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Abstract	
	
The	UK	Biobank	project	is	a	large	prospective	cohort	study	of	~500,000	individuals	

from	across	the	United	Kingdom,	aged	between	40-69	at	recruitment.		A	rich	variety	

of	phenotypic	and	health-related	information	is	available	on	each	participant,	

making	the	resource	unprecedented	in	its	size	and	scope.	Here	we	describe	the	

genome-wide	genotype	data	(~805,000	markers)	collected	on	all	individuals	in	the	

cohort	and	its	quality	control	procedures.	Genotype	data	on	this	scale	offers	novel	

opportunities	for	assessing	quality	issues,	although	the	wide	range	of	ancestries	of	

the	individuals	in	the	cohort	also	creates	particular	challenges.		We	also	conducted	a	

set	of	analyses	that	reveal	properties	of	the	genetic	data	–	such	as	population	

structure	and	relatedness	–	that	can	be	important	for	downstream	analyses.	In	

addition,	we	phased	and	imputed	genotypes	into	the	dataset,	using	computationally	

efficient	methods	combined	with	the	Haplotype	Reference	Consortium	(HRC)	and	

UK10K	haplotype	resource.		This	increases	the	number	of	testable	variants	by	over	

100-fold	to	~96	million	variants.	We	also	imputed	classical	allelic	variation	at	11	

human	leukocyte	antigen	(HLA)	genes,	and	as	a	quality	control	check	of	this	

imputation,	we	replicate	signals	of	known	associations	between	HLA	alleles	and	

many	common	diseases.		We	describe	tools	that	allow	efficient	genome-wide	

association	studies	(GWAS)	of	multiple	traits	and	fast	phenome-wide	association	

studies	(PheWAS),	which	work	together	with	a	new	compressed	file	format	that	has	

been	used	to	distribute	the	dataset.		As	a	further	check	of	the	genotyped	and	

imputed	datasets,	we	performed	a	test-case	genome-wide	association	scan	on	a	

well-studied	human	trait,	standing	height.	

	

	

Keywords	
	

UK	Biobank,	Genotypes,	Quality	control,	Population	structure,	Relatedness,	Phasing,	

Imputation,	HLA	Imputation,	GWAS,	PheWAS	

	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 20, 2017. ; https://doi.org/10.1101/166298doi: bioRxiv preprint 

https://doi.org/10.1101/166298


3		

1	 Introduction	............................................................................................................	4	

2	 Results	....................................................................................................................	5	

2.1	 High	quality	genotype	calling	on	novel	array	..................................................	5	

2.2	 Ancestral	diversity	and	cryptic	relatedness	...................................................	18	

2.3	 Phasing	and	Imputation	of	SNPs,	short	indels	and	CNVs	...............................	23	

2.4	 Imputation	of	classical	HLA	alleles	.................................................................	26	

2.5	 GWAS	for	standing	height	.............................................................................	28	

2.6	 Multiple	trait	GWAS	and	PheWAS	.................................................................	31	

3	 Data	provision	and	access	....................................................................................	31	

4	 URLs	......................................................................................................................	32	

5	 Author	contributions	............................................................................................	32	

6	 Acknowledgements	..............................................................................................	32	

7	 Conflicts	of	Interest	..............................................................................................	33	

8	 References	............................................................................................................	33	

	

	

	

	

	

	

	

	

	

	

	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 20, 2017. ; https://doi.org/10.1101/166298doi: bioRxiv preprint 

https://doi.org/10.1101/166298


4		

1 Introduction	

The	UK	Biobank	project	is	a	large	prospective	cohort	study	of	~500,000	individuals	

from	across	the	United	Kingdom,	aged	between	40-69	at	recruitment	[1].		A	rich	

variety	of	phenotypic	and	health-related	information	is	available	on	each	participant,	

making	the	resource	unprecedented	in	its	size	and	scope.	The	data	contains	self-

reported	information,	including	basic	demographics,	diet,	and	exercise	habits;	

extensive	physical	and	cognitive	measurements;	with	other	sources	of	health-related	

information	such	as	medical	records	and	cancer	registers	being	integrated	and	

followed	up	over	the	course	of	the	participants’	lives	[2].	The	baseline	information	

has,	and	will	be,	extended	in	a	number	of	ways	[3].	For	example,	many	blood	and	

urine	biomarkers	are	being	measured;	and	medical	imaging	of	brain	[4],	heart,	

bones,	carotid	arteries	and	abdominal	fat	is	being	carried	out	on	a	large	subset	

(~100,000)	of	participants	[5].	

	

Understanding	the	role	that	genetics	plays	in	phenotypic	and	disease	variation,	and	

its	potential	interactions	with	other	factors,	provides	a	critical	route	to	a	better	

understanding	of	human	biology.		It	is	anticipated	that	this	will	lead	to	more-

successful	drug	development	[6]	,	and	potentially	to	more	efficient	and	personalised	

treatments	and	to	better	diagnoses.	As	such,	a	key	component	of	the	UK	Biobank	

resource	has	been	the	collection	of	genome-wide	genetic	data	on	every	participant	

using	a	purpose-designed	genotyping	array	[7].	An	interim	release	of	genotype	data	

on	~150,000	UK	Biobank	participants	(May	2015)	[8]	has	already	facilitated	

numerous	studies	[9].	These	exploit	the	UK	Biobank’s	substantial	sample	size,	

extensive	phenotype	information,	and	genome-wide	genetic	information	to	study	

the	often	subtle	and	complex	effects	of	genetics	on	human	traits	and	disease,	and	its	

potential	interactions	with	other	factors	[10-15].		

	

In	this	paper	we	describe	the	genetic	dataset	on	the	full	~500,000	participants,	

together	with	a	range	of	quality	control	procedures,	which	have	been	undertaken	on	

the	genotype	data	in	the	hope	of	facilitating	its	wider	use.		To	achieve	this	we	

designed	and	implemented	a	quality	control	(QC)	pipeline	that	addresses	challenges	

specific	to	the	experimental	design,	scale,	and	diversity	of	this	dataset.		Raw	data	

from	the	genotyping	experiments	will	be	available	from	UK	Biobank.		We	also	

conducted	a	set	of	analyses	that	reveal	properties	of	the	genetic	data	–	such	as	

population	structure	and	relatedness	–	that	can	be	important	for	downstream	

analyses.		In	addition,	we	phased	and	imputed	genotypes	into	the	dataset,	using	

computationally	efficient	methods	combined	with	the	Haplotype	Reference	

Consortium	(HRC)	[16]	and	UK10K	haplotype	resources	[17].		This	increases	the	

number	of	testable	variants	by	over	100-fold	to	~96	million	variants.	We	also	

imputed	classical	allelic	variation	at	11	human	leukocyte	antigen	(HLA)	genes,	and	as	
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a	QC	check	of	this	imputation,	we	replicate	signals	of	known	associations	between	

HLA	alleles	and	many	common	diseases.		We	describe	tools	that	allow	efficient	

genome-wide	association	studies	(GWAS)	of	multiple	traits	and	fast	phenome-wide	

association	studies	(PheWAS),	which	work	together	with	a	new	compressed	file	

format	that	has	been	used	to	distribute	the	dataset.		As	a	further	check	of	the	

genotyped	and	imputed	datasets,	we	performed	a	test-case	genome-wide	

association	scan	on	a	well-studied	human	trait,	standing	height.		

2 Results	

2.1 High	quality	genotype	calling	on	novel	array	

2.1.1 Purpose-designed	genotyping	array	

The	data	release	contains	genotypes	of	488,377	UK	Biobank	participants.		These	

were	assayed	using	two	very	similar	genotyping	arrays.		A	subset	of	49,950	

participants	involved	in	the	UK	Biobank	Lung	Exome	Variant	Evaluation	(UK	BiLEVE)	

study	were	genotyped	using	the	Applied	Biosystems™	UK	BiLEVE	Axiom™	Array	by	

Affymetrix1	(807,411	markers),	which	is	described	elsewhere	[15].		Following	this,	

438,427	participants	were	genotyped	using	the	closely-related	Applied	Biosystems™	

UK	Biobank	Axiom™	Array	(825,927	markers).		Both	arrays	were	purpose-designed	

specifically	for	the	UK	Biobank	genotyping	project	and	share	95%	of	marker	content	

[7].		The	marker	content	of	the	UK	Biobank	Axiom™	array	was	chosen	to	capture	

genome-wide	genetic	variation	(single	nucleotide	polymorphism	(SNPs)	and	short	

insertions	and	deletions	(indels)),	and	is	summarised	in	Figure	1.		Many	markers	

were	included	because	of	known	associations	with,	or	possible	roles	in,	phenotypic	

variation,	particularly	disease.	A	notable	example	is	the	inclusion	of	two	variants,	

rs429358	and	rs7412,	which	define	the	isoforms	of	the	apolipoprotein	E	(APoE)	gene	

known	to	be	associated	with	risk	of	Alzheimer’s	disease	[7]	and	other	conditions.		

Neither	marker	is	easy	to	type	using	array	technologies;	as	a	consequence	of	this	

they	have	not	always	been	assayed	on	earlier	arrays.		The	array	also	includes	coding	

variants	across	a	range	of	minor	allele	frequencies	(MAFs),	including	rare	markers	

(<1%	MAF);	and	markers	that	provide	good	genome-wide	coverage	for	imputation	in	

European	populations	in	the	common	(>5%)	and	low	frequency	(1-5%)	MAF	ranges.	

Further	details	of	the	array	design	are	in	[7].		

	 	

																																																								
1
Now	part	of	Thermo	Fisher	Scientific.	
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Figure	1	|	Summary	of	UK	Biobank	genotyping	array	content.		This	is	a	schematic	representation	of	
the	different	categories	of	content	on	the	UK	Biobank	Axiom	array.		Numbers	indicate	the	
approximate	count	of	markers	within	each	category,	ignoring	any	overlap.		A	more	detailed	
description	of	the	array	content	is	available	in	[7].	

