKEL1 and 2 in rice and MYB, and AP2/ERF transcription

factors (RAP2.12, HRE1) in Arabidopsis [13–15] were found to

regulate gene expression under low oxygen. Early studies in maize

focused on the role of the ethylene-induced XET in aerenchyma

formation in the cortical region of roots [16]. Calcium-dependent

cysteine proteases have been implicated in the death of the maize

primary root tip [17] and the G-box binding factor GBF1 in

inducing ADH1 promoter [18].

The availability of sequence information has facilitated research

beyond transcriptomics toward proteomics and interactomics

[19,20]. Significant associations in the form of functional gene

clusters may imply transcriptional coordination of genes [21]. The

alignment of networks from different species has revealed

evolutionarily conserved patterns [22]. The co-expression network

approach has identified candidate genes for glucosinolate accu-

mulation in Arabidopsis [23] while expediting the process of

discovery of new genes [24]. The approach can retrieve

information about genes with functions that are not known yet,
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whereas differential co-expression analysis can uncover the steps

involved in metabolic pathways [25].

In the present study, a whole-genome transcriptome assay was

performed at three stages of waterlogging stress in subtropical

maize genotypes to (1) study the expression pattern of transcrip-

tomes in genotypes tolerant and susceptible to waterlogging, and

identify the roles of differentially expressed genes (DEGs) in

important pathways that underlie the adaptive traits; (2) co-map

the bin locations of the transcriptomes with already known QTLs

for waterlogging and find synteny with other species; (3) generate

gene co-expression networks to explore cohorts of genes expressed

together in modules and functional clusters, while comparing the

two contrasting genotypes.

Materials and Methods

Stress Treatment
Two subtropical maize (Zea mays L.) inbred lines, HKI 1105

(tolerant to waterlogging stress) and V 372 (susceptible to

waterlogging stress), were sown in 35 cm tall plastic pots filled

with sandy loam soil (Figure 1). The plants were watered daily to

field capacity until the 28th day after sowing, after which they

were subjected to stress, in the form of waterlogging, for a

standardized duration of seven days, based on the observation that

seven days of waterlogging causes adequate stress to maize plants

[26–28]. Waterlogging was ensured by sealing the drainage holes

at the bottom of the pots and maintaining 5 cm of standing water.

Root samples were collected on 28, 32 and 35 days after sowing,

which represented the control, moderate stress and severe stress,

respectively. To allow the plants to recover from stress, the seal

was removed on the 42nd day after sowing (post stress recovery) so

that excess water could drain out freely and subsequently root

sample was collected from the recovered plants.

Isolation, Labeling, and Hybridization of RNA
Total RNA was isolated and purified from root samples (50 mg

each) using the RNeasy mini kit (Qiagen, Hilden, North Rhine-

Westphalia, Germany) after grinding the tissues in liquid nitrogen,

following the manufacturer’s guidelines. Total RNA was checked

for quantity and quality using a NanoDrop 1000 spectrophotom-

eter (Thermo Scientific, Wilmington, Delaware, USA) and

denaturing agarose gel electrophoresis, respectively. Affymetrix

GeneChip Maize Genome Array (Affymetrix Inc., Santa Clara,

California, USA) representing 13339 genes was used for the

microarray experiment. Approximately 300 ng of total RNA was

biotin-labeled for GeneChip analysis and 10 mg of purified

fragmented cRNA was used for hybridization. Hybridization,

washing, and scanning were performed as described in the

GeneChip standard protocol (39-IVT Express kit user’s manual).

Two technical replicates of each sample were taken to test both the

reproducibility and quality of chip hybridization.

Microarray Normalization and Data Analysis
Through the GeneChip operating software (GCOS, Affymetrix

GeneChip operating software with autoloader, ver. 1.4, manual),

CEL files were generated after scanning. The data was submitted

to the NCBI GEO (Gene Expression Omnibus) (www.ncbi.nlm.

nih.gov/geo) database (accession # GSE43088). The raw CEL

files containing probe intensities from 16 chips were imported into

the R platform using affy package [29]. The GeneChip Robust

Multiarray Average (GCRMA) algorithm was used for back-

ground correction, normalization, and probe set summarization

[30]. Linear modeling of microarray data and identification of

DEGs was performed with limma package [31]. It computes

moderated t-statistics and log-odds of differential expression by

empirical Bayes shrinkage of the standard errors toward a

Figure 1. Response of genotypes to control and severe stages of the waterlogging stress. (A) Represents severe stress stage of HKI 1105
(first two rows) and V 372 (last two rows), and (B) Represents control stage of HKI 1105 (first two rows) and V 372 (last two rows).
doi:10.1371/journal.pone.0070433.g001

Genome-Wide Transcriptomes for Waterlogging Stress
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common value. Probe sets having a p value of #0.001 and

$fivefold change were considered differentially expressed under

waterlogging with respect to the control and were computationally

annotated using Blast2GO 1.3.3 [32]. Only plant-specific

annotations were taken into account. Pathway visualization for

moderate and severe stress stage transcripts was performed using

MapMan [33].

