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Genome-wide gene-based analyses of weight loss
interventions identify a potential role for NKX6.3 in
metabolism
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Mary-Ellen Harper 8, Arne Astrup 9, Wim H. Saris 10, Robert Dent4, Greg G. Neely2 & Jörg Hager1

Hundreds of genetic variants have been associated with Body Mass Index (BMI) through

genome-wide association studies (GWAS) using observational cohorts. However, the genetic

contribution to efficient weight loss in response to dietary intervention remains unknown. We

perform a GWAS in two large low-caloric diet intervention cohorts of obese participants. Two

loci close to NKX6.3/MIR486 and RBSG4 are identified in the Canadian discovery cohort (n=

1166) and replicated in the DiOGenes cohort (n= 789). Modulation of HGTX (NKX6.3

ortholog) levels in Drosophila melanogaster leads to significantly altered triglyceride levels.

Additional tissue-specific experiments demonstrate an action through the oenocytes, fly

hepatocyte-like cells that regulate lipid metabolism. Our results identify genetic variants

associated with the efficacy of weight loss in obese subjects and identify a role for NKX6.3 in

lipid metabolism, and thereby possibly weight control.
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O
besity is a world-wide issue and a major risk factor for
cardiovascular disease, dyslipidemia, hypertension, insu-
lin resistance and type 2 diabetes as well as cancer1–3. A

recent report from the NCD-RisC network has shown the
increasing prevalence of obesity and estimated that with current
post-2000 trends, the global obesity frequency would surpass 18%
in men and 21% in women by 20254.

Multiple studies have shown that weight loss through energy
restricted dietary interventions improves metabolic
dysfunction5,6. Nevertheless, a large inter-individual variability is
observed regarding the capacity to lose weight and to maintain
the lost weight7,8. Genome-wide association studies (GWAS)
from the GIANT consortium have identified about 100 loci
associated with body mass index (BMI) variability in the general
population9. Those candidate obesity loci were investigated in
two lifestyle interventions: the Diabetes Prevention Program
(DPP)10,11 and Look AHEAD12,13. In these candidate analyses,
only one marker (MTIF3-rs1885988) was associated with degree
of weight loss and none to weight regain tendancy14. To date, no
genome-wide approach for weight loss success has been
undertaken15.

Here we present results from a genome-wide association
(GWA) study for weight loss using two large low-caloric diet
interventions: the Canadian Optifast900® meal replacement pro-
gram16 and the DiOGenes clinical trial17,18. Our analyses
implement a gene-based GWAS to maximize statistical
power19,20. One cohort is used for discovery and the second, for
replication. Next, we perform Bayesian risk variant inference
based on joint modeling of the GWA signals and large-scale
epigenome annotation data to restrict the association signals to
the most likely associated SNPs. Finally, we perform functional
RNAi knockdown in Drosophila melanogaster to study the
potential in vivo metabolic impact of the regional candidate
genes.

Our study provides evidence for a weight loss locus on chro-
mosome 8p11 and knock out experiments in Drosophila mela-
nogaster suggest the NKX6.3 gene in the region as a potential
functional candidate.

Results
Cohort descriptions. The Optifast900 cohort included both obese
and severely obese subjects (mean BMI= 43.2 kg/m2 ± 0.3 stan-
dard error of the mean) and the DiOGenes cohort included
overweight and obese participants (mean BMI= 34.5 kg/m2 ±
0.2). Clinical characteristics of the participants are available in
Table 1. Upon a 5-week low calorie diet (LCD), participants lost
on average 9.3% (11.3 kg) and 7.5% (7.5 kg) of initial body weight,
respectively for the Optifast900 and DiOGenes participants. At
baseline, Optifast900 participants were considered more insulin-

resistant than DiOGenes subjects (HOMA-IR= 4.16 ± 0.14 vs.
3.15 ± 0.10), as expected given the more severe obesity.

Gene-based association studies. We searched for SNPs asso-
ciated with degree of weight loss using the largest cohort (Opti-
fast900, n= 1166) as a discovery dataset. The smaller cohort
(DiOGenes, n= 789) was then used for replication. To unravel
associations using single-SNP approaches at genome-wide scale,
very large cohorts are needed, but such sample size cannot be
obtained in randomized clinical trials. To better extract associa-
tion signals, we used a gene-based approach that enables to
integrate individual SNP association signals into a locus-wise
signal (see Methods). Upon gene-based analyses of the Opti-
fast900 cohort, we identified 12 genes, corresponding to 6 distinct
loci with nearby SNPs significantly associated with weight loss
(genome-wide FDR < 0.05 see Table 2). A Manhattan plot of the
gene-based GWA results is available in Fig. 1.