	

2.1.2 DNA	extraction	and	genotype	calling	

Blood	samples	were	collected	from	participants	on	their	visit	to	a	UK	Biobank	

assessment	centre	and	the	samples	are	stored	at	the	UK	Biobank	facility	in	

Stockport,	UK	[18].	Over	a	period	of	18	months	(Nov.	2013	–	Apr.	2015)	samples	

were	retrieved,	DNA	was	extracted,	and	96-well	plates	of	94	50μl	aliquots	were	

shipped	to	Affymetrix	Research	Services	Laboratory	for	genotyping.		Special	

attention	was	paid	in	the	automated	sample	retrieval	process	at	UK	Biobank	to	

ensure	that	experimental	units	such	as	plates	or	timing	of	extraction	did	not	

correlate	systematically	with	baseline	phenotypes	such	as	age,	sex,	and	ethnic	

background,	or	the	time	and	location	of	sample	collection.	Full	details	of	the	UK	

Biobank	sample	retrieval	and	DNA	extraction	process	are	described	in	[19,	20].		

	

On	receipt	of	DNA	samples,	Affymetrix	processed	samples	on	the	GeneTitan®	Multi-

Channel	(MC)	Instrument	in	96-well	plates	containing	94	UK	Biobank	samples	and	
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two	control	samples	from	the	1000	Genomes	Project	[21].		Genotypes	were	then	

called	from	the	array	intensity	data,	in	units	called	“batches”	which	consist	of	

multiple	plates.		Across	the	entire	cohort,	there	were	106	batches	of	~4,700	UK	

Biobank	samples	each	(Supplementary	Material,	Table	S11).	Following	the	earlier	

interim	data	release,	Affymetrix	developed	a	custom	genotype	calling	pipeline	that	is	

optimized	for	biobank-scale	genotyping	experiments,	which	takes	advantage	of	the	

multiple-batch	design	[22].		This	pipeline	was	applied	to	all	samples,	including	the	

~150,000	samples	that	were	part	of	the	interim	data	release.	Consequently,	some	of	

the	genotype	calls	for	these	samples	may	differ	between	the	interim	data	release	

and	this	final	data	release	(see	Section	2.1.6).	

	

Routine	quality	checks	were	carried	out	during	the	process	of	sample	retrieval,	DNA	

extraction	[19],	and	genotype	calling	[23].		Any	sample	that	did	not	pass	these	checks	

was	excluded	from	the	resulting	genotype	calls.	The	custom-designed	arrays	contain	

a	number	of	markers	that	had	not	been	previously	typed	using	Affymetrix	genotype	

array	technology.	As	such,	Affymetrix	also	applied	a	series	of	checks	to	determine	

whether	the	genotyping	assay	for	a	given	marker	was	successful,	either	within	a	

single	batch,	or	across	all	samples.	Where	these	newly-attempted	assays	were	not	

successful,	Affymetrix	excluded	the	markers	from	the	data	delivery	(see	

Supplementary	Material	for	details).	This	resulted	in	a	set	of	genotype	calls	for	

489,212	samples	at	812,428	unique	markers	(bi-allelic	SNPs	and	Indels)	from	both	

arrays,	with	which	we	conducted	further	quality	control	and	analysis	(Table	1).	

	

	 	

UK	BiLEVE	

Axiom	array	

only	

UK	Biobank	

Axiom	array	

only	

Both	arrays	 Total	

Included	in	

experiment	

Number	of	samples	
sent	to	Affymetrix	
(including	duplicates)	

50561	 443568	 0	 494078	

Included	in	

data	delivery	

from	

Affymetrix	

Number	of	markers	 18019	 34313	 760096	 812428	

Number	of	samples	
(including	duplicates)	

50520	 438692	 0	 489212	

Included	in	

released	data	

Number	of	markers	 17536	 34197	 753693	 805426	

Number	of	unique	
samples	

49950	 438427	 0	 488377	

Table	1	|	The	number	of	markers	and	samples	by	genotyping	array	at	main	stages	of	the	UK	

Biobank	genotyping	experiment.	“Data	delivery	from	Affymetrix”	refers	to	the	data	produced	by	
Affymetrix	after	applying	their	filtering	(see	Supplementary	Material).	“Released	data”	refers	to	the	
released	genotype	data,	after	applying	QC	as	described	in	Sections	2.1.4	and	2.1.5.	

	

2.1.3 Quality	control	in	a	large-scale,	ethnically	diverse	cohort	

Our	QC	pipeline	was	designed	specifically	to	accommodate	the	large-scale	dataset	of	

ethnically	diverse	participants,	genotyped	in	many	batches	(106),	using	two	slightly	
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different	novel	arrays,	and	which	will	be	used	by	many	researchers	to	tackle	a	wide	

variety	of	research	questions.	Participants	reported	their	ethnic	background	by	

selecting	from	a	fixed	set	of	categories	[24].		While	the	majority	(94%)	of	individuals	

report	their	ethnic	background	as	within	the	broad-level	group	“White”,	there	are	

still	~22,000	individuals	with	a	self-reported	ethnic	background	originating	outside	

Europe	(Table	2).	This	ethnic	diversity	implies	genetic	diversity,	which	we	observe	

directly	in	the	genotypes	as	allele	frequency	differences,	and	has	implications	for	QC.	

Some	commonly	used	QC	tests	are	ineffective	in	the	context	of	strong	population	

structure	if	applied	without	taking	this	into	account.	For	example,	testing	for	

departures	from	Hardy-Weinberg	equilibrium	(HWE)	is	a	common	approach	for	

identifying	markers	that	have	been	genotyped	poorly	[25-27],	but	departures	from	

HWE	can	be	expected	in	the	context	of	population	structure	because	of	differences	

in	allele	frequencies	across	populations.	We	used	approaches	based	on	principal	

component	analysis	(PCA)	to	account	for	population	structure	in	both	marker	and	

sample-based	QC.	

	

Ethnic	group	
Self-reported	ethnic	

background	

Percentage	of	genotyped		

UK	Biobank	participants	

White	 	 	 94.23	
	 British	 88.26	

	
	 Any	other	white	background	 3.24	

	
	 Irish	 2.61	

	
	 White	 0.11	

	
Asian	or	Asian	British	 	 1.94	
	 Indian	 1.17	

	
	 Pakistani	 0.36	

	
	 Any	other	Asian	background	 0.36	

	
	 Bangladeshi	 0.05	

	
	 Asian	or	Asian	British	 0.01	

	
Black	or	Black	British	 	 1.57	
	 Caribbean	 0.88	

	
	 African	 0.66	

	
	 Any	other	Black	background	 0.02	

	
	 Black	or	Black	British	 0.01	

	
Chinese	 	 	 0.31	
	 Chinese	 0.31	

	
Mixed	 	 	 0.58	
	 Any	other	mixed	background	 0.2	

	
	 White	and	Asian	 0.16	

	
	 White	and	Black	Caribbean	 0.12	

	
	 White	and	Black	African	 0.08	

	
	 Mixed	 0.01	

	
Other/Unknown	 	 1.38	
	 Other	ethnic	group	 0.89	

	
	 Not	stated	 0.48	

	
Table	2	|	Proportions	of	self-reported	ethnic	groups	among	488,377	genotyped	UK	Biobank	

participants.	Categories	of	self-reported	ethnic	background	(UK	Biobank	data	field	21000)	and	
broader-level	ethnic	groups	are	shown	here	to	reflect	the	two-layer	branching	structure	of	the	ethnic	
background	section	in	the	UK	Biobank	touchscreen	questionnaire	[24].	Participants	first	picked	one	of	
the	broader-level	ethnic	groups	(e.g	White),	and	were	then	prompted	to	select	one	of	the	categories	
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within	that	group	(e.g	Irish).	The	broader-level	groups	are	also	shown	here	as	an	ethnic	background	
category	(e.g	“White”	in	column	two)	because	a	small	proportion	of	participants	only	responded	to	
the	first	question.	In	this	table	we	also	combine	the	category	“Other	ethnic	group”	with	an	aggregated	
non-response	category	“Not	stated”,	which	includes	all	participants	who	did	not	know	their	ethnic	
group,	or	stated	that	they	preferred	not	answer,	or	did	not	answer	the	first	question.	
	

2.1.4 Marker-based	QC	

We	identified	poor	quality	markers	using	statistical	tests	designed	primarily	to	check	

for	consistency	across	experimental	factors.		Specifically	we	tested	for	batch	effects,	

plate	effects,	departures	from	HWE,	sex	effects,	array	effects,	and	discordance	

across	control	replicates.		See	Supplementary	Material	for	the	details	of	each	test,	

and	Figure	S3	for	examples	of	affected	markers.	For	markers	that	failed	at	least	one	

test	in	a	given	batch,	we	set	the	genotype	calls	in	that	batch	to	missing.	We	also	

provide	a	flag	in	the	data	release	that	indicates	if	the	calls	for	a	marker	have	been	set	

to	missing	in	a	given	batch.		If	there	was	evidence	that	a	marker	was	not	reliable	

across	all	batches,	we	excluded	the	marker	from	the	data	altogether.	In	order	to	

attenuate	population	structure	effects	we	applied	all	marker-based	QC	tests	using	a	

subset	of	463,844	individuals	with	estimated	European	ancestry.	We	identified	these	

individuals	from	the	genotype	data	prior	to	conducting	any	QC	by	projecting	all	the	

UK	Biobank	samples	on	to	the	two	major	principal	components	of	four	1000	

Genomes	populations	(CEU,	YRI,	CHB	and	JPT)	[28].	We	then	selected	samples	with	

principal	component	(PC)	scores	falling	in	the	neighbourhood	of	the	CEU	cluster	(see	

Supplementary	Material).		