Construction of Co-expression Networks
Co-expression networks were created using 511 samples

obtained from NCBI GEO, 64 from EBI ArrayExpress Archive,

and 16 from in-house waterlogging microarray data (platform

accession number GPL4032, Table S1 in File S1). All 591 samples

were RMA-normalized with the affy package, and outliers were

identified using three statistical tests provided by the Bioconductor

package arrayQualityMetrics. Sixty-three samples failed at least

one test and were discarded, and the remaining 528 samples were

considered for network construction. To generate a co-expression

network specific to waterlogging, the data subsets were restricted

to genes that were differentially expressed in the in-house

microarray experimental data. The differentially expressed probe

sets were mapped to maize loci using maize B73 (ver. 5b.60) gene

models (www.maizesequence.org). Probe sets that matched

multiple genes as well as those that were redundantly mapped to

a single gene were removed, and the retained probe sets were

uniquely mapped to maize genes.

Finally, for network analysis, two data subsets were generated:

for DEGs from the tolerant and from the susceptible genotype.

Pairwise Pearson correlations were calculated for DEGs across all

the samples to generate similarity matrices for the subsets. Next,

the similarity matrices were converted to adjacency matrices using

weighted gene correlation network analysis (WGCNA) by raising

them to the power (b) that best approximates scale-free behavior of

the resultant networks. The values for the soft threshold (b) were

10 and 16 for the subsets for the tolerant and susceptible

genotypes, respectively. Topological overlap matrix (TOM)

similarities were calculated from the adjacency matrices and were

then used to calculate consensus dissimilarity. The latter was used

as the input in average-linkage hierarchical clustering, and the

minimum module size was set to 30. A dynamic tree cut algorithm

was used to identify the branches of the resulting dendrogram. The

eigengenes in each of the data subsets were calculated to

determine whether some of the initial consensus modules should

be merged. A ‘‘minimum consensus similarity’’ matrix was

calculated as the minimum of the dataset eigengene correlation

matrices, which was expressed as dissimilarity by subtraction from

one and used as the input for average-linkage hierarchical

clustering. In the resulting dendrogram, the modules on branches

with a merging height of ,0.2 were merged. Such branches

corresponded to modules having eigengenes with a correlation of

Figure 2. An overview of the differentially expressed genes (DEGs) at p # 0.001 and $ fivefold expression at moderate (M), severe
(S) and recovery (R) stages of waterlogging stress. The total number of DEGs is shown in bold. The number of genes having cellular
component, molecular function, and biological process GO terms is shown in italics. (A) and (B) represent genes up and downregulated, respectively
in the tolerant genotype (HKI 1105), whereas (C) and (D) represent those in the susceptible genotype (V 372).
doi:10.1371/journal.pone.0070433.g002

Genome-Wide Transcriptomes for Waterlogging Stress
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0.8 or higher. This procedure finally produced seven consensus

modules for each data subset. For each network module, a

functional enrichment test based on Fisher’s exact test (p value

,0.1) was performed against the genome background using

DAVID online [34]. The modules were subdivided into functional

clusters using pairwise k statistics between all genes.

Colocalization with QTLs
The bin locations of 662 genes that were expressed exclusively

during stress (but not during recovery) in the tolerant genotype

were retrieved by querying against the maize genome database

(www.maizegdb.org). The locations of the genes were then

matched against QTLs of aerenchyma and adventitious root

formation. A cross-species sequence similarity analysis was

performed across five additional species: sorghum (http://www.

phytozome.net/cgi-bin/gbrowse/sorghum/), foxtail millet

(http://www.phytozome.net/cgi-bin/gbrowse/foxtail/), Brachy-

podium (http://www.phytozome.net/cgi-bin/gbrowse/brachy/),

rice (http://www.plexdb.org/modules/MGI/), and Arabidopsis

(http://www.plexdb.org/modules/MGI/) to identify the synteny

of the colocalized genes.

qRT-PCR Analysis
The microarray expression data were validated using two-step

qRT-PCR (Agilent Technologies, Santa Clara, California, USA).