Next, replication of those loci was attempted using the
DiOGenes cohort. Two out of the six loci were successfully
replicated in the DiOGenes cohort (two-stage FDR < 0.05,
Table 2): the RBSG4 locus on chromosome 1q24 and the
MIR486/NKX6.3 locus on chromosome 8p11. Meta-analysis using
random-effect modeling of the two cohorts also showed
significant association for these loci (both at genome-wide levels
and with a two-stage approach) with effect sizes that were
consistent between the two cohorts. Regional plots for those two
loci are shown in Fig. 2. The MIR486 gene has two isoforms with
similar coordinates, thus essentially the same SNPs were included
in the gene-based analyses leading to very similar p-values for
MIR486-1 and MIR486-2 (as seen in Table 2).

Bayesian framework for risk variant inference. We took
advantage of the development of a recent Bayesian framework,
RiVIERA-beta21 to infer posterior probabilities of disease asso-
ciation (PPA) that were then used to rank the associated SNPs.
Upon Bayesian modeling of SNPs with nominal p-values less
than 1e-3 for the two replicated loci (RBSG4 and MIR486/
NKX6.3), we were able to restrict the list of candidate SNPs to
four markers, with a possible regulatory impact. Figure 3 sum-
marizes the results of the Bayesian modeling and presents the
overlap between variants and epigenomic annotations. Table 3
provides the effect size (from single-SNP GWAs) for each iden-
tified marker. For the RBSG4 locus (Fig. 3a), we identified three
markers (rs873822, rs870879, rs1027493) significantly enriched in
epigenome annotations. Those markers were in strong LD with
each other (r2 > 90%) and thus any of those would tag the others.
Those three markers are common variants (with Minor Allele
Frequency (MAF)= 27%). For the MIR486/NKX6.3 locus, the
rs6981587 SNP (MAF= 34%) emerged as the most likely risk

Table 1 Descriptive statistics for the two studies used in the analysis

OPTIFAST900 (n= 1166) DIOGENES (n= 789) p-value

Number of males (%) 237 (26.58%) 310 (33.95%) –

Age at baseline (years) 46.50 ± 0.32 41.37 ± 0.23 p < 0.001

BMI at baseline (kg/m2) 43.17 ± 0.23 34.53 ± 0.19 p < 0.001

Weight at baseline (kg) 121.66 ± 0.76 99.74 ± 0.67 p < 0.001

Weight after 5-week LCD (kg) 110.31 ± 0.68 92.20 ± 0.61 p < 0.001

Change in weight during LCD (kg) −11.35 ± 0.11 −7.55 ± 0.11 p < 0.001

Change in weight during LCD (%) −9.28 ± 0.06 −7.51 ± 0.09 p < 0.001

Fasting glucose levels (mmol/L) at baseline 5.71 ± 0.05 5.12 ± 0.03 p < 0.001

HOMA-IR at baseline 4.16 ± 0.14 3.15 ± 0.10 p < 0.001

The p-value was obtained from a two-sided t-test and assesses differences between the two cohorts

LCD: low caloric diet, HOMA-IR: homeostasis model assessment of insulin resistance
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variant. In this locus, five other SNPs had slightly lower p-values,
yet none showed such enrichment in epigenome annotation
marks (Fig. 3b). For the four SNPs in the two genomic loci,
consistent effect sizes were observed between the two cohorts, as
well as similar allele frequencies (Table 3). These analyses are
useful to identify the most likely regulatory variants. However,
they do not enable to infer which gene(s) may be impacted.
Indeed, within the MIR486/NKX6.3 locus (Fig. 3b), there are two
other genes (ANK1 and AGPAT6) that are in the vicinity of the
top regulatory variant and that would also deserve functional
follow-up.

Functional assessment in Drosophila melanogaster. To investi-
gate a potential in vivo metabolic function for the genes around
the risk variants, we used the fruit fly Drosophila melanogaster.
Because RBSG4 and MIR486 are not conserved in the fly, we
focused our analysis on Ank/ANK1, HGTX/NKX6-3 and
CG3209/AGPAT6 and each gene was targeted using whole body
RNAi knockdown (Actin-Gal4). There were no major

developmental effects for Actin-Gal4 >UAS-Ank and Actin-
Gal4 >UAS-CG3209 RNAi flies and we did not observe sig-
nificant changes in TAG levels compared to their wild-type
controls (Supplementary Fig. 2a). We also performed over-
expression (OE) of ANK1 using a whole-body driver (Actin-
Gal4). There was no impact on triglyceride levels in the
Actin-Gal4 >UAS-ANK1 OE animals compared to controls
(Supplementary Fig. 2b). The majority of Actin-Gal4 >UAS-
HGTX RNAi flies were developmentally lethal (>95% pupal
lethality), however some animals did survive. From the viable
HGTX knockdown flies (Actin-Gal4 >UAS-HGTX RNAi), we
observed a significant reduction in triglyceride (TAG) level
compared to controls (Fig. 4a). This finding was confirmed using
a second RNAi hairpin (Supplementary Fig. 3a). Complete leth-
ality of F1 progenies was observed in HGTX RNAi or HGTX
overexpression flies using additional ubiquitous drivers Tub-Gal4
and DA-Gal4. To bypass developmental effects of HGTX
knockdown, we next performed an adult-specific inducible
knockdown using the TubGal80ts system. Actin-Gal4; Gal80ts >
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Fig. 1 Manhattan plot: Gene-based association results for the discovery cohort (Optifast900), Highlighted genes (in red) correspond to loci with genome-

wide significant association signals (FDR < 5%). Source data are provided as a Source Data file