	

Most	QC	metrics	require	a	threshold	beyond	which	to	consider	a	marker	‘not	

reliable’.	We	used	thresholds	such	that	only	strongly	deviating	markers	would	fail	QC	

tests	(see	Supplementary	Material),	therefore	allowing	researchers	to	further	refine	

the	QC	in	whichever	way	is	most	appropriate	for	their	study	requirements.	Table	3	

summarises	the	amount	of	data	affected	by	applying	these	tests.	
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Test	
Average	number	of	SNPs	

failed	per	batch	(sd)	
Fraction	of	all	genotype	

calls	affected	

Affymetrix	cluster	QC	 1109	(699)	 0.00140	

1.	Batch	effect	 197	(86)	 0.000249	

2.	Plate	effect	 284	(266)	 0.000358	

3.	Departure	from	Hardy-Weinberg	

equilibrium	
572	(77)	 0.000723	

4.	Sex	effect	 45	(5)	 0.0000569	

5.	Array	effect*	 5417
	

0.00683	

6.	Discordance	across	controls**	 622	and	632	 0.000796	

Total	 7704	(721)	 0.00971	

Table	3	|	Failure	rates	for	six	marker-based	quality	tests.	For	all	numbered	tests	a	marker	(or	marker	
within	a	batch)	was	set	to	missing	if	the	test	yielded	a	p-value	<	10

-12
,	except	in	the	case	of	Test	6,	for	

which	a	marker	was	set	to	missing	if	the	test	yielded	<	95%	concordance.	See	Supplementary	

Material	for	details	of	each	test.	The	total	is	not	equal	to	the	sum	of	all	tests	because	it	is	possible	for	
a	marker	to	fail	more	than	one	test.	Since	the	two	arrays	contain	slightly	different	sets	of	markers,	the	
total	number	of	genotype	calls	used	to	compute	the	fractions	is,	Nukbb	Lukbb	+	Nukbl	Lukbl,	where	N	and	L	
refer	to	the	numbers	of	markers	and	samples	typed	on	the	UK	Biobank	Axiom	array	(ukbb)	and	
samples	typed	on	the	UK	BiLEVE	Axiom	array	(ukbl)	within	the	Affymetrix	data	delivery	(see	Table	S1).	
*The	array	effect	test	was	applied	across	all	batches	and	only	for	markers	present	on	both	arrays,	so	
we	simply	report	the	total	number	of	markers	that	failed	this	test.	**The	discordance	test	was	applied	
across	all	batches,	but	not	all	markers	are	present	on	both	arrays.	The	first	value	is	the	number	of	
unique	markers	on	the	UK	BiLEVE	Axiom	array	that	failed	this	test,	and	the	second	is	for	markers	on	
the	UK	Biobank	Axiom	array.	
	

2.1.5 Sample-based	QC	

We	identified	poor	quality	samples	using	the	metrics	of	missing	rate	and	

heterozygosity	computed	using	a	set	of	605,876	high	quality	autosomal	markers	that	

were	typed	on	both	arrays	(see	Supplementary	Material	for	criteria).	Extreme	values	

in	one	or	both	of	these	metrics	can	be	indicators	of	poor	sample	quality	due	to,	for	

example,	DNA	contamination	[26].	The	heterozygosity	of	a	sample	–	the	fraction	of	

non-missing	markers	that	are	called	heterozygous	–	can	also	be	sensitive	to	natural	

phenomena,	including	population	structure,	recent	admixture	and	parental	

consanguinity.	We	took	extra	measures	to	avoid	misclassifying	good	quality	samples	

because	of	these	effects.	For	example,	we	adjusted	heterozygosity	for	population	

structure	by	fitting	a	linear	regression	model	with	the	first	six	principal	components	

(PCs)	in	a	PCA	as	predictors	(Figure	2A).	Using	this	adjustment	we	identified	968	

samples	with	unusually	high	heterozygosity	or	>5%	missing	rate	(Supplementary	

Material).		A	list	of	these	samples	is	provided	as	part	of	the	data	release.		

	

We	also	conducted	quality	control	specific	to	the	sex	chromosomes	using	a	set	of	

15,766	high	quality	markers	on	the	X	and	Y	chromosomes.	Affymetrix	infers	the	sex	
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of	each	individual	based	on	the	relative	intensity	of	markers	on	the	Y	and	X	

chromosomes	[29].	Sex	is	also	reported	by	participants,	and	mismatches	between	

these	sources	can	be	used	as	a	way	to	detect	sample	mishandling	or	other	kinds	of	

clerical	error.	However,	in	a	data	set	of	this	size,	some	such	mismatches	would	be	

expected	due	to	transgender	individuals,	or	instances	of	real	(but	rare)	genetic	

variation,	such	as	sex-chromosome	aneuploidies	[30].	Affymetrix	genotype	calling	on	

the	X	and	Y	chromosomes	allows	only	haploid	or	diploid	genotype	calls,	depending	

on	the	inferred	sex	[29].	Therefore,	cases	of	full	or	mosaic	sex	chromosome	

aneuploidies	may	result	in	compromised	genotype	calls	on	all,	or	parts	of,	the	sex	

chromosomes	(but	not	affect	the	autosomes).	For	example,	individuals	with	

karyotype	XXY	will	likely	have	poorer	quality	genotype	calls	on	the	pseudo-

autosomal	region	(PAR)	of	the	X	chromosome,	as	they	are	effectively	triploid	in	this	

region.	Using	information	in	the	measured	intensities	of	chromosomes	X	and	Y,	we	

identified	a	set	of	652	(0.134%)	individuals	with	sex	chromosome	karyotypes	

putatively	different	from	XY	or	XX	(Figure	2B,	Supplementary	Table	S1).		The	list	of	

samples	is	provided	as	part	of	the	data	release.		Researchers	wanting	to	identify	sex	

mismatches	should	compare	the	self-reported	sex	and	inferred	sex	data	fields.	

	

We	did	not	remove	samples	from	the	data	as	a	result	of	any	of	the	above	analyses,	

but	rather	provide	the	information	as	part	of	the	data	release.		However,	we	

excluded	a	small	number	of	samples	(835	in	total)	that	we	identified	as	sample	

duplicates	(as	opposed	to	identical	twins,	see	Supplementary	Material)	or	were	

likely	involved	in	sample	mishandling	in	the	laboratory	(~10),	as	well	as	participants	

who	asked	to	be	withdrawn	from	the	project	prior	to	the	data	release	(33).		

	

	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 20, 2017. ; https://doi.org/10.1101/166298doi: bioRxiv preprint 

https://doi.org/10.1101/166298


12		

	

	

	 	

Figure	2	(caption	on	next	page)	
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Figure	2	|	Summary	of	sample-based	QC.		(A)	The	three	plots	show	heterozygosity	and	missing	rates,	
which	we	used	to	flag	poor	quality	samples.	The	two	top	plots	show	heterozygosity	for	each	sample	
before	(left)	and	after	(right)	correcting	for	ancestral	background	using	PCs.		The	symbols	(shapes	and	
colours)	indicate	the	self-reported	ethnic	background	of	each	participant,	as	annotated	in	the	legend.		
The	third	plot	shows	the	set	of	samples	we	flagged	as	outliers	(in	red),	and	all	other	samples	(in	black),	
with	shapes	the	same	as	for	the	other	two	plots.	The	vertical	line	shows	the	threshold	we	used	to	call	
samples	as	outliers	on	missing	rate.	In	all	plots	missing	rate	data	is	transformed	to	the	logit	scale,	but	
with	the	axis	annotated	with	the	original	values.		(B)	Mean	Log2	ratios	(L2R)	on	X	and	Y	chromosomes	
for	each	sample,	indicating	likely	sex	chromosome	aneuploidy	(see	Supplementary	Material).	
Samples	which	are	most	likely	XX	or	XY	are	depicted	with	a	circle.	Other	samples,	which	represent	
possible	instances	of	sex	chromosome	aneuploidy,	are	indicated	by	a	cross.		There	are	652	such	
samples	in	total;	see	Supplementary	Table	S1	for	counts.		The	colours	of	each	symbol	relate	to	
different	combinations	of	self-reported	sex,	and	sex	inferred	by	Affymetrix	(from	the	genetic	data),	as	
indicated	by	the	key.		For	almost	all	samples	(99.9%)	the	self-reported	and	inferred	sex	are	the	same,	
but	for	a	small	number	of	samples	(378)	they	do	not	match	(see	Supplementary	Material	for	
discussion).	

	

2.1.6 Summary	of	genotype	data	quality	

The	application	of	our	QC	pipeline	resulted	in	the	released	dataset	of	488,377	

samples	and	805,426	markers	from	both	arrays	with	the	properties	shown	in	Figure	

3.	The	proportion	of	all	the	genotype	calls	made	by	Affymetrix	that	were	set	to	

missing	as	a	result	of	quality	control	is	0.0097	(see	Table	3).	The	proportion	of	

genotyped	samples	that	were	identified	as	poor	quality	is	0.002	(968/488377).	

Furthermore,	a	set	of	588	pairs	of	experimental	duplicates	show	very	high	

concordance.		On	average,	99.87%	of	a	pair’s	genotype	calls	are	identical	and	the	

lowest	rate	is	still	99.39%	(Supplementary	Figure	S13).	

	

Subsequent	to	the	interim	release	of	genotypes	for	~150,000	UK	Biobank	

participants	improvements	were	made	to	the	genotype	calling	algorithm	[22]	and	

quality	control	procedures.	We	therefore	expect	to	observe	some	changes	in	the	

genotype	calls	and	missing	data	profile	of	samples	included	in	both	the	interim	data	

release	and	this	final	data	release.	Discordance	among	non-missing	markers	is	very	

low	(mean	6.7x10-5;	Supplementary	Figure	S1);	and	for	each	sample	there	are	

~24,500	genotype	calls	(on	average)	that	were	missing	in	the	interim	data,	but	

which	have	non-missing	calls	in	this	release.	This	is	much	smaller	in	the	reverse	

direction,	with	~500	calls,	on	average,	missing	in	this	release	but	not	missing	in	the	

interim	data,	so	there	is	an	average	net	gain	of	~24,000	genotype	calls	per	sample.	