First-strand cDNA was synthesized from 250 ng of total RNA

using an Affinity Script qRT-PCR cDNA synthesis kit (Stratagene,

Agilent Technologies). With the help of IDT software (http://eu.

idtdna.com), gene-specific primers were designed (Table S2 in File

S1). The subsequent reaction was performed using Stratagene

MX3005P (Agilent Technologies). The conditions were as follows:

10 min at 95uC (preheating), followed by 40 cycles of amplification

with denaturation for 30 s at 60uC, primer annealing for 1 min at

58uC, and primer extension for 30 s at 72uC.

Root Section Analysis
Fresh root segments were collected on the sampling days (days

28, 32, 35, and 42 after sowing). Thin sections were prepared

without mounting in wax [35]. The sections were observed

through a Leica M205FA microscope (Leica Microsystems,

Wetzlar, Hesse, Germany). The images were captured with an

inbuilt camera (DFC425C).

Results

Gene Expression
The extent of hybridization of the cDNA with probe sets on the

chip was 67%275%. Genes with statistically significant differen-

tial expression in response to waterlogging and post-stress recovery

were identified using R. Although the p value to be set as a

threshold for accepting DEGs was #0.001, analysis revealed that

the number of genes obtained at this level was close to the average

number of genes obtained at#0.0001 and#0.01 (Table S3 in File

S1). Of the 14850 transcripts interrogated by probe sets on the

maize GeneChip, 8% (1188) were upregulated and 6% (891) were

downregulated in HKI 1105 (tolerant), whereas 9% (1337) were

upregulated and 7% (1040) were downregulated in V 372

(susceptible). However, the total number of genes obtained by

summing the number of genes expressed at each stage was higher

in HKI 1105. Comparison of the two genotypes at each stage

revealed that when the stress was moderate, only 17% of the genes

were differentially regulated in V 372 compared to 46% in HKI

1105 (Figure 2).

Figure 3. Blast2GO-annotated DEGs grouped according to the MIPS functional catalogue. The gene expression pattern across moderate
stress, severe stress and recovery is shown in the form of heat maps. Blue represents the percentage of upregulated genes in HKI 1105 (tolerant
genotype) while red represents downregulated genes in V 372 (susceptible genotype).
doi:10.1371/journal.pone.0070433.g003

Genome-Wide Transcriptomes for Waterlogging Stress

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e70433



Gene Annotation
Gene ontology (GO) terms, namely cellular component,

molecular function, and biological process, were assigned to the

BLAST hits of input sequences by Blast2GO (Tables S4A, S5A,

S6A and S7A in File S1). Of the upregulated genes during severe

stress, 82% (maximum in the tolerant genotype) were annotated,

whereas 79% each of those expressed during moderate stress and

during the recovery phase were labeled with a GO description.

The GO terms were then grouped according to the MIPS

functional catalogue. ‘‘Protein with binding function or co-factor

requirement (structural/catalytic)’’ had the maximum representa-

tion (57%261%). Other than ‘‘binding,’’ more specific GO terms

such as ‘‘catalytic activity’’ (22%) and ‘‘nucleotide binding’’ (20%)

were the best represented in the abovementioned MIPS category

for genes upregulated in stress stages in HKI 1105. In the same

category, in V 372, ‘‘oxygen binding’’ and ‘‘structural molecule

activity’’ accounted for less than 1%. The categories ‘‘biogenesis’’

and ‘‘cell cycle’’ did not include downregulated genes.

In HKI 1105, 13% and 11% upregulated genes accounted for

metabolic and cellular transport functions, respectively, whereas

8% and 15% of genes, respectively, were downregulated in V 372

(Figure 3). In the latter, four classes, namely, ‘‘transport,’’ ‘‘cellular

communication,’’ ‘‘metabolism,’’ and ‘‘transcription’’ each ac-

counted for more than 5% of the downregulated genes.

Analysis of Pathways and Transcript Levels
The analysis of the waterlogging-induced transcriptome data

with MapMan provided information about the pathways in which

the various DEGs were functionally important (Figure 4). In HKI

1105, of 1865 stress stage genes, 1532 were mapped to various

bins. Nearly 74% genes were mapped to pathways, whereas the

rest were unassigned. In V 372, 84.7% of 1150 genes were

mapped to various bins, a percentage comparable to that of genes

mapped in the tolerant genotype. Compared with HKI 1105,

fewer than one-fifth the number of genes were mapped to ‘‘DNA’’

and ‘‘cell wall’’ in V 372.

The transcript levels of DEGs at the different stages were

compared to identify the patterns of expression. For 72 genes that

were upregulated in the tolerant genotype, the fold change value

was .100% during both moderate and severe stress over the stage

of recovery, indicating that the genes played major roles under

stress conditions. Upon restoration of normal conditions, the

transcript levels decreased, although for 45 genes the fold change

value increased upon recovery. Approximately 30% of 1005

upregulated genes in HKI 1105 were expressed only under

moderate stress and 5% were only expressed under severe stress.