Table 2 Top hits from the gene-based GWA

Gene Chr Start Stop OPTIFAST900 (n= 1166) DIOGENES (n= 789) Meta-analysis

MIR486-2 8 41497961 41538025 1.7e-05 (0.043) 0.000618 (0.004) 1e-06 (1.2e-05)

MIR486 8 41497958 41538026 2.2e-05 (0.043) 0.000661 (0.004) 2e-06 (1.2e-05)

NKX6-3 8 41483828 41524878 2.4e-05 (0.043) 0.00185 (0.0074) 2.6e-05 (0.0001)

RBSG4 1 167124598 167185042 2e-05 (0.043) 0.011 (0.033) 3.8e-05 (0.00011)

DBNDD1 16 90051272 90106539 7e-06 (0.035) 0.0305 (0.073) 0.0116 (0.02)

PTPRT 20 40681391 41838557 6e-06 (0.035) 0.1728 (0.28) 0.0062 (0.012)

GAS8 16 90066036 90131379 7e-06 (0.035) 0.1958 (0.28) 0.06909 (0.1)

CCBE1 18 57078170 57384644 8e-06 (0.035) 0.2008 (0.28) 0.000346 (0.00083)

C16orf3 16 90075315 90116309 2.1e-05 (0.043) 0.2118 (0.28) 0.1049 (0.14)

URAHP 16 90086168 90134191 1.1e-05 (0.04) 0.2747 (0.33) 0.1339 (0.16)

OR5K2 3 98196524 98237475 7e-06 (0.035) 0.5784 (0.63) 0.1578 (0.17)

OR5K1 3 98168420 98209372 1.3e-05 (0.04) 0.8541 (0.85) 0.3117 (0.31)

This table present gene-based association p-values for the two cohorts and their meta-analysis. False-discovery rate (FDR) adjusted p-value is indicated within parenthesis. For the discovery cohort

(Optifast900), the FDR is a genome-wide FDR. For the replication cohort (DIOGENES) and the meta-analysis results, the FDR is adjusted for a two-stage analysis. FDRs less than 5% are shown in bold.

Source data are provided as a Source Data file
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UAS-HGTX RNAi animals were raised at 18 °C during develop-
mental stage, which suppresses RNAi and then hatched flies were
shifted to 29 °C for 6 days at which time RNAi is activated.
Induced knock-down animals displayed a similar level of TAG
reduction as constitutive HGTX knockdown animals compared to
the parental controls (Fig. 4b). To confirm inducible RNAi
knockdown efficiency, we used qPCR and observed approximate
60% reduction in HGTX mRNA levels (Fig. 4c). Further meta-
bolic characterization of these inducible knockdown animals
showed no significant difference in levels of glycogen (Supple-
mentary Fig. 3b) or trehalose (Supplementary Fig. 3c), and body
weight (Supplementary Fig. 3d), food intake (Supplementary
Fig. 3e), and starvation response (Supplementary Fig. 3f) were
also similar to the controls. Of note, HGTX inducible knockdown
did not affect fly insulin-like peptide Ilp2 or Ilp5 expression but
resulted in a decrease in Ilp3 expression. However, we did not
observe any difference in dilp3 expression at the protein level
(Supplementary Fig. 4).

To further confirm the role of HGTX in regulation of TAG, we
used inducible over-expression of HGTX in adults with mRNA
expression ~9 times higher in Actin-Gal4; Gal80ts >UAS-HGTX
OE animals (Fig. 4d) compared to the parental controls. HGTX

over-expression led to a mild reduction in TAG (Fig. 4e). No
significant impact was observed for Ilp2, 3 and 5 mRNA
expression or dilp3 protein levels (Supplementary Fig. 5).

To find the specific tissue in which HGTX acts, we carried out
tissue specific HGTX RNAi targeting expression in the fat body
(Ppl-Gal4), muscle (Mef2-Gal4), brain (nSyb-Gal4) or oenocytes
(Oeno-Gal4). We found that only oenocyte-specific knock down
of HGTX resulted in a significant reduction in TAG compared to
parental controls (Fig. 4f). Conversely, oenocyte-specific over-
expression of HGTX resulted in a significant increase in TAG
(Fig. 4g). Together, our data supports a role for HGTX/NKX6.3
acting in the fly oenocyte to regulate triglyceride content in vivo.

Discussion
Here we describe a genome-wide association for weight loss. We
used two independent weight loss cohorts: a Canadian Opti-
fast900 cohort (n= 1166) for discovery and the pan-European
DiOGenes cohort (n= 789) for replication.