	

We	compared	allele	frequencies	in	the	UK	Biobank	with	those	estimated	from	

sequencing	data	sourced	from	the	Exome	Aggregation	Consortium	(ExAC)	database	

[31].	We	computed	allele	frequencies	at	a	set	of	91,298	overlapping	markers,	using	

samples	with	European	ancestry.		We	do	not	expect	allele	frequencies	in	the	two	

studies	to	match	exactly	due	to	subtle	differences	in	the	ancestral	backgrounds	of	

the	individuals	in	each	study,	as	well	as	differences	in	the	sensitivity	and	specificity	of	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 20, 2017. ; https://doi.org/10.1101/166298doi: bioRxiv preprint 

https://doi.org/10.1101/166298


14		

the	two	technologies	(exome	sequencing	and	genotyping	arrays).		Despite	this,	

overall	the	allele	frequencies	are	encouragingly	similar	(r2	=	0.94)	(Figure	3E).		A	

discussion	of	the	discrepancies	between	UK	Biobank	and	ExAC	is	given	in	the	

Supplementary	Material.	

	

Over	110,000	rare	markers	(MAF	<	0.01)	were	included	on	the	two	arrays	used	for	

the	UK	Biobank	cohort	[7].	Variants	occurring	at	very	low	frequencies	present	a	

particular	challenge	for	genotype	calling	using	array	technology,	especially	in	cases	

where	only	a	small	number	of	samples	within	a	genotyping	batch	are	expected	to	

have	a	copy	of	the	minor	allele	(almost	always	with	a	heterozygous	genotype)2.	In	

these	cases	it	is	sometimes	difficult	in	the	genotype	intensity	data	to	distinguish	a	

sample	that	genuinely	has	the	minor	allele,	from	one	whose	intensities	are	in	the	

tails	of	the	distribution	of	those	in	the	major	homozygote	cluster.			Examples	of	two	

different	markers	with	MAF	<	0.001	in	UK	Biobank	are	shown	in	Figure	4B	and	Figure	

4C.	One	marker	is	performing	well	(4B),	but	for	the	other	marker	(4C)	the	

heterozygous	samples	are	more	difficult	to	identify.	In	contrast,	Figure	4A	shows	a	

common	SNP	(MAF=0.077),	which	has	three	well-separated	clusters	corresponding	

to	the	three	genotypes.		A	larger	fraction	of	rare	markers	fail	quality	control	tests	

compared	to	low	frequency	and	common	markers,	but	84%	still	pass	in	all	batches	

(Figure	3B).	The	MAF	of	rare	markers	are	generally	similar	to	those	in	ExAC,	but	very	

rare	markers	tend	to	have	a	lower	MAF	in	the	UK	Biobank	(Figure	3F).	We	strongly	

recommend	researchers	visually	inspect	similar	plots	for	markers	of	interest	using	a	

utility	such	as	Evoker	[32]	(see	URLs),	especially	for	rare	markers.		

	

In	addition	to	the	QC	described	above,	a	close	examination	of	results	of	a	test	

genome-wide	association	study	(GWAS)	(discussed	in	Section	2.5)	provided	further	

evidence	for	the	quality	of	the	resulting	set	of	genotype	calls.	

	

	 	

																																																								
2
	The	genotyping	batches	in	the	UK	Biobank	project	contain	~4,700	samples,	so	a	MAF	of,	for	
example,	0.001	corresponds	to	an	expected	count	(under	HWE)	of	about	9	heterozygotes	per	batch.	
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Figure	3	|	Summary	of	genotype	data	quality	and	content.		All	plots	show	properties	of	the	UK	
Biobank	genotype	data	that	is	made	available	to	researchers,	after	applying	QC	as	described	in	the	
main	text.		(A)	Minor	allele	frequency	(MAF)	distribution.	All	samples	were	used	in	the	calculation	of	
MAF.	The	inset	shows	the	number	of	markers	within	different	minor	allele	count	bins	for	rare	markers	
only	(MAF	<	0.01).		(B)	The	distribution	of	the	number	of	batch-level	QC	tests	that	a	marker	fails	(see	
Table	2;	Methods).	For	each	of	four	different	MAF	ranges	(indicated	by	colours)	we	show	the	fraction	
of	markers	that	fail	the	specified	number	of	batches.	For	example,	just	over	92%	of	the	‘low	
frequency’	markers	(0.01	≤	MAF	<	0.05)	do	not	fail	quality	control	in	any	batches.	Any	marker	that	
failed	all	106	batches	is	excluded	from	the	data	release,	so	such	markers	are	not	included	here	(see	
Table	3).		(C)	The	distribution	of	missing	rates	for	markers.	Three	histograms	are	overlaid,	each	
showing	a	different,	mutually	exclusive,	subset	of	markers,	which	are	indicated	by	the	three	colours.	
Markers	from	only	one	array	exhibit	more	missing	data	because	only	a	subset	of	samples	were	typed	
on	each	array	(10%	on	UK	BiLEVE	Axiom™	Array	and	90%	on	the	UK	Biobank	Axiom™	Array).		(D)	The	
distribution	of	missing	rates	for	samples.	Two	histograms	are	overlaid,	each	showing	a	mutually	
exclusive	subset	of	samples.	All	samples	have	some	missing	data	because	not	all	markers	were	
included	on	both	arrays	(~2%	are	exclusive	to	the	UK	BiLEVE	Axiom™	Array	and	~4%	exclusive	to	the	
UK	Biobank	Axiom™	Array).	Additional	missing	data	is	also	introduced	from	the	batch-based	marker	
QC.		(E)	Comparison	of	MAF	in	UK	Biobank	with	the	frequency	of	the	same	allele	in	ExAC,	among	the	
European-ancestry	samples	within	each	study.		We	used	33,370	samples	for	ExAC	and	463,844	
samples	for	UK	Biobank	(see	Supplementary	Material	for	details),	and	only	markers	that	have	a	call	
rate	greater	than	0.9	in	both	studies.		Each	hexagonal	bin	is	coloured	according	to	the	number	of	
markers	falling	in	that	bin,	as	indicated	by	the	key	(note	the	log10	scale).		The	dashed	red	line	shows	
x=y.		The	set	of	markers	with	very	different	allele	frequencies	seen	on	the	top,	bottom,	and	left-hand	
sides	of	the	plot	comprise	~300	markers.		This	is	~0.3%	of	all	markers	in	the	comparison,	or	~0.5%	of	
all	markers	with	MAF	>	0.001	in	at	least	one	study	(see	Supplementary	Material	for	a	discussion).		(F)	
As	with	(E),	but	zooming	in	on	the	rare	markers	(both	axes	<	0.01).	
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Figure	4	|	Examples	of	intensity	data	and	genotype	calls	for	markers	of	different	allele	frequencies.		

Each	of	the	three	sub-figures	shows	intensity	data	for	a	single	marker	within	six	different	batches.	
Batches	labelled	with	the	prefix	“UKBiLEVEAX”	contain	only	samples	typed	using	the	UK	BiLEVE	Axiom	
array,	and	those	with	the	prefix	“Batch”	contain	only	samples	typed	using	the	UK	Biobank	Axiom	
array.	Each	point	represents	one	sample	and	is	coloured	according	to	the	inferred	genotype	at	the	
marker.	The	x	and	y	axes	are	transformations	of	the	intensities	for	probe	sets	targeting	each	of	the	
alleles	“A”	and	“B”	(see	Supplementary	Material	for	definition	of	probe	set).	The	ellipses	indicate	the	
location	and	shape	of	the	posterior	probability	distribution	(2-dimensional	multivariate	Normal)	of	the	
transformed	intensities	for	the	three	genotypes	in	the	stated	batch.	That	is,	each	ellipse	is	drawn	such	
that	it	contains	85%	of	the	probability	density.	See	[29]	for	more	details	of	Affymetrix	genotype	
calling.	The	minor	allele	frequency	of	each	of	the	markers	is	computed	using	all	samples	in	the	
released	UK	Biobank	genotype	data.		(A)	A	marker	with	a	MAF	of	0.077	with	well-separated	genotype	
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clusters.		(B)	Intensities	for	a	marker	with	a	MAF	of	0.00092	with	well-separated	genotype	clusters.	As	
would	be	expected	under	HWE,	there	are	no	instances	of	samples	with	the	minor	homozygote	
genotype.		(C)	Intensities	for	a	marker	with	a	MAF	of	0.00066,	and	where	the	heterozygote	cluster	is	
not	well	separated	from	the	large	major	homozygote	cluster	in	some	batches,	making	it	more	difficult	
to	confidently	call	the	heterozygous	genotypes.	

	

2.2 Ancestral	diversity	and	cryptic	relatedness	

2.2.1 Genetic	population	structure	

The	diversity	in	ancestral	origins	of	UK	Biobank	participants	is	evident	from	the	self-

reported	ethnic	background	(Table	2)	and	country	of	birth	information.	The	

genotype	data	provides	a	unique	opportunity	to	study	their	ancestral	origins	in	a	

quantitative	manner.	Accounting	for	the	ancestral	background	of	participants	is	an	

essential	component	of	analysis	of	the	UK	Biobank	resource,	both	for	

epidemiological	studies	[33],	and	genetic	analyses,	such	as	GWAS	[27,	34].	We	used	

principal	components	analysis	(PCA)	to	measure	population	structure	within	the	UK	

Biobank	cohort.	PCA	is	widely	used	as	a	method	for	assessing	and	potentially	

controlling	for	population	structure	in	GWAS	[27,	35].	