Of the genes expressed during severe stress, 36% were already

induced in response to decreased oxygen during moderate stress.

In contrast, in V 372, the number of genes uniquely induced

during moderate stress was almost one-fourth of that induced

during severe stress.

Cortical cell delineating protein precursor had the highest

(3103-fold) and the second highest level of expression (1267-fold)

during moderate and severe stress, respectively, in HKI 1105

(Table S4A in File S1). Highly induced or repressed genes that

Figure 4. Representation of DEGs during waterlogging stress in various pathways according to MapMan. Dark blue and dark red
represent number of upregulated genes while light blue and light red represent number of downregulated genes in HKI 1105 (tolerant genotype)
and V 372 (susceptible genotype), respectively.
doi:10.1371/journal.pone.0070433.g004

Genome-Wide Transcriptomes for Waterlogging Stress
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have not been described or annotated may be considered for

future analysis (Tables S4B, S5B, S6B and S7B in File S1).

Co-expression Networks
The co-expression network analysis was based on transcriptome

metadata collected from NCBI GEO, EBI ArrayExpress Archive

(Table S1 in File S1), and an in-house microarray experiment. The

similarity matrices generated from 528 filtered samples were

further processed to generate weighted co-expression network with

scale-free topology by raising them to power b (Figure S1). For the

tolerant and susceptible genotypes, 1654 and 1591 DEGs,

respectively, were mapped to gene models (Table S8 in File S1).

Network construction for the tolerant and susceptible genotype

subsets yielded 1593 and 1538 nodes, connected by 178449 and

367958 edges, respectively. The global networks were further

clustered into seven modules each in the two genotypes using

WGCNA (Figure 5). Eigenvectors for the modules were calculated

to evaluate the relatedness among the modules (Figure S2).

In each genotype, the networks were also analyzed according to

the differential regulation of genes under moderate and severe

stress (Figure 6). Only modules 3 and 7 comprised .50% of

downregulated genes in HKI 1105. The largest module consisted

of 583 genes in HKI 1105 and 825 in V 372. The modules were

divided into 229 functional clusters using pairwise k statistics

between all genes. These functional clusters were further filtered

based on Fisher’s exact test (p,0.1), which yielded 59 and 65

functional clusters for the tolerant and susceptible genotype

networks, respectively (Table S9 in File S1). The stress-related

cluster comprised 63 genes in HKI 1105 but only 45 in V 372. In

HKI 1105, the ethylene-response factors and calcium-dependent

protein kinases were enriched (Figure 7).

Figure 5. Co-expression network of genes involved in response to moderate and severe waterlogging stress. The network comprises
1593 nodes and 178,449 edges in HKI 1105, and 1538 nodes and 367,958 edges in V 372. Each color represents a module. (A) and (C) represent
overviews of the co-expression networks in HKI 1105 and V 372 genotypes, respectively. (B) and (D) show the seven modules each in the tolerant and
susceptible genotypes, respectively, extracted from the corresponding networks. (A) and (B): black, module 1; green, 2; blue, 3; magenta, 4; red, 5;
turquoise, 6; yellow, 7; (C) and (D): black, 1; blue, 2; green, 3; orange, 4; pink, 5; red, 6; yellow, 7.
doi:10.1371/journal.pone.0070433.g005

Genome-Wide Transcriptomes for Waterlogging Stress
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Colocalization with QTLs
The bin locations of 662 genes that were expressed during stress

(but not during recovery) in HKI 1105 were retrieved by querying

against the maize genome database (www.maizegdb.org). Bin

locations could be determined for 98% of the genes, of which the

locations of 88 matched those of mapped QTLs of aerenchyma

and adventitious root formation. On the basis of known markers in

these bin locations, 21 genes were localized in marker intervals.

Twenty genes co-localized with QTL of aerenchyma formation on

chromosomes 2, 5, 8, and 9. Under moderate stress, the low-

molecular weight cysteine-rich protein LCR69 precursor ex-

pressed the most (265-fold); the temperature-induced lipocalin

expressed 52-fold; and an unknown gene co-located in the same

bin location expressed 46-fold.

A cross-species sequence similarity analysis was performed

across five additional species: sorghum, foxtail millet, rice,

Brachypodium, and Arabidopsis to characterize the synteny of

colocalized genes (Table S10 in File S1). Five genes, namely,

temperature-induced lipocalin, potassium channel beta subunit,

cytosolic orthophosphate dikinase, beta-tubulin 4, and chlorophyll

a/b binding protein 2 were mapped across all the five species. All

genes but one could be mapped in sorghum and 20 in foxtail

millet, indicating that the two are very closely related to maize.