Recent analysis14 of the Look AHEAD and DPP cohorts only
focused on 91 established obesity loci9,22 and found association of
only one of the loci with weight loss and regain after three years,
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Fig. 2 LocusZoom plots for the RBSG4 (LINC01363) and the MIR486/NKX6.3 loci. Left (right) panel corresponds to RBSG4 (MIR486/NKX6.3/ANK1).

Panels from top to bottom correspond to results from the meta-analysis, the Optifast900 cohort and the DiOGenes cohort. Source data are provided as a

Source Data file
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namely the MTIF3-rs1885988 SNP. Analysis of this SNP in our
two cohorts did not confirm this association (meta-analysis p-
value= 0.52). This could be due to differences between the
behavior-based and low-caloric dietary interventions as well as
the length/type of the intervention in the different studies. Ana-
lyses of the remaining 90 BMI loci in our data confirmed the lack
of association of these loci with weight loss (all loci had FDR >
10%); further highlighting the need to investigate the genetic
contribution to weight loss in well-controlled weight loss studies
(i.e. with similar intervention design).

GWAs of complex, polygenic traits (such as metabolic diseases)
require very large sample sizes to unravel common variants with
low/moderate effects. Such large sample sizes are typically
achieved with meta-analyses of numerous observational studies.
For illustration, the latest GWAs from the GIANT consortium23

used a sample size greater than 700,000 and identified 716 var-
iants representing about 5% of BMI variation. Such sample sizes
are not achievable for clinical intervention studies. However, over
the past few years, the development of new statistical methods has
enabled to increase statistical power using multi-marker analyses.
We thus used a well-established gene-based strategy20 and took
advantage of recent improvements for single-SNP analyses by
using a Bayesian linear-mixed effect model24. Gene-based
approaches enable to combine association p-values from indivi-
dual SNPs into a single locus (e.g. gene-level) p-value. This leads
to several benefits. First, statistical evidence is strengthened by
integrating association p-values from markers located within a
same region. Some of those markers may already display asso-
ciation signals close to genome-wide significance thresholds,
yielding a more extreme combined p-value. These approaches
account for LD relationships between markers by using resam-
pling approaches (e.g. Monte Carlo simulations). The second
benefit from gene-based approaches pertains to a significant
reduction of the multiple testing burden (as the number of tests is

about 20,000 regions instead of millions of SNPs). Finally, it has
been previously discussed that gene-based approaches are less
prone to spurious associations caused by population stratification
compared to single-SNP or haplotype-based analyses19,25.

By using such a combination of tools, we identified six different
loci with genome-wide FDR < 5% in the discovery phase. Two of
those loci (RBSG4 and MIR486/NKX6.3) replicated in a two-stage
analysis (two-stage FDR < 5%) using the DiOGenes study and
yielded significant and consistent results using a meta-analysis
approach. Bayesian modeling of epigenomic annotation was able
to highlight markers in these loci with a possible regulatory
impact. Minor alleles from markers nearby RBGS4 were found
associated with increased weight loss. Interestingly, the major
allele (C) for rs6981587, near MIR486/NKX6.3, was associated
with decreased weight loss. Our two cohorts were of European
ancestry and the C allele frequency (77%) was consistent with
other European populations as well as Asian populations (>70%).
However, these allele frequencies were much lower in several
African populations (with frequency ranging from 35–46%). This
observation would deserve additional follow-up in weight loss
studies with participants from different ancestries; as it may have
implication for weight loss intervention in these populations,
including in admixed populations (e.g. African Americans).

Our analyses highlighted several genes in the vicinity of these
association signals. Within the first locus, RBGS4, also known as
LINC01363, encodes a long non-coding RNA (lncRNA) and has
not been previously reported to associate with obesity and weight
loss interventions. Our current understanding of lncRNA remains
limited though this class of RNAs can play an important role in
gene regulation26. The contribution of lncRNAs as regulators of
the endocrine system is widely accepted27. Many GWAs have
reported association signals in the vicinity of lncRNA loci28 and
gene expression studies reported that those GWA signals had a
cis-eQTL effect specific to lncRNA and not to other neighboring
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protein-coding genes29. In addition, the contribution of lncRNA
genes to local gene regulation involves complex processes that are
not necessarily linked to the lncRNA transcripts themselves but
instead includes processes associated with their production (such
as enhancer activities, transcription processes and splicing)30. It
is also worth noting that lncRNA have been reported as regulators
of adipogenesis31. Thus, the contribution of lncRNA, such
as RBGS4, in response to clinical intervention for metabolic dis-
eases may be under-appreciated.

The second locus associating with weight loss encompasses
several genes: MIR486, ANK1, AGPAT6 and NKX6.3.