	

We	computed	principal	components	(PCs)	using	an	algorithm	(fastPCA	[36])	which	

performs	well	on	datasets	with	hundreds	of	thousands	of	samples	by	approximating	

only	the	top	n	PCs	that	explain	the	most	variation,	where	n	is	specified	in	advance.	

We	computed	the	top	40	PCs	using	a	set	of	407,219	unrelated,	high	quality	samples	

and	147,604	high	quality	markers	pruned	to	minimise	linkage	disequilibrium	(LD)	

[37].	We	then	computed	the	corresponding	PC-loadings	and	projected	all	samples	

onto	the	PCs,	thus	forming	a	set	of	PC	scores	for	all	samples	in	the	cohort	

(Supplementary	Material).		
	

Figure	5	shows	results	for	the	first	6	PCs	plotted	in	consecutive	pairs.		Results	for	

further	PCs	are	shown	in	Supplementary	Figures	S5	and	S6.		As	expected,	individuals	

with	similar	PC	scores	have	similar	self-reported	ethnic	backgrounds.	For	example,	

the	first	two	PCs	separate	out	individuals	with	sub-Saharan	African	ancestry,	

European,	and	east-Asian	ancestry.	Individuals	who	self-report	as	mixed	ethnicity	

tend	to	fall	on	a	continuum	between	their	constituent	groups	(e.g	the	White	and	

Asian	category).	Further	PCs	capture	population	structure	at	sub-continental	

geographic	scales.	Supplementary	Figure	S7	shows	the	relationship	between	each	of	

the	40	PCs,	and	country	of	birth	as	reported	by	participants.	For	example,	high	scores	

in	PC	6	are	associated	with	individuals	born	in	Central	and	South	American	countries	

such	as	Peru,	Colombia,	and	Chile.	
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Figure	5	|	Ancestral	diversity	in	the	UK	Biobank	cohort.		Plots	of	consecutive	pairs	of	the	first	six	
principal	components	in	a	PCA	of	genotype	data	for	UK	Biobank	participants	(see	Supplementary	

Material).	Each	point	represents	an	individual	and	is	placed	according	to	their	principal	component	
scores	(using	genetic	data	only),	with	shapes	and	colours	indicating	their	self-reported	ethnic	
background	as	shown	in	the	legend.	See	Table	2	for	the	proportions	of	participants	in	each	category.	
Plots	of	all	pairs	of	these	6	PCs	are	shown	in	Supplementary	Figure	S5,	and	results	of	further	PCs	are	
represented	in	Supplementary	Figures	S6	and	S7.	

	

2.2.2 White	British	ancestry	subset	

Researchers	may	want	to	only	analyse	a	set	of	individuals	with	relatively	

homogeneous	ancestry	to	reduce	the	risk	of	confounding	due	to	differences	in	

ancestral	background.	Although	the	UK	Biobank	cohort	is	ethnically	diverse,	such	

analysis	is	feasible	without	compromising	too	much	in	sample	size	because	a	
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majority	of	participants	in	the	UK	Biobank	cohort	report	their	ethnic	background	as	

“British”,	within	the	broader-level	group	“White”	(88.26%).	Our	PCA	revealed	

population	structure	even	within	this	category	(Supplementary	Figure	S8),	so	we	

used	a	combination	of	self-reported	ethnic	background	and	genetic	information	to	

identify	a	subset	of	409,728	individuals	(84%)	who	self-report	as	“British”	and	who	

have	very	similar	ancestral	backgrounds	based	on	results	of	the	PCA	(see	

Supplementary	Material).	Fine-scale	population	structure	is	known	to	exist	within	

the	UK	[38]	but	methods	for	detecting	such	subtle	structure	[39]	available	at	the	

time	of	analysis	are	not	feasible	to	apply	at	the	scale	of	the	UK	Biobank.	The	white	

British	ancestry	subset	may	therefore	still	contain	subtle	structure	present	at	sub-

national	scales.		

2.2.3 Cryptic	relatedness	

Close	relationships	(e.g	siblings)	among	UK	Biobank	participants	were	not	recorded	

during	the	collection	of	other	phenotypic	information.	Indeed,	many	participants	

may	not	be	aware	that	a	close	relative	(such	as	an	aunt,	or	sibling)	is	also	part	of	the	

cohort.	This	information	can	be	important	for	epidemiological	analyses	[40],	as	well	

as	in	GWAS	[41],	and	the	genetic	data	provides	an	opportunity	to	discover	and	

characterise	familial	relatedness	within	the	cohort.	This	analysis,	combined	with	

phenotype	information,	is	also	useful	for	identifying	samples	that	are	experimental	

duplicates	rather	than	genuine	twins	(see	Supplementary	Material).	

	

We	identified	related	individuals	by	estimating	kinship	coefficients	for	all	pairs	of	

samples,	and	report	coefficients	for	pairs	of	relatives	who	we	infer	to	be	3rd	degree	

or	closer.	We	used	an	estimator	implemented	in	the	software,	KING	[42],	as	it	is	

robust	to	population	structure	(i.e	does	not	rely	on	accurate	estimates	of	population	

allele	frequencies)	and	it	is	implemented	in	an	algorithm	efficient	enough	to	consider	

all	pairs	(~1.2x1011)	in	a	practicable	amount	of	time.	As	noted	by	the	authors	of	KING	

[42],	we	found	that	recent	admixture	(e.g	“Mixed”	ancestral	backgrounds)	tended	to	

inflate	the	estimate	of	the	kinship	coefficient,	as	the	estimator	assumes	HWE	among	

markers	with	the	same	underlying	allele	frequencies	within	an	individual.	We	

alleviated	this	effect	by	only	using	a	subset	of	markers	that	are	only	weakly	

informative	of	ancestral	background	(see	Supplementary	Material,	Figure	S12).	We	

also	excluded	a	small	fraction	of	individuals	(977)	from	the	kinship	estimation,	as	

they	had	properties	(e.g	high	missing	rates)	that	would	lead	to	unreliable	kinship	

estimates	(see	Supplementary	Material).	We	called	relationship	classes	for	each	

related	pair	using	the	kinship	coefficient	and	fraction	of	markers	for	which	they	

share	no	alleles	(IBS0),	and	using	the	boundaries	recommend	by	the	authors	of	KING.			
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Monozygotic	

twins	

Parent-

offspring	
Full	siblings	 2

nd
	degree	 3

rd
	degree	 Total	

Number	

of	pairs	
179	 6,276	 22,666	 11,113	 66,928	 107,162	

Table	4	|	Summary	of	related	pairs	(3rd	degree	or	closer)	for	the	full	UK	Biobank	cohort.	Counts	are	
derived	from	the	kinship	coefficients	as	recommended	by	the	authors	of	KING	[42].		Note	that	parent-
offspring	and	full	sibling	pairs	have	the	same	expected	kinship	coefficient	(0.25)	but	can	be	easily	
distinguished	by	their	IBS0	fraction.	The	count	of	monozygotic	twins	is	after	excluding	samples	
identified	as	duplicates	(see	Supplementary	Material).	

	

A	total	of	147,731	UK	Biobank	participants	(30.3%)	are	inferred	to	be	related	(3rd	

degree	or	closer)	to	at	least	one	other	person	in	the	cohort,	and	form	a	total	of	

107,162	related	pairs	(Table	4).	This	is	a	surprisingly	large	number,	and	it	is	not	

driven	solely	by	an	excess	of	3rd	degree	relatives.	For	example,	the	number	of	sibling	

pairs	(22,666)	is	about	twice	as	many	as	would	theoretically	be	expected	in	a	random	

sample	(of	this	size)	of	the	eligible	UK	population,	after	taking	into	account	typical	

family	sizes	(see	Supplementary	Material).	To	ensure	we	were	not	overestimating	

the	number	of	related	pairs,	we	inferred	related	pairs	(within	a	subset	of	the	data)	

using	a	different	inference	method	implemented	in	PLINK	(“--genome”	command)	

[43]	and	confirmed	100%	of	the	twins,	parent-offspring	and	sibling	pairs,	and	99.9%	

of	pairs	overall	(see	Supplementary	Material).	The	larger	than	expected	number	of	

related	pairs	could	be	explained	by	sampling	bias	due	to,	for	example,	an	individual	

being	more	likely	to	agree	to	participate	because	a	family	member	was	also	involved.	

Furthermore	if,	as	seems	plausible,	related	individuals	cluster	geographically,	rather	

than	being	randomly	located	across	the	United	Kingdom	(UK),	the	assessment-centre	

based	recruitment	strategy	employed	by	UK	Biobank	[1]	will	naturally	tend	to	

oversample	related	individuals,	relative	to	random	sampling	of	the	UK	population.		

2.2.4 Trios	and	extended	families	

Pairs	of	related	individuals	within	the	UK	Biobank	cohort	form	networks	of	related	

individuals,	or	‘family’	groups.	In	most	cases	these	are	of	size	two,	but	there	are	

many	groups	of	size	3	or	larger	in	the	cohort,	even	when	restricting	to	2nd	degree	or	

closer	relative	pairs.		By	considering	the	relationship	types	and	the	age	and	sex	of	

individuals	within	each	family	group,	we	identified	1,066	sets	of	trios	(two	parents	

and	an	offspring),	which	comprises	1,029	unique	sets	of	parents	and	37	quartets	

(two	parents	and	two	children).	There	are	no	instances	of	3-generation	nuclear	

families	(grandparent-parent-offspring),	which	is	not	surprising,	given	that	the	age-

range	of	the	cohort	spans	only	30	years.	

	

There	are	172	family	groups	with	5	or	more	individuals	that	are	related	to	2nd	degree	

or	closer,	and	Figure	6	illustrates	examples	of	large	nuclear	families	in	the	cohort.		

One	of	these	is	a	group	of	eleven	individuals	where	every	pair	is	a	2nd	degree	

relatives.	The	simplest	explanation	for	such	a	family	group	is	that	all	of	the	
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individuals	are	half	siblings,	with	one	shared	parent	who	is	not	in	the	cohort.	