The corresponding figures for the other three species were as

follows: rice, 15; Brachypodium, 14; Arabidopsis, 5.

Figure 6. Differentially expressed genes mapped for stress conditions. Co-expression networks of the HKI 1105 and V 372 genotypes in (A)
and (B) respectively, color-coded according to the level or state of stress and the nature of regulation. Moderate stress: upregulation, turquoise;
downregulation, blue; severe stress: upregulation, yellow; downregulation, red.
doi:10.1371/journal.pone.0070433.g006

Figure 7. Functional clusters of genes identified in the tolerant genotype. Genes coding for (A) ethylene-responsive proteins, including AP2
domain-containing protein (GRMZM2G369472), ERF-like 1 (GRMZM2G053503), and EREBP 2 (GRMZM2G085964), and (B) Ca-binding proteins,
including EF-HAND Ca-binding protein CCD1 (AC225718.2), calcineurin B-like protein 4 (GRMZM2G137751), calcium-dependent protein kinase
isoform AK1 (GRMZM2G028086), and calmodulin (GRMZM2G062673) in HKI 1105.
doi:10.1371/journal.pone.0070433.g007

Genome-Wide Transcriptomes for Waterlogging Stress
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Figure 8. Combination of events and interactions during hypoxia, leading to programmed cell death (PCD). (A) No formation of
aerenchyma at control stage in the absence of PCD and (B) formation of aerenchyma at severe stress stage due to PCD in the tolerant genotype (HKI
1105). (C) The differences in fold change of a few genes are represented with standard error in microarray and qRT-PCR assays.
doi:10.1371/journal.pone.0070433.g008

Figure 9. Stress tolerant gene clusters. Genes in the ‘‘response to stress’’ cluster in HKI 1105, shown (A) as part of the co-expression network. The
nodes representing genes that play a crucial role in tolerance to waterlogging are shown magnified in (B). These include GRMZM2G078373: ASR
protein, GRMZM2G168552: bundle sheath strand-specific gene 1, PDC1, GRMZM2G159285: IAA13, and POR2.
doi:10.1371/journal.pone.0070433.g009

Genome-Wide Transcriptomes for Waterlogging Stress
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Discussion

Transcriptomic Expression for Adaptive Traits
Formation of aerenchyma is one of the mechanisms for

adapting to stress by promoting gaseous exchange between roots

and shoots. Aerenchyma is formed as a result of apoptosis or

programmed cell death (PCD) in the root cortex [16]. PCD is

triggered by a series of steps involving G-proteins and protein

kinases, hydrolysis of cell walls, Ca-binding proteins, and ethylene

and IAA synthesis during stress conditions (Figure 8). Studies of

the signal transduction cascade have revealed that activation of G-

proteins and protein kinases, inhibition of phosphatases, and

increase in Ca2+ ion levels, all promote apoptosis [36]. All three

features of PCD were observed in HKI 1105 (tolerant) exposed to

stress in the form of waterlogging. During waterlogging, the

cytoplasm becomes acidic, leading to the release of Ca2+ from

mitochondria owing to loss of potential by the mitochondrial

membrane [37]. Calmodulin, a Ca-binding protein that was

expressed only in HKI 1105 and not in V 372, interacts with

glutamate decarboxylase and helps to maintain cytosolic pH under

anoxia [37].

Hydrolases, enzymes that degrade the cell wall, play an

important role in anoxia-induced cell death and the formation

of aerenchyma [38]. The actively dividing cells in the root tip

consume much energy. To conserve energy as well as materials

(substrate) to prolong survival, the actively dividing cells die as an

adaptation to anoxia. A member of a flooding-specific gene family,

XET A was found upregulated in HKI 1105 during both moderate

(253-fold) and severe (16-fold) stresses, but downregulated in V

372. Expansins are a family of cell-wall proteins that loosen the cell

wall by disrupting the cellulose-hemicellulose network at lower pH

[39] resulting from hypoxia, and facilitate free sliding of the

polymers over each other; upon restoration of normal conditions,

the cell wall eventually regains its original structure [40]. A

precursor of the alpha-l-fucosidase 2 gene, which helps to degrade

glycan structures, was upregulated during moderate (134-fold) and

severe (49-fold) stress in HKI 1105 and not expressed in V 372.

Although it was also upregulated during the recovery stage in the

tolerant genotype, its expression level was only about one-tenth of

that achieved during the stress, probably because the breakdown

of cell wall polymers is no longer required once hypoxia is

overcome.