The MIR486 locus includes two mir genes encoding pre-mir
isoforms of the same microRNA (miRNA). MiRNAs emerged as
regulators of important biological processes and have been
involved in many complex diseases including obesity, insulin
resistance, T2D and cancer32–38. MiR486 has been shown to
regulate SIRT1 and its expression in human adipose tissue-
derived mesenchymal stem cells is controlled by high glucose39.
Additional studies have shown that miR486 could impact NFKB
signaling by inhibition of NKFB inhibitors40 and that miR486
could inhibit FOXO1, a key mediator of insulin signaling41 and
triglyceride metabolism42.

ANK1 belongs to the ankyrin family that links membrane
proteins to the cytoskeleton and play a large role in cell motility,
proliferation and activation. Genetic variants located within
ANK1 have been found associated with glycemic traits, impaired
insulin release65and T2D onset both in European and Asian
populations43–45. ANK1 variants were also shown to have cis-
eQTL effect on the expression of small ANK1 in skeletal
muscle46,47. In our gene-based analyses, the ANK1 gene did not
emerge as a top candidate owing to the fact that the analysis was
based on the full-length gene (283 kb) whilst most of the single-
SNP signals were restricted to a 10.2 kb region. Hence the
resulting gene-based p-value was influenced by the incorporation
of non-associated SNPs masking the effect of associated SNPs.

The third gene located in the vicinity of the identified variants
is AGPAT6 (also known as GPAT4, Glycerol-3-Phosphate Acyl-
transferase 4). The encoded enzyme catalyzes the conversion of
lysophosphatidic acid to phosphatidic acid and thus is an
important contributor in TAG biosynthesis. Agpat6-deficient
mice were shown to have alteration in lipid metabolism in tissue
such as adipose and liver48. Agpat6-deficient mice were also
shown to exhibit a 25% reduction in body weight and resistance
to both diet-induced and genetically induced obesity49.

The fourth gene in this locus is NKX6.3, member of the NKX
family that contribute to numerous developmental processes. In
particular, the NKX homeobox 3 gene is involved in the devel-
opment of the central nervous system, gastro-intestinal tract and
pancreas50. Interestingly, NKX6-3 is located close to variants
which have been associated with T2D43. The recent GWA by
Mahajan and colleagues51 highlighted the rs13262861 SNP (8 kb
away from our identified variants) as being associated with T2D.
This SNP was not tested in our data as it did not achieve a good
imputation metrics (r2 < 80%). This SNP is known as an NKX6-3

cis-eQTL in human islets52. Additionally, NKX6-3 transcripts
encode transcription factors required for the development of
alpha and beta cells in the pancreas53 and have been show to
influence insulin secretion54,55. Glycemic improvements follow-
ing LCD were only measured in the DiOGenes cohort. Associa-
tion between our three top NKX6.3 variants and rs13262861 did
not reveal any significant association with insulin sensitivity
improvements (Matsuda index). Our prioritization analyses based
on epigenomic annotation highlighted rs6981587 as the top
regulatory variant. Since these annotation marks are derived from
cell lines, deciphering the exact underlying mechanism may be
premature and would require access to specific tissues for a subset
of our GWA participants (e.g. with liver and fat biopsies). Yet,
investigation of the BIOS QTL data56 found that rs6981587 was
an eQTL, in whole blood, of the NKX6.3, ANK1 and AGPAT6
genes. Interestingly, only the NKX6.3 eQTL reached genome-wide
significance (FDR 5%), with the rs6981587-T allele associating
with decreased expression levels.

To investigate a role for the genes NKX6.3, ANK1 and AGPAT6
in metabolic regulation in vivo, we used a knockdown strategy in
Drosophila melanogaster, as molecular mechanisms controlling
fat mass are largely conserved between flies and humans57. We
used triglyceride content as the main metabolic readout. Trigly-
cerides constitute the major components of lipids58, and total
triglyceride levels are used as a direct measure of fly adiposity59.
Whole-body knockdown of NKX6.3/HGTX led to significant
reduction of whole-body triglyceride content. This observation
was replicated with independent RNAi hairpins and confirmed
using adult-inducible knockdown. NKX6.3/HGTX over-
expression also led to a reduction of whole-body triglyceride
(TAG) content. While this was surprising, this observation is not
uncommon in functional screens60,61 and it suggests that a tight
NKX6.3/HGTX gene dosage is important to maintain TAG levels.

Tissue-specific inducible knockdown showed that
NKX6.3/HGTX acts in oenocytes to maintain TAG levels. RNAi
knockdown in oenocytes led to decreased TAG levels while
overexpression of NKX6.3/HGTX led to increased TAG levels.
Oenocytes are hepatocyte-like cells and are important to regulate
the fly lipid metabolism59. Specifically, these cells regulate whole-
body TAG level and have a bidirectional metabolic role. Under
starvation conditions, oenocytes accumulate lipid droplets; when
food is abundant, they regulate growth, development and feeding
behavior. This two-way coupling between body fat and oenocytes
is analogous to the liver—adipose axis in mammals. While the
exact mechanism of how NKX6.3/HGTX can control lipid
metabolism remains unclear, the effect could be oenocyte-specific,
or via inter-organ communications between the fat body, brain
and oenocytes.