Alternatively,	one	individual	in	the	group	could	be	a	sibling	or	a	parent	of	the	shared	

parent.	The	pattern	of	haplotype	sharing	between	the	individuals	would	distinguish	

these	cases	but	we	have	not	undertaken	this	analysis.	We	did,	however,	confirm	that	

the	shared	parent	must	be	their	father,	because	the	individuals	do	not	all	carry	the	

same	Mitochondrial	alleles,	and	all	the	males	in	the	group	have	the	same	alleles	on	

their	Y	chromosome	(data	not	shown).		

	

Figure	6	|	Familial	relatedness	in	the	UK	Biobank	cohort.		(A)	Examples	of	family	groups	within	the	
UK	Biobank	cohort.	Points	indicate	participants,	and	lines	between	points	indicate	familial	relatedness	
(3

rd
	degree	and	closer)	as	inferred	from	the	genetic	data	(see	Methods).	The	colour	and	thickness	of	

the	lines	indicate	different	relative	classes,	as	shown	in	the	key.	An	integer	next	to	a	network	indicates	
the	total	number	of	family	networks	in	the	cohort	with	the	same	configuration,	ignoring	3

rd
	degree	

pairs.	No	integer	means	there	is	only	the	one	shown.	For	example,	there	are	10	networks	that	
comprise	exactly	5	full	siblings	(two	examples,	which	differ	with	respect	to	a	3

rd
	degree	relative,	are	

shown	on	this	plot);	and	there	is	only	one	network	that	comprises	6	full	siblings	(plus	one	3
rd
	degree	

relative	who	is	related	to	all	siblings).		(B)	Distribution	of	the	exact	number	of	relatives	that	
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participants	have	in	the	UK	Biobank	cohort.	The	height	of	each	bar	shows	the	count	of	participants	
who	have	exactly	the	stated	number	of	relatives.		Note	the	logarithmic	scale.		The	colours	indicate	the	
proportions	of	each	relatedness	class	for	individuals	counted	within	a	bar.		For	example,	for	each	
individual	that	has	three	relatives	in	the	cohort	(3

rd
	bar),	we	count	how	many	of	their	relatives	are	in	

each	relatedness	class	(i.e	a	full	sibling,	parent-offspring	etc.).		We	then	sum	these	counts	over	all	
individuals	with	three	relatives	and	colour	the	bar	according	to	the	proportions	of	each	relatedness	
class.		In	this	group	~20%	of	their	relatives	are	full	siblings	and	~64%	are	3

rd
	degree	relatives.		There	

are	also	18	participants	with	exactly	10	relatives.		The	unusually	large	fraction	of	2
nd
	degree	

relationships	for	this	group	is	a	result	of	the	set	of	eleven	individuals	who	are	all	2
nd
	degree	relatives	

of	each	other,	as	shown	in	the	centre	of	(A).	
	

	

2.3 Phasing	and	Imputation	of	SNPs,	short	indels	and	CNVs	

Genotype	imputation	[44]	is	the	process	of	predicting	genotypes	that	are	not	directly	

assayed	in	a	sample	of	individuals.	A	reference	panel	of	haplotypes	at	a	dense	set	of	

SNPs,	indels	and	structural	variants	(SVs),	is	used	to	impute	genotypes	into	a	study	

sample	of	individuals	that	have	been	genotyped	at	a	subset	of	the	markers.	These	‘in	

silico’	genotypes	can	then	be	used	to	boost	the	number	of	markers	that	can	be	

tested	for	association.	This	increases	the	power	of	the	study,	the	ability	to	resolve	or	

fine-map	the	causal	variants	and	facilitates	meta-analysis.	The	process	of	imputation	

first	involes	pre-phasing	the	directly	genotyped	markers,	followed	by	a	haploid		

imputation	step	[45]. 

2.3.1 Pre-Phasing	

For	the	pre-phasing	step	we	only	used	markers	present	on	both	the	UK	BiLEVE	and	

UK	Biobank	Axiom	arrays.	We	removed	markers	which	(a)	failed	QC	in	>	1	batch,	(b)	

had	more	than	5%	missingness	(c)	had	a	minor	allele	frequency	<	0.0001.		We	

removed	samples	that	were	identified	as	outliers	for	heterozygosity	and	missingness	

(Section	2.1.5).	These	filters	resulted	in	a	dataset	with	670,739	autosomal	markers	in	

487,442	samples.	Phasing	on	the	autosomes	was	carried	out	using	SHAPEIT3	[46]	in	

chunks	of	15,000	markers,	with	an	overlap	of	250	markers	between	chunks.	Each	

chunk	used	4	cores	per	job	and	S=200	copying	states.	The	1000	Genomes	Phase	3	

dataset	[47]	was	used	as	a	reference	panel,	predominantly	to	help	with	the	phasing	

of	samples	with	non-European	ancestry.	Chunks	were	ligated	using	a	modified	

version	of	the	hapfuse	program	(see	URLs). 

	

We	assessed	the	accuracy	of	the	phasing	in	a	separate	experiment	by	taking	

advantage	of	mother-father-child	trios	that	were	identified	in	the	UK	Biobank	cohort	

(see	Section	2.2.4).	This	family	information	can	be	used	to	infer	the	phase	of	a	large	

number	of	markers	in	the	trio	parents.	These	family-inferred	haplotypes	were	used	

as	a	truth	set,	as	is	common	in	the	phasing	literature.	The	parents	of	each	trio	were	

removed	from	the	dataset	and	then	haplotypes	were	estimated	across	chromosome	

20	in	a	single	run	of	SHAPEIT3.	This	dataset	consisted	of	16,175	autosomal	markers.	
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The	inferred	haplotypes	were	then	compared	to	the	truth	set	using	the	switch	error	

metric.	Using	a	set	of	696	trios	with	self-reported	ethnic	background	“British”	(within	

the	broader-level	group	“White”	(see	Table	2))	and	no	other	twins	or	1st	or	2nd	

degree	relatives	in	the	UK	Biobank	dataset,	we	estimated	a	median	switch	error	rate	

of	0.229%.	We	also	used	a	subset	of	397	of	these	trios	that	also	had	no	3rd	degree	

relatives	and	obtained	a	median	switch	error	rate	of	0.234%.		

2.3.2 Reference	panel	used	for	imputation	

There	are	a	number	of	factors	that	influence	the	accuracy	of	genotype	imputation,	

but	generally	accuracy	will	increase	as	the	number	of	haplotypes	in	the	reference	

panel	grows	and	if	the	ancestry	of	the	sample	haplotypes	is	a	good	match	to	the	

ancestry	of	the	reference	panel	haplotypes.	The	UK	Biobank	dataset	consists	of	

samples	with	a	diverse	range	of	ancestries,	but	with	the	majority	of	samples	having	

British	(or	European)	ancestry	(Table	2).	For	this	reason	it	was	desirable	to	use	a	

reference	panel	with	a	large	number	of	haplotypes	with	British	and	European	

ancestry,	and	also	a	diverse	set	of	haplotypes	from	other	world-wide	populations.		

	

For	the	interim	data	release	a	reference	panel	was	used	that	merged	the	UK10K	and	

1000	Genomes	Phase	3	reference	panels,	which	consisted	of	87,696,888	bi-allelic	

markers	in	12,570	haplotypes.	An	advantage	of	this	reference	panel	is	that	it	includes	

short	indels	and	larger	structural	variants	as	well	as	SNPs.	Since	then,	the	HRC	

reference	panel	[16]	has	been	widely	adopted	for	imputation	into	many	GWAS.	This	

reference	panel	has	many	more	haplotypes	(64,976)	than	the	previously	used	

reference	panel,	and	so	is	expected	to	produce	better	imputation	performance,	

especially	at	lower	allele	frequencies	(see	Supplementary	Figure	S14).	However	the	

HRC	panel	has	fewer	SNPs	(39,235,157)	since	very	rare	variants	were	excluded	when	

the	panel	was	constructed,	and	there	are	no	short	indels	and	structural	variants.	To	

obtain	the	expected	gain	in	performance	at	HRC	SNPs,	whilst	retaining	results	at	all	

the	SNPs/indels/SVs	imputed	in	the	interim	release,	we	imputed	SNPs	from	both	

panels,	but	preferentially	used	the	HRC	imputation	at	SNPs	present	in	both	panels.		

2.3.3 Imputation		

To	facilitate	fast	imputation	of	all	~500,000	samples	we	re-coded	IMPUTE2	[45]	to	

focus	exclusively	on	the	haploid	imputation	needed	when	samples	have	been	pre-

phased.	This	new	version	of	the	program	is	referred	to	as	IMPUTE4	(see	URLs),	but	

uses	exactly	the	same	hidden	Markov	model	(HMM)	within	IMPUTE2,	and	produces	

identical	results	to	IMPUTE2	when	run	using	all	reference	haplotypes	as	hidden	

states	(data	not	shown).	To	reduce	RAM	usage	and	increase	speed	we	used	compact	

binary	data	structures	and	took	advantage	of	high	correlations	between	inferred	

copying	states	in	the	HMM	to	reduce	computation.		Imputation	was	carried	out	in	

chunks	of	approximately	50,000	imputed	markers	with	a	250kb	buffer	region	and	on	
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5,000	samples	per	compute	job.	The	combined	processing	time	per	sample	for	the	

whole	genome	was	~10mins.		

	

The	result	of	the	imputation	process	is	a	dataset	with	92,693,895	autosomal	SNPs,	

short	indels	and	large	structural	variants	in	487,442	individuals.	dbSNP	Reference	

SNP	(rs)	IDs	were	assigned	to	as	many	markers	as	possible	using	rs	ID	lists	available	

from	the	UCSC	genome	annotation	database	for	the	GRCh37	assembly	of	the	human	

genome	(see	URLs).	