The plant hormones ethylene and IAA stimulate the develop-

ment of adventitious roots, which replace basal roots as the latter

become incapable of conducting water and nutrients under a

reduced supply of oxygen [41]. Ethylene biosynthesis genes were

downregulated in the susceptible genotype, whereas a number of

genes encoding ethylene-binding proteins (AP2/EREBP family)

such as ethylene-responsive factor-like protein 1, BBM2, AIL5-like,

and WRI1, were upregulated in HKI 1105. It was also observed

that in the tolerant genotype, auxin receptor genes such as, IAA3,

IAA14 and IAA16 were up-regulated. An association between

ethylene and auxin-signaling pathways is possible, given that

ethylene enhances the formation of lateral and adventitious roots

[42].

Genes Involved in Metabolism and Assimilation of Energy
Abiotic stress affects CO2 diffusion, ribulose-1, 5-bisphosphate

(RuBP) content (dependent on ATP and NADPH supply),

RUBISCO activity, and photorespiration [43]. In HKI 1105,

following exposure to stress, photosynthetic genes coding for

pigment chlorophyll a/b binding protein-1 (13-fold) and -2 (34-

fold), CP24 (32-fold), CP29 (28-fold), and CP26 apoprotein

precursor (1360-fold) were upregulated to keep photosynthetic

efficiency as high as possible. Usually, anoxia results in inhibition

of uptake of water through roots however few studies have

reported the up-regulation of certain aquaporin genes, such as NIP

[44,45]. The latter was notably induced (116-fold in moderate

stress, 76-fold in severe stress) in the present study too, in the

Figure 10. Co-localization of DEGs with known QTLs. Physical location (in parenthesis) of maize DEGs in HKI 1105 mapped on the marker
intervals of known QTLs and the extent of synteny for (A) aerenchyma between bins 5.05 and 5.06 and for (B) adventitious roots between bins 8.03
and 8.04. The letters M, R, S, F, B, and A stand for the crops maize, rice, sorghum, foxtail millet, Brachypodium, and Arabidopsis, respectively. The
number next to the letter represents the chromosome number. The first column of symbols indicates moderate stress and the second denotes severe
stress. The expression levels of genes co-mapped in other crops are denoted by squares and triangles. Circle represents the DEGs not co-localized in
any other crop.
doi:10.1371/journal.pone.0070433.g010
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tolerant genotype. Among the genes involved in carbohydrate

metabolism, the gene that encodes the invertase enzyme also plays

a key role in tolerance to hypoxia by mediating break down of

starch and degradation of sucrose. Two other enzymes–a soluble

acid invertase and orthophosphate dikinase, an enzyme of the

glyoxylate cycle–were activated in HKI 1105 under stress. Lipid

metabolism genes coding for desaturases (74-fold), LTPs (72-fold),

esterases (21-fold), and lipases (26-fold) were upregulated. A

plausible explanation is that lipid metabolism intermediates are

converted to carbohydrates during stress [46]. These genes were

neither upregulated nor downregulated in V 372. Fermentation is

an important pathway operating under anoxia and enables the

much-needed regeneration of NAD+ from NADH. The alanine

fermentation pathway helps in regulating the pH of the cytoplasm

under anoxia [47], ionic balance being a key component of

adaptation to stress.

Genes Involved in Regulation
Evidence gathered over the years suggests that transcriptional

regulation plays a key role in helping the plant cope with hypoxia

[48]. MYB transcription factors are known to trigger ADH [13],

and WRKY transcription factors play a role in the plant’s response

to biotic and abiotic stress, several developmental processes, and in

senescence [49]. Several transcription factors such as the zinc-

finger protein, CCCH-type family protein, auxin-responsive AUX

IAA family member protein, homeobox, HSP, and MADS-BOX

were upregulated in HKI 1105 (tolerant) as well as in Arabidopsis

[50], whereas homeobox genes were down-regulated in V 372

(susceptible). The gene coding for LOB-domain proteins, which

are plant-specific transcription factors involved in forming lateral

roots [51], and responding to auxin [52], was significantly

expressed in HKI 1105.

Detoxification and Genes Involved in Abiotic Stress
GSTs, which play an important role in the plant’s response to

various types of biotic and abiotic stresses [53], were activated only

in HKI 1105. In V 372, peroxidase 1 precursor and peroxidase

72-like were downregulated, whereas in HKI 1105, peroxidase 72-

like and peroxidase 2 genes were upregulated under moderate

stress. Under anoxia and heat stress, plants produce H2O2 [54],

which stimulates heat-shock proteins belonging to DNAJ-type

HSPs and small HSP family. An increase in HSP transcripts in

response to low oxygen has been observed across various kingdoms

[55]. Activation of ROP (Rho-related GTPases from plants)

through an NADPH oxidase mechanism leads to ROS accumu-

lation in HKI 1105, and acts as a stimulus for ADH expression

[56].