Our fly results show phenotypic evidence that NKX6.3 may be
involved in lipid metabolism and may thereby contribute to
weight loss variation. On the other hand, the published mouse
data on AGPAT6 makes this gene also a plausible candidate.
Another possibility is that the associated genetic variant influ-
ences all of these genes and that they jointly contribute to the

Table 3 Prioritized SNPs from Bayesian risk variant inference

SNP Chr Position Effect allele Effect allele

frequency

Optifast900 Meta-analysis

rs873822 1 167126910 C 66% 0.13 ± 0.04 (p= 0.00053) 0.14 ± 0.03 (p= 3.43e-6)

rs870879 1 167126987 G 66% 0.13 ± 0.04 (p= 0.00068) 0.13 ± 0.03 (p= 4.27e-6)

rs1027493 1 167132882 C 67% 0.13 ± 0.04 (p= 0.00056) 0.13 ± 0.03 (p= 5.06e-6)

rs6981587 8 41516915 C 77% −0.19 ± 0.05 (p= 0.000043) −0.17 ± 0.03 (p= 1.54e-6)

This table present single-SNP association p-values for the two cohorts and their meta-analysis for the top risk variant SNPs. Beta coefficients, with their standard error and p-value are provided, as

estimated by the linear mixed effect model. Positive betas indicate that the effect allele associates with greater weight loss. Source data are provided as a Source Data file
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variability of weight loss in humans. The biological importance of
the genes near the weight-loss associated variants and the
proximity or overlap with annotated regulatory marks, provides
evidence for a functional role in metabolism within this locus.
However, given the complex relationship between different
organs (brain, adipose, pancreas, liver and muscle) as well as the
interplay between metabolic pathways, further investigation
would require access to different tissues and under different
conditions (e.g. weight loss, induced obesity) to elucidate the
potential contribution of each gene.

In conclusion, we performed a weight loss GWA using data
from a large clinical practice (the Canadian Optifast900 meal
replacement program). Two loci (RBSG4 and MIR486/NKX6.3)
were successfully replicated with data from a controlled trial
(DiOGenes). Several independent studies provided evidence for a

biological link between the NKX6-3/MIR486 locus and metabolic
disorders including T2D and obesity. This lends additional con-
fidence in our results. Our work opens opportunities for addi-
tional functional and preclinical studies to fully elucidate the link
between the identified markers and the underlying metabolic and
molecular mechanisms.

Methods
Ethics. Local Human Research Ethics Committees, from the Ottawa Hospital and
DiOGenes studies, approved the study and all procedures were conducted in
accordance with the Declaration of Helsinki. All participants gave informed written
consent prior to any testing.

Study samples. The Canadian samples consisted of patients enrolled in the
Weight Management Clinic16 who had completed 6 to 12 weeks meal-replacement
regimen consisting of a product uniquely available in Canada, Optifast900 (Nestlé
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Fig. 4 HGTX/NKX6.3 regulates triglyceride (TAG) in Drosophila. aWhole-body HGTX RNAi decreased TAG level in adult flies, n= 4–8 groups, 10 flies each.
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Health Science, Switzerland). Program adherence criteria included: attendance to
75% of clinical sessions and strict adherence to the meal replacement (evaluated by
the number of meal-replacement products that were consumed). Patients under
medication known to affect rate of weight loss or glucose homeostasis or abnormal
thyroid indices were excluded from the analyses. In total, 1436 Optifast900 subjects
were eligible for genotyping and had available weight measurements.

The DiOGenes study (NCT00390637) is an interventional, multi-center pan-
European study17,18. Eight partners participated to the study: Bulgaria, Czech
Republic, Denmark, Germany, Greece, the Netherlands, Spain and United
Kingdom. Participants followed an 8-week LCD. The LCD provided 800 kcal
per day with the use of a meal-replacement product (Modifast, Nutrition et Santé
France). Participants could also eat up to 400 g of vegetables (corresponding to a
maximal addition of 200 kcal/day). In total, 888 DiOGenes subjects were included
for genotyping. The macronutrient composition of the two meal-replacement
products was considered similar (fat= 17% and 14%; proteins= 34 and 42% and
carbohydrates= 49 and 44%, respectively, for the Optifast and Modifast products).

Clinical data. For the Canadian Optifast900 study, weight was measured weekly
during the LCD intervention. For the DiOGenes study, weight was measured at
baseline and after 1, 3, 5, 7, 8 weeks of LCD. The time point week 5 provided the
largest sample size (i.e. smallest percentage of missing values) for both cohorts.
Analyses investigated BMI after 5-weeks of LCD, adjusted for baseline BMI, age
and gender.