	

Figure	7	shows	the	distribution	of	information	scores	on	all	markers	in	the	imputed	

dataset.	An	information	score	of	α	in	a	sample	of	M	individuals	indicates	that	the	

amount	of	data	at	the	imputed	marker	is	approximately	equivalent	to	a	set	of	

perfectly	observed	genotype	data	in	a	sample	size	of	αM.	The	figure	illustrates	that	

the	majority	of	markers	above	0.1%	frequency	have	high	information	scores.	

Previous	GWAS	have	tended	to	use	a	filter	on	information	around	0.3	which	roughly	

corresponds	to	an	effective	sample	size	of	~150,000.	Thus	it	maybe	possible	to	

reduce	the	information	score	threshold	and	still	obtain	good	power	to	detect	

associations.	

	

The	UK	Biobank	Axiom	array	from	Affymetrix	was	specifically	designed	to	optimize	

imputation	performance	in	GWAS	studies	[7].	An	experiment	was	carried	out	to	

assess	the	imputation	performance	of	the	array,	stratified	by	allele	frequency,	and	to	

compare	performance	to	a	range	of	old	and	new	commercially	available	arrays	

(Supplementary	Material	and	Figure	S14).	These	results	highlight	the	very	good	

performance	of	the	Axiom	array	compared	to	other	arrays	across	the	full	frequency	

spectrum.	

2.3.4 A	compressed	and	indexed	data	format	for	imputed	data	

The	interim	release	of	the	UK	Biobank	genetic	data	was	made	available	in	version	1.1	

of	the	BGEN	file	format,	which	is	a	binary	version	of	the	GEN	file	format	(see	URLs).	

The	interim	data	release	imputed	files	containing	~150,000	samples	at	~73M	

autosomal	SNPs	require	1.3Tb	of	file	space.		

	

For	the	full	data	release	we	developed	a	new	version	(version	1.2)	of	the	BGEN	file	

format,	providing	greater	compression	and	the	ability	to	store	phased	haplotype	

data.	The	full	imputed	files	containing	~500,000	samples	at	~93M	autosomal	

markers	require	2.1Tb	of	file	space.	In	addition,	we	developed	an	open-source	

software	library	and	suite	of	tools	that	can	be	used	to	manipulate	and	access	the	

BGEN	files,	including	the	tool	BGENIX,	which	provides	random	access	to	data	by	

making	use	of	a	separate	index	file	(see	URLs).		
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Several	commonly-used	programs	support	the	BGEN	format,	including	SNPTEST	(see	

URLs)	and	PLINK	[48].		The	program	QCTOOL	v2	(see	URLs)	can	be	used	to	filter,	

summarize,	manipulate	and	convert	the	files	to	other	formats.		

	

	
Figure	7	|	Distribution	of	information	scores	at	autosomal	markers	in	the	imputed	dataset.	Top	left	
shows	the	full	distribution	of	the	info	scores.	The	remaining	panels	show	distributions	in	tranches	of	
minor	allele	frequency	MAF	>	5%,	1%<=MAF<5%,	0.1%<=MAF<1%	,		0.01%<=MAF<0.1%	and	
0.001%<=MAF<0.01%.	

	

2.4 Imputation	of	classical	HLA	alleles	

The	major	histocompatibility	complex	(MHC)	on	chromosome	six	is	the	most	

polymorphic	region	of	the	human	genome	and	harbours	the	largest	number	of	

genetic	associations	to	common	diseases	[49].	The	relevance	of	this	genomic	region	

to	biomedical	research	means	that	high	quality	typing	of	HLA	alleles	is	a	valuable	

extension	to	the	genetic	information	in	the	UK	Biobank.	Because	of	the	extensive	

genetic	variation	and	strong	linkage-disequilibrium	in	the	MHC	we	used	a	specialised	

algorithm	to	resolve	allelic	variation	at	11	classical	human	leukocyte	antigen	(HLA)	

genes	in	the	UK	Biobank	cohort.	We	imputed	HLA	types	at	two-field	(also	known	as	

four-digit)	resolution	for	HLA-A,	-B,	-C,	-DRB5,	-DRB4,	-DRB3,	-DRB1,	-DQB1,	-DQA1,	-

All variants : N = 92693895
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DPB1	and	-DPA1,	using	the	HLA*IMP:02	algorithm	with	a	multi-population	reference	

panel	(Supplementary	Tables	S4,	S5)	[50,	51].	

	

We	estimated	the	accuracy	of	the	imputation	process	using	five-fold	cross-validation	

in	the	reference	panel	samples	with	markers	common	to	the	reference	panel	and	UK	

Biobank	genotype	data.	For	samples	of	European	ancestry,	the	estimated	four-digit	

accuracy	for	the	maximum	posterior	probability	genotype	is	above	93.9%	for	all	11	

loci	(Supplementary	Table	S6).	This	accuracy	improved	to	above	96.1%	for	all	11	loci	

after	restricting	to	HLA	allele	calls	with	a	posterior	probability	greater	than	0.70.	This	

resulted	in	call	rates	above	95.1%	for	all	loci	(Supplementary	Table	S7).	

	

To	demonstrate	the	utility	of	the	HLA	imputation	we	performed	association	tests	for	

diseases	known	to	have	HLA	associations.	We	analysed	409,724	individuals	in	the	

white	British	ancestry	subset	(defined	in	Section	2.2.2)	along	with	446	disease	codes	

based	on	self-reported	diagnosis	terms.	Of	these	disease	codes	we	focused	on	11	

immune-mediated	diseases	with	known	HLA	associations	(see	Supplementary	Table	

S8	for	a	full	list).		For	each	individual	we	defined	the	HLA	genotype	at	each	locus	as	

the	pair	of	alleles	with	maximum	posterior	probability.		We	performed	a	standard	

association	analysis	(see	for	example	[52])	for	HLA	alleles	and	each	disease	using	

logistic	regression	with	an	additive	model	for	each	allele	at	each	locus.	This	

effectively	treats	each	allele	as	a	SNP	in	a	standard	GWAS	framework.	For	further	

details	see	the	Supplementary	Material	Section	S5.		To	ensure	we	only	include	high	

quality	HLA	calls	in	our	analyses	we	performed	a	similar	analysis	where	at	each	locus	

we	only	include	those	individuals	whose	genotype	pair	has	a	maximum	posterior	

probability	greater	than	0.7.	No	significant	differences	were	observed	compared	to	

the	full	analysis	(data	not	shown).	For	each	disease	in	our	analysis	we	identified	the	

HLA	allele	with	the	strongest	evidence	of	association	and	these	were	consistent	with	

previous	reports	(see	Supplementary	Table	S8	for	the	full	results).	This	provides	

evidence	that	the	imputation	of	HLA	alleles	is	sufficiently	accurate	for	genetic	

association	testing.		

	

As	a	final	QC	check	for	our	imputed	HLA	alleles,	we	show	that	the	UK	Biobank	data	

provides	consistent	results	with	a	fine-mapping	study.		In	this	case	we	replicate	

independent	HLA	associations	in	a	single	disease	study	of	multiple	sclerosis	

susceptibility	by	the	International	Multiple	Sclerosis	Genetics	Consortium	(IMSGC)	

[52].		Here	we	observed	evidence	of	association	and	effect	size	estimates	for	HLA	

alleles	that	are	consistent	with	those	found	in	IMSGC	study	(Table	5).		
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HLA	Allele	 Test	
UK	Biobank	 IMSGC		[52]	

OR	(95%	C.I.)	 p-value	 OR	(95%	C.I.)	 p-value	

HLA-DRB1*15:01	 Additive	effect	 3.16	(2.81-3.54)	 2.58	×	10
−85
	 3.92	(3.74-4.12)	 <	1	×	10

−600
	

	

Homozygote	
correction	

0.67	(0.52-0.87)	 2.32	×	10
−03
	 0.54	(0.47-0.61)	 8.50	×	10

−22
	

HLA-A*02:01	 Additive	effect	 0.69	(0.62-0.78)	 2.30	×	10
−10
	 0.67	(0.64-0.70)	 7.80	×	10

−70
	

	

Homozygote	
correction	

1.20	(0.89-1.62)	 2.41	×	10
−01
	 1.26	(1.13-1.41)	 3.30	×	10

−05
	

HLA-DRB1*03:01	 Additive	effect	 1.21	(1.06-1.37)	 3.39	×	10
−03
	 1.16	(1.10-1.22)	 3.50	×	10

−08
	

	

Homozygote	
correction	

2.12	(1.53-2.94)	 6.84	×	10
−06
	 2.58	(2.19-3.03)	 1.30	×	10

−30
	

HLA-DRB1*13:03	 Additive	effect	 2.10	(1.54-2.85)	 2.36	×	10
−06
	 2.62	(2.32-2.96)	 6.20	×	10

−55
	

HLA-DRB1*08:01	 Additive	effect	 1.56	(1.21-2.01)	 6.13	×	10
−04
	 1.55	(1.42-1.69)	 1.00	×	10

−23
	

HLA-B*44:02	 Additive	effect	 0.86	(0.74-0.98)	 2.94	×	10
−02
	 0.78	(0.74-0.83)	 4.70	×	10

−17
	

HLA-B*38:01	 Additive	effect	 0.29	(0.13-0.65)	 2.55	×	10
−03
	 0.48	(0.42-0.56)	 8.00	×	10

−23
	

HLA-B*55:01	 Additive	effect	 0.99	(0.75-1.31)	 9.47	×	10
−01
	 0.63	(0.55-0.73)	 6.90	×	10

−11
	

HLA-DQA1*01:01	

Additive	effect	in	
the	presence	of	
HLA-DRB1*15:01	

0.71	(0.56-0.90)	 5.33	×	10
−03
	 0.65	(0.59-0.72)	 1.30	×	10

−17
	

HLA-DQB1*03:02	 Dominant	effect	 1.07	(0.92-1.25)	 3.71	×	10
−01
	 1.30	(1.23-1.37)	 1.80	×	10

−22
	

HLA-DQB1*03:01	

Allelic	interaction	
with	HLA-
DQB1*03:02	

0.8	(0.53-1.20)	 2.81	×	10
−01
	 0.60	(0.52-0.69)	 7.10	×	10

−12
	

Table	5	|	Evidence	of	association	between	HLA	alleles	and	multiple	sclerosis	in	UK	Biobank	

compared	to	the	IMSGC	cohort.		The	UK	Biobank	association	tests	involved	1,501	self-reported	cases	
and	409,724	controls;	the	IMSGC	cohort	involved	17,465	cases	and	30,385	controls	[52].	Thus	the	UK	
Biobank	analysis	had	significantly	lower	power	than	the	IMSGC	analysis,	which	is	reflected	in	the	
reported	p-values.	Effect	sizes	for	the	UK	Biobank	were	estimated	jointly	using	the	model	of	the	MHC	
reported	by	the	IMSGC	(with	the	exception	of	the	two	SNPs	rs9277565	and	rs2229029).	As	in	the	
IMSGC	analysis	the	homozygote	correction	test	indicates	a	departure	from	additivity.	That	is,	if	the	
odds	ratio	is	<	1	then	the	homozygous	effect	is	smaller	than	under	the	additivity	assumption	and	
bigger	if	it	is	>	1.	