Identification of Functional Clusters of Genes through
Co-expression Networks
The gene co-expression networks behaved as biological

networks found in nature; they were ‘‘small-world’’ (average path

length of 1), scale-free, modular, and hierarchical. A negative

linear correlation between the number of edges, log(k), and the

probability of finding a node with k edges, P(k), indicated scale-free

behavior (Figure S2). The plots showing the dependency of the

clustering co-efficient on connectivity (Figure S2) and the module

eigenvector clustering dendrogram (Figure S3) indicated hierar-

chical and modular behavior. The average clustering co-efficients

were 0.167 and 0.198 for the tolerant and susceptible genotypes,

respectively.

GO enrichment analyses for all modules were performed to

identify the modules responsive to waterlogging in HKI 1105

(Table S11 in File S1). In module 2, the largest module, genes with

‘‘response to abiotic stimulus,’’ ‘‘cellular macromolecular complex

assembly,’’ ‘‘GST activity,’’ ‘‘hydrolase activity,’’ and ‘‘XET

activity’’ were co-expressed. Similarly, in module 6, ACO1,

fermentation genes AlaAT and PDC, and photosynthesis genes,

were co-expressed. This cofunctional saturation of molecular

function terms in a tightly co-expressed gene module suggested an

association between functional entities represented by the genes

(such as protein domains and GO terms) and the phenotype under

stress conditions. Moreover, the phenotypic association may be

extended to the neighboring co-expressed genes whose sequence

descriptions are yet to be reported. Thus, the selected gene sets

become candidates for the underlying expression of the trait and

provide hints at molecular pathways associated with the expression

of the defined phenotypes. For instance, the first cluster of module

1 of tolerant genotype contained 18 genes, mostly with regulatory

functions. The genes included those coding for ERF-like protein 1

and EREBP1 (which respond to ethylene), the transcription factor

CCCH, and HMG1/2-like protein (the CoA-bound form of which

is a stress-responsive protein). Thus, through ‘‘guilt by associa-

tion,’’ seven hypothetical proteins are implicated in regulating

various pathways under stress.

The ‘‘response to stress’’ gene cluster in HKI 1105 (Figure 9)

included genes (IAA13 and IAA24) coding for auxin response,

crucial for the formation of adventitious roots. PDC1,3, the genes

coding for the enzyme involved in converting pyruvate to

acetaldehyde, and peroxidases involved in scavenging free radicals

were present in the same cluster. Other stress-related genes found

in various co-expressed clusters of HKI 1105 included plant

proteinase inhibitors implicated in stress-induced PCD in plants

[57], abscisic acid stress ripening gene (ASR), bundle sheath strand

specific gene1 (BSS1), and universal stress protein (USP). Although

ASR has no specific role in ripening, studies of melon have shown

the presence of an ethylene-response element [58]. BSS1 is highly

homologous to the tomato ASR1 in the C-terminal region and

although its exact function is unknown, it may also be involved in

stress response. USPs, expressed under hypoxia and anoxia [59],

were activated under moderate stress (12-fold). In rice, they were

found to be positively regulated under submergence [59]. In the

‘‘response to stress or stimuli’’ functional cluster of V 372, many of

the abovementioned genes were absent. ERFs regulating aeren-

chyma formation were found in another cluster of HKI 1105.

Other functional clusters comprised expansins, transport proteins,

and EF-HAND proteins. In contrast, in V 372, the GO terms

pertaining to aquaporins, expansins, Ca-binding proteins, AP2-

domain proteins, and XETs were not enriched.

Overlaying Transcriptomic Data with Mapped QTLs
Integration of transcriptional profiling with QTL analysis has

been used for studying genes related to complex traits [60] in order

to elucidate the gene–phenotype relationships. Yet, QTL mapping

data have seldom been linked with microarray analysis on a

genome-wide scale, particularly in maize exposed to waterlogging.

Integrating the transcriptomes significantly expressed in HKI

1105, the tolerant genotype, with the reported QTLs provided

clues to possible influences of some of the genes on expression of

quantitative traits in response to waterlogging stress. Cytosolic

orthophosphate dikinase and beta-tubulin 4 are probably most

closely associated with the formation of adventitious roots, and

calmodulin-binding protein and expansins colocalized with the

QTL of aerenchyma formation. The same trait at bin 2.06 co-

located with mitogen-activated protein kinase and a gene coding

for histone protein. Histones of some genes have been found to be

Genome-Wide Transcriptomes for Waterlogging Stress

PLOS ONE | www.plosone.org 10 August 2013 | Volume 8 | Issue 8 | e70433



targets of reversible modifications under submergence conditions

[61].