Genotype data. Genotype data were generated using HumanCoreExome-12 v1.1
with 264,909 tag SNP marker and 244,593 exome-focused markers. They were
processed with the Illumina TM platform following Infinium® HD Assay Ultra,
Manual according to manufacturer’s instructions. Genotypes were called with the
GenomeStudio Software (Illumina). Quality control excluded SNPs with call rate
<95%, violating Hardy-Weinberg equilibrium (FDR < 20%), low minor allele fre-
quency <1%. Subjects were excluded if they had low call rate (<95%), abnormally
high autosomal heterozygosity (FDR <1%), an XXY karyotype, or gender incon-
sistencies between genotype data and clinical records. For subjects with high
identity-by-state (IBS > 95%), only the one having the highest call rate was kept.
Principal component analyses (PCA) were performed independently on each
cohort to discard subjects that were outliers in term of genetic structure. Subjects
from both cohorts were all of European ancestry and the two cohorts had similar
genetic structure (Supplementary Fig. 1). Upon all genetic QCs, 1166 Ottawa and
789 DiOGenes subjects were kept for subsequent analyses.

Genotype imputation was then performed using SHAPEIT62 and IMPUTE263

based on the European reference panel from the 1000 Genome project64 (March
2012 release, phase 1 version 3). Imputation post-filtering removed SNPs with
reference allele frequency less than 1% and INFO score <0.8. Upon such filtering,
data for 4.9 M imputed SNPs were available for both datasets.

Functional analyses in Fly. Fly strains: Fly stocks were maintained on standard
diet with agar, sugar and yeast and were raised in 25 °C incubator at a 12/12 dark
and night cycle. Actin-Gal4 and TubGal80ts was from Bloomington. UAS-AnkIR1

(GD25945), UAS-HGTXIR(GD12608), UAS-HGTXIR1 (KK109732), UASCG3209IR

(KK10281) were from the VDRC. UAS-AnkOE was from Dr. Ronald R. Dubreuil
and UAS-HGTXOE (9932) was from Bloomington.

Triglyceride assay: Five male flies were weighted and homogenised in 200 μl
PBST (PBS+ 0.05% Tween 20) on ice, then sonicated for 10 s using a probe
sonicator on ice. After sonication, 800 μl ice-cold PBST was added and mixed
thoroughly. Fifty microlitre of the mixture was used to determine the triglycerides
using the Roche triglycerides kit (11730711216) under the manufacturer’s
instructions, and 10 μl of the mixture was used to determine to protein using
Bradford protein assay kit (Sigma). Triglycerides were normalized to protein level.

Glycogen assay: Glycogen was determined by measuring the glucose degraded
from glycogen using amyoglucosidases. Five male flies were homogenized and
dissolved in 1M KOH solutions. After twice 95% ethanol extraction, the pellet was
resuspended 1 ml amyoglucosidase reaction buffer (0.3 mg/ml in 0.25M acetate
buffer, pH 4.75) and incubated in the 37 °C shaking incubator overnight and a
glucose assay was performed.

Trehalose assay: Trehalose was determined by measuring the glucose degraded
from trehalose using trehalosase. Twenty male flies’ heads were homogenized in
200 μl ice-cold TB buffer (5 mM Tris pH 6.6, 136 mM NaCl, 2.7 mM KCL), then
centrifuged at 4 °C for 5 min at maximum speed and collect the supernatant. 20 μl
of supernatant was used to measure glucose and protein, respectively. Fifty
microlitre of supernatant was mixed with 50 μl TE solution (10 μl trehalose in 1.5
ml TB buffer). Incubated at 37 °C for overnight. Centrifuged at 4 °C for max speed
for 3 min and then 20 μl of supernatant was used to measure glucose assay.

Glucose assay: 50 μl of mixture was used to determine the [glucose] using
Thermo Infinite Glucose kit (TR15421) as the manufacturer’s instructions.

Body weight: Body weight was measured by analytical balance.
Food intake assay: Food intake was measured over 24 h using the CAFE assay.

Empty vials were employed for evaporation controls. All experiments were set up at
Zeitgeber time 6–8, with food intake records starting 24 h after food loading.

Starvation assay: Male flies were put into DAM2 tubes with 2% agar and the
death was monitored per hour.

qPCR: 1 μg of mRNA was reverse-transcribed into cDNA using SuperScript® III
First-Strand Synthesis System (Invitrogen). All primers used for qPCR that have
been prescreened for efficiency and specificity. RT-PCR was performed using
SensimixTM probe kit (Bioline). The program is following: 95 °C 10 min, 40 cycles
of 95 °C, 15 s; 55 °C, 15 s; 72 °C, 15 s. The reactions were run on Light Cycle® 480
(Roche). The gene expression was normalized to the reference gene rp49. The
following primers are used:

HGTX forward: CGAGTCGCAGGTTAAGGTCT;
HGTX Reverse: CCGCCCATATCGTCCTGTTT;
Rp49 forward: CGGATCGATATGCTAAGCTGT;
Rp49 reverse: GCGCTTGTTCGATCCGTA;
Ilp2 forward: TGAGTATGGTGTGCGAGG;
Ilp2 Reverse: CTCTCCACGATTCCTTGC;
Ilp3 forward: GAACTTTGGACCCCGTGAA;
Ilp3 Reverse: TGAGCATCTGAACCGAACT;
Ilp5 forward: CAAACGAGGCACCTTGGG;
Ilp5 Reverse: AGCTATCCAAATCCGCCA;
Dot blot: Immunoblotting was performed using dot-blot and following a

protocol similar to Kim et al.65. Ten flies were homogenised in PBS with proteinase
inhibitors and debris were centrifuged at 12000 g speed for 2 min, then samples
were diluted in 1:200 and 0.4 μl of samples was dropped on the nitrocellulose
membrane, a sample without Ilp3 was used as a negative control. Subsequent
protocol steps included: block with 5% BSA in TBS-T (0.5–1 h, RT), incubate with
primary antibody (0.1–10 μg/ml for purified rabbit-anti-Ilp3 antibody, kindly
provided by Dr. Jan Veenstra, Bordeaux University France66), 1:500 dissolved in
BSA/TBS-T for 30 min at RT. Wash three times with TBS-T (3 × 5 min), incubate
with secondary antibody conjugated with HRP for 30 min at RT, wash three times
with TBS-T (15 min × 1, 5 min × 2), then once with TBS (5 min), incubate with
ECL reagent for 1 min, cover with Saran-wrap. For Coomassie staining, the same
amount of supernatant was put into the nitrocellulose membrane and the
Coomassie blue staining was dropped into the protein-loaded areas for a few times
until no more colour changed, and the membrane was washed once with TBST for
imaging. Images were taken using ChemiDoc system (Bio-rad). Quantification was
performed using Image J software.

Statistical analyses. Single-SNP analyses were performed using BOLT-LMM24, a
Bayesian linear mixed effect model to adjust for population structure and cryptic
relatedness between individuals. The rate of weight loss was adjusted for sex, age
and starting BMI. Results from the two cohorts, were subsequently meta-analyzed
using Genome-Wide Association Meta Analysis (GWAMA) software67 with
random-effect modeling and a double genomic-control (GC) correction68 (GC
correction at study-level and also at meta-analysis level).

Gene-based analysis was performed using the VEGAS (versatile gene-based
association study) approach20. This method integrates single-SNP p-values at the
gene-level and accounts for LD patterns through Monte-Carlo simulations.
Analysis was made with the following settings: European ancestry population from
the 1000 Genome project as reference population for LD patterns, set-based test
using the top 80% SNPs and a gene block size set to 20 kb. Such setting assigns to
each gene, its neighboring SNPs (within 20 kb) and discard the 20% SNPs having
the least significant p-value. For regions with closely located genes (e.g. gene
clusters), potentially the same SNPs could be assign to different genes, leading to
different “gene-locus” having similar p-values. This is not an issue as the goal of
such analyses is only to highlight loci associated with the trait of interest.
Adjustment for multiple-testing was performed using the Benjamini-Hochberg
correction69. Genome-wide significance threshold was set to FDR < 5%.

Prioritization of GWA signals was performed using a Bayesian framework to
model the joint likelihood of association p-values with large-scale epigenomic
annotations. Such risk variance inference was performed using the RiVIERA-beta
framework21 and with 450 epigenomic annotations (including histone marks,
DNase I hypersensitivity, transcription factor binding, and localization within
exons). The goal of this framework is to infer for each input SNP the posterior
probability of disease given its association p-value and overlap in functional
annotations. Epigenomic annotations were retrieved from Pickrell et al.70.

Analysis of fly phenotypes was performed using one-way ANOVA with
Bonferroni adjustment for multiple comparisons.

Software. General statistical analysis was performed using R statistical environ-
ment version 3.3.1. We used LocusZoom was used to plot regional association and
LD with lead SNP using the 1000 genome CEU population data (hg19/1000
Genomes Mar 2012 EUR). Epigenomic plots were made using the Bioconductor
Gviz package. Image J was used to quantified dot-blot results.

URLs. For Bolt-LMM, see https://data.broadinstitute.org/alkesgroup/BOLT-LMM/;
for GWAMA, see http://www.geenivaramu.ee/en/tools/gwama; for Impute2, see
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html; for GenABEL, see http://
www.genabel.org/; for Gviz, see https://bioconductor.org/packages/release/bioc/
html/Gviz.html; for Riviera-beta, see https://yueli-compbio.github.io/RiVIERA-
beta/; for LocusZoom, see http://locuszoom.org/;for Image J, see https://imagej.net.
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Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
All summary statistics are freely available (Supplementary Data 1–6). All data that
support the findings of this study are available from the corresponding author
(Armand.Valsesia@rd.nestle.com) upon reasonable request.
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