	

2.5 GWAS	for	standing	height	

As	a	final	demonstration	of	the	quality	of	the	directly	genotyped	and	imputed	data	

we	conducted	a	genome-wide	association	scan	for	a	well-studied	[49],	and	highly	

polygenic	human	trait:	standing	height.	Previously	published,	large	cohort	studies	for	

this	trait	also	provide	a	suitable	independent	comparison	set	for	our	scan.	We	

conducted	the	scan	using	genotypes	for	a	set	of	343,321	unrelated	UK	Biobank	

participants	within	the	white	British	ancestry	subset	(Section	2.2.2)	and	with	a	

standing	height	measurement	(Supplementary	Material).	We	compared	our	results	

to	the	largest	published	GWAS	for	human	height	that	does	not	use	UK	Biobank	data:	

a	meta	analysis	involving	a	total	of	253,288	individuals	of	European	ancestry	carried	
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out	by	the	Genetic	Investigation	of	Anthropometric	Traits	(GIANT)	Consortium	[53]	in	

2014.	

	

Figure	8	shows	the	p-values	for	associations	with	height	on	one	chromosome,	along	

with	p-values	for	GIANT’s	meta	analysis.	Reassuringly,	the	pattern	of	associations	is	

very	similar	in	both	the	UK	Biobank	and	GIANT	results.	The	gain	in	power	in	the	UK	

Biobank	cohort	is	clear,	with	many	loci	reaching	genome-wide	significance	(p-value	<	

5x10-8)	in	the	UK	Biobank,	which	do	not	in	the	GIANT	study	(Supplementary	Figure	

S15).	The	purpose	of	this	analysis	is	not	to	report	novel	associations	for	height,	

rather	to	indicate	the	potential	of	the	resource	to	uncover	such	findings.	However,	

we	chose	to	focus	on	a	single	associated	region	on	chromosome	2	shown	in	Figure	

8D.	Correlations	(r2)	between	markers	in	this	region	show	a	pattern	that	is	as	

expected	in	the	context	of	linkage	disequilibrium	(LD),	and	the	local	recombination	

rates.	The	stripe-like	pattern	of	the	association	statistics	is	indicative	of	multiple	

mutations	occurring	on	similar	branches	of	the	genealogical	tree	underlying	the	

data,	which	are	likely	linked	to	varying	degrees	with	the	causal	marker(s).	The	

correlation	(r2	)	between	the	most	associated	marker	and	all	other	markers	in	the	

region	drops	of	sharply	around	the	small	peak	in	recombination	(Hapmap	

recombination	map	[21])	to	the	right	of	the	most	significantly	associated	marker.	

Interestingly,	this	marker	was	imputed	from	the	genotypes,	which	points	to	the	

success	of	the	imputation	in	this	study,	and	in	general,	to	the	value	of	imputing	

millions	more	markers.	

	

Human	height	is	a	highly	polygenic	trait	[53]	and	this	provided	an	opportunity	to	

examine	many	such	regions	of	association.	Other	regions	that	we	visually	examined	

showed	similar	patterns,	and	all	regions	containing	the	variants	reported	to	be	

associated	with	height	in	the	NCBI	GWAS	catalogue	(as	of	Feb	2017,	excluding	results	

based	on	UK	Biobank	data)	were	also	genome-wide	significant,	or	close	to,	in	the	UK	

Biobank	data.		
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Figure	8	|	Association	statistics	for	human	height.	Results	(p-values)	of	association	tests	between	
human	height	and	genotypes	using	three	different	sets	of	data	for	chromosome	2.		p-values	are	
shown	on	the	–log10	scale	and	capped	at	50	for	visual	clarity.		Markers	with	–log10(p)	>	50	are	plotted	
at	50	on	the	y-axis	and	shown	as	triangles	rather	than	dots.		(A)	Results	for	meta-analysis	by	GIANT	
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(2014),	with	NCBI	GWAS	catalogue	markers	superimposed	in	red	(plotted	at	the	reported	p-values).		
(B)	Association	statistics	for	UK	Biobank	markers	in	the	genotype	data.		(C)	Association	statistics	for	
UK	Biobank	markers	in	the	imputed	data.		Points	coloured	pink	indicate	genotyped	markers	that	were	
used	in	pre-phasing	and	imputation	(see	Section	2.3.1).		This	means	that	most	of	the	data	at	each	of	
these	markers	comes	from	the	genotyping	assay.		Black	points	(the	vast	majority,	~8M)	indicate	fully	
imputed	markers.		(D)	Results	from	all	three	data	sets	focussing	on	a	~3	Mega-base	region	at	the	
terminal	end	of	the	p-arm.	Genotyped	markers	(i.e	markers	in	B)	are	shown	as	diamonds,	and	
imputed	markers	(i.e.	only	markers	coloured	black	in	C)	as	circles.		The	two	markers	with	the	smallest	
p-value	for	each	of	the	genotyped	data	and	imputed	data	are	enlarged	and	highlighted	with	black	
outlines,	and	other	UK	Biobank	markers	are	coloured	according	to	their	correlation	(r

2
)	with	one	of	

these	two.		That	is,	genotyped	markers	with	the	leading	genotyped	marker	(rs17713396),	and	
imputed	markers	with	the	leading	imputed	marker	(rs12714401).	Markers	with	r

2	
less	than	0.1	are	

shown	as	black	or	green.	
	

	

2.6 Multiple	trait	GWAS	and	PheWAS	

To	facilitate	the	running	of	GWAS	for	multiple	continuous	traits	and	fast	PheWAS	we	

have	provided	a	new	tool	called	BGENIE	that	is	built	upon	the	BGEN	library	(see	

URLs).	The	program	also	uses	the	Eigen	matrix	library	and	OpenMP	to	carryout	as	

many	of	the	linear	algebra	operations	in	parallel	as	possible.	For	example,	estimation	

of	effect	sizes	of	large	numbers	of	markers	can	be	carried	out	in	parallel	using	matrix	

operations,	and	we	use	indexing	of	missing	data	values	to	allow	for	fast	estimation	of	

standard	errors.	The	program	takes	BGEN	files	as	input	and	avoids	repeated	

decompression	and	conversion	of	these	files	when	analysing	multiple	phenotypes,	

and	can	lead	to	considerable	time	savings	when	compared	to	analysis	using	PLINK	

(see	Supplementary	Material).	

3 Data	provision	and	access	

Genotype	calls,	both	imputed	and	directly	assayed,	and	HLA	haplotype	calls	are	

available	on	a	cost-recovery	basis	to	researchers	on	successful	application	to	the	UK	

Biobank	http://www.ukbiobank.ac.uk/scientists-3/genetic-data/.	Several	types	of	

important	information	are	also	available	along	with	the	genotype	calls,	namely:	

• Various	quality	control	metrics	and	flags	for	samples	and	markers.	

• 40	principal	components	for	all	genotyped	samples,	and	kinship	coefficients	

for	pairs	of	inferred	close	relatives.	

• Measured	A	and	B	allele	intensities,	log2	ratios	and	B-allele	frequency	data	

for	all	488,377	genotyped	samples	at	805,426	markers	(Affymetrix).	

• Confidence	values	for	all	genotype	calls	in	the	released	data.	

• Posterior	parameters	for	genotype	clusters	at	each	marker	in	each	

genotyping	batch	(Affymetrix).		

• Imputation	info	scores	and	minor	allele	frequencies	for	all	markers	in	the	

imputed	data	files.	
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4 URLs	

SHAPEIT3,	IMPUTE4,	BGENIE	-	https://jmarchini.org/software/	

Hapfuse	-	https://bitbucket.org/wkretzsch/hapfuse/src	

BGENIX,	BGEN	library	-	https://bitbucket.org/gavinband/bgen	

GRCh37	human	genome	assembly	-	

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/	

Evoker	-	https://github.com/wtsi-medical-genomics/evoker	

BGEN	file	format	-	http://www.well.ox.ac.uk/~gav/bgen_format/bgen_format.html	

GEN	file	format	-	

http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html	

SNPTEST	-	https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html	

QCTOOL	v2	-	http://www.well.ox.ac.uk/~gav/qctool_v2	
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all	analysis	relating	to	the	HLA	imputation	and	association	testing.		G.B.	developed	

the	BGEN	file	format.		O.D.,	J.O.,	K.S.,	L.E.	and	J.M.	carried	out	all	analysis	and	

methods	development	relating	to	the	phasing,	imputation	and	multiple	trait	analysis.	

C.B.,	C.F.	and	J.M.	carried	out	all	analysis	relating	to	GWAS	testing.		J.M.	and	P.D.	
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