The orthology of candidate genes was found in other crop

species as well, of which the maximum number of genes was co-

mapped in sorghum and foxtail millet. The bin location 5.05–5.06

was the most widespread, with seven genes showing orthology with

other crops. In contrast, bin 8.03 was highly conserved, with only

two genes showing such orthology (Figure 10). These observations

suggest that phylogenetically, some genomic regions were favored

during evolution, given that they occurred in multiple species,

whereas others remained highly specific to maize.

Conclusion
Low oxygen leads to extensive reprogramming of gene

expression to help the plant withstand stress as well as to maintain

photosynthesis and metabolism at optimum levels. The number of

genes whose expression was repressed under waterlogging was

lower than that of those that were activated, suggesting that under

stress, amplifying rather than inhibiting the expression of a

majority of genes could be a strategy for survival. The actions of

expansins, hydrolases, cellulases, kinases, and the phytohormones

ethylene and auxin complemented each other in the establishment

of adaptive features. Transcriptional coordination of genes points

to functionally significant associations such as the inclusion of

stress and fermentation pathway genes in the same module in the

tolerant genotype. Given that many of these ‘‘unknown’’ genes

had high transcript levels under different levels of stress, their

contribution to stress tolerance could be important. Colocalization

with QTLs mapped in response to waterlogging opens up the

possibility of using the induced genes as candidates for introgres-

sion into susceptible lines. The combined approach will also be

relevant to future investigations on functional analysis of candidate

genes.

Supporting Information

Figure S1 The analysis of network topology for various

soft-threshold powers for the tolerant genotype. (A) Shows
the scale-free fit index (Y-axis) as a function of the soft-threshold

power (X-axis) and (B) displays the mean connectivity (degree; Y-

axis) as a function of the soft-threshold power (X-axis).

(TIF)

Figure S2 (A) and (B) Clustering of module eigenvectors (ME) (or

first principal components) of co-expression networks comprising

seven modules each in two genotypes. WGCNA was used for

calculation of the eigenvectors and clustering. The closeness of

modules implies similarity in expression patterns. The red line

indicates a cut-off height of 0.2, corresponding to a correlation of

0.8. (C) and (D) Scale-free network topology indicated by a

negative correlation between the number of edges [log(k)] and the

probability of a node having k edges [P(k)]. (E) and (F) The graph
of connectivity Vs clustering co-efficient, showing cliquishness of

genes or modular behavior of the network.

(TIF)

Figure S3 A network heatmap depicting a topological overlap

matrix (TOM) among all genes in the analysis in (A) tolerant and

(B) susceptible genotypes. Light color represents low overlap and

progressively darker red color represents higher overlaps. Blocks of

darker colors along the diagonal are the modules, which are also

represented as colored bars on the left vertical and top horizontal

axes. Genes integrated into no module are shown in grey. The

gene dendrograms are shown on top of the axes.

(TIF)

File S1 Table S1. Microarray samples of Platform: GPL4032

used in co-expression network construction. Table S2. Details of

primers designed for qRT-PCR of selected genes. Table S3. The

number of genes filtered at different p values is shown. p # 0.001

was finally chosen as the cutoff for differential gene expression

analysis. Table S4. Highly upregulated genes at moderate and

severe stress stages in HKI 1105 (tolerant genotype). (A) Genes

identified by sequence description and GO terms assigned through

Blast2GO. (B) Genes not having uniquely identifying sequence

description. Some of them were assigned GO terms. Table S5.

Highly downregulated genes at moderate and severe stress stages

in HKI 1105 (tolerant genotype). (A) Genes identified by sequence

description and GO terms assigned through Blast2GO. (B) Genes

not having uniquely identifying sequence description. Some of

them were assigned GO terms. Table S6. Highly upregulated

genes at moderate and severe stress stages in V 372 (susceptible

genotype). (A) Genes identified by sequence description and GO

terms assigned through Blast2GO. (B) Genes not having uniquely

identifying sequence description. Some of them were assigned GO

terms. Table S7. Highly downregulated genes at moderate and

severe stress stages in V 372 (susceptible genotype). (A) Genes

identified by sequence description and GO terms assigned through

Blast2GO. (B) Genes not having uniquely identifying sequence

description. Some of them were assigned GO terms. Table S8.

Gene models of the (A) tolerant genotype and (B) susceptible

genotype. Table S9. Functional clustering of co-expression

network in (A) tolerant genotype and (B) susceptible genotype.

Table S10. List of genes mapped with waterlogging QTLs in

maize. The synteny of these genes with rice, sorghum, foxtail

millet, Brachypodium, and Arabidopsis was also studied. Table S11.

Important functional clusters in various co-expression network

modules of tolerant genotype.

(XLSX)
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