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ABSTRACT

Motivation: Histone acetylation (HAc) is associated with open
chromatin, and HAc has been shown to facilitate transcription
factor (TF) binding in mammalian cells. In the innate immune
system context, epigenetic studies strongly implicate HAc in
the transcriptional response of activated macrophages. We
hypothesized that using data from large-scale sequencing of a HAc
chromatin immunoprecipitation assay (ChIP-Seq) would improve the
performance of computational prediction of binding locations of TFs
mediating the response to a signaling event, namely, macrophage
activation.
Results: We tested this hypothesis using a multi-evidence approach
for predicting binding sites. As a training/test dataset, we used ChIP-
Seq-derived TF binding site locations for five TFs in activated murine
macrophages. Our model combined TF binding site motif scanning
with evidence from sequence-based sources and from HAc ChIP-
Seq data, using a weighted sum of thresholded scores. We find
that using HAc data significantly improves the performance of motif-
based TF binding site prediction. Furthermore, we find that within
regions of high HAc, local minima of the HAc ChIP-Seq signal are
particularly strongly correlated with TF binding locations. Our model,
using motif scanning and HAc local minima, improves the sensitivity
for TF binding site prediction by ∼50% over a model based on motif
scanning alone, at a false positive rate cutoff of 0.01.
Availability: The data and software source code for
model training and validation are freely available online at
http://magnet.systemsbiology.net/hac.
Contact: aderem@systemsbiology.org; ishmulevich@systemsbiology
.org
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Mammalian cells exhibit diverse transcriptional profiles across
different cell types and conditions, for example, in immune cells
activated with different pathogen-associated molecules (Ramsey
et al., 2008). To a large extent, these profiles are controlled
by the arrangement and chromatin accessibility of cis-regulatory
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elements (Berger, 2007). Transcription factors (TFs) bind specific
sequence elements in chromatin locations of permissive epigenetic
or conformational states, leading to activation or repression of
transcriptional activity. For mapping these regulatory interactions,
it is particularly promising that the binding of a TF can now
be measured genome wide using chromatin immunoprecipitation
(IP) with sequence detection (ChIP-Seq, see Johnson et al., 2007).
However, antibody and cellular material requirements preclude
using ChIP-Seq to screen for all TFs mediating a transcriptional
response. There remains a need for computational approaches that
can, in the absence of experimental TF binding data, leverage
transcriptional data and genomic information to identify the network
of TFs and binding sites that underlies a transcriptional response.

An important tool for predicting mammalian TF binding sites is
motif scanning, i.e. searching DNA sequence for matches within
a library of sequence motifs reported to be bound by specific TFs
(Lähdesmäki et al., 2008). Such a library enables mapping between a
scanning-identified sequence element and one or more candidate TFs
that may bind it. However, such motifs are often highly uncertain
and they can be degenerate, leading to a high frequency of false
positive predictions (Hannenhalli, 2008). Furthermore, mammalian
cis-regulatory elements can be tens of kilobases from transcription
start sites, necessitating searching large sequence regions and further
increasing false positives. These issues undermine the performance
of motif scanning as a standalone approach. Successful motif-
based prediction of TF binding depends on identifying the sequence
regions, within the relevant cell type, that are likely to contain cis-
regulatory elements (Ernst et al., 2010; Wasserman and Sandelin,
2004; Whitington et al., 2009).

It has been observed that cis-regulatory elements tend to co-
occur with chromatin or sequence features that can be grouped in
three categories: (i) chromatin structural features such as DNase I
hypersensitive sites; (ii) epigenetic marks such as histone acetylation
(HAc); and (iii) sequence features such as high GC content and
conservation across species. The HAc mark, which has been
associated with active promoters and open chromatin (Vettese-
Dadey et al., 1996), is of particular relevance to transcriptional
regulation because the modification can be placed or removed in
response to the cellular state. These observations have spurred the
development of approaches that integrate data for multiple types
of chromatin features to improve the accuracy of TF binding site
predictions. Various data integration frameworks for binding site
prediction have been used, including the support vector machine
(Holloway et al., 2005; Nykter et al., 2009), probabilistic methods
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Fig. 1. Local minima in the HAc ChIP signal correlate with TF binding. (A) A 12 kbp region of mouse chromosome 11 including the gene Ccl5 [an LPS-
regulated cytokine with multiple NFκB (nuclear factor of kappa light polypeptide gene enhancer in B-cells) sites in its promoter] and its upstream regulatory
region, with TF binding data and various feature tracks. Measured binding locations for the TF NFκB/p50 are shown in orange (top row). Each feature track is
displayed in colored vertical bars interspersed every 100 bp: HAc ChIP-Seq signal (magenta); ‘valley scores’ (VS) for HAc local minima (blue); normalized
NFκB binding site motif match scores (red); DNA sequence GC content (green); nucleosome occupancy score (green); and vertebrate conservation score for
genomic sequence (green). The NFκB binding sites correspond to local minima in the HAc ChIP-Seq signal. Inset: Within a local minimum of the ChIP-Seq
signal (magenta curve), the smaller of the maximum signal values on either side of the local minimum is computed, and the entire local minimum region is
assigned that value as its VS, and the value zero outside the local minimum region (blue lines) (Supplementary Section S1.6). (B) The distribution of HAc
ChIP VS from stimulated cells in TF-bound sites differs substantially from non-TF-bound sites, as shown in the two histograms (note the logarithmic vertical
scale).

(Beyer et al., 2006; Ernst et al., 2010; Lähdesmäki et al., 2008), and a
kernel-based classifier (Wang et al., 2009). Early studies integrating
genomic data into binding site prediction were carried out in yeast
(Beyer et al., 2006; Holloway et al., 2005), or in mammals using
ground-truth datasets that were not cell type-specific (Lähdesmäki
et al., 2008). More recent approaches have used cell type-specific
mammalian epigenetic or transcriptional data to predict binding for a
single TF in mammals (Nykter et al., 2009; Wang et al., 2009). Other
recent studies have used genome-wide datasets for multiple TFs to
develop prediction models without directly incorporating epigenetic
data into the model (Won et al., 2009; Zhou et al., 2010). Two
recent studies incorporated histone methylation ChIP-Seq data into
multi-evidence prediction models, using ChIP-derived ground-truth
datasets of 10 and 13 TFs, respectively (Whitington et al., 2009; Won
et al., 2010). Whitington et al. found that predictions are improved
when the methylation data are derived from the same tissue type
from which the TF binding site measurements are derived.

In this study, we investigated the hypothesis that incorporating
HAc ChIP-Seq data into a multi-evidence, motif scanning-based
model can improve TF binding site predictions. We further studied
whether prediction performance is improved when the HAc data
are derived from the same cell condition from which the TF binding
data (used for evaluating performance) are derived. Having observed
that TF binding locations frequently occur at local minima of
HAc ChIP-Seq signal within regions of high HAc (see Fig. 1 and
Supplementary Fig. S1), we also studied the predictive utility of
‘valley scores’ (VS) assigned to local minima of the HAc ChIP-
Seq signal. Following our previous investigation of the regulatory
network underlying macrophage activation (Ramsey et al., 2008),

this study was carried out using TF binding and HAc measurements
in the macrophage, a key cell type of the innate immune system.
When activated by exposure to a pathogen-associated molecule such
as lipopolysaccharide (LPS), the macrophage undergoes extensive
transcriptional reprogramming that is mediated in part by alterations
in HAc (Aung et al., 2006).

2 APPROACH
The HAc hypothesis was tested using an integrative TF binding site
(TFBS) prediction framework and using an approach designed to
estimate the performance that the prediction model would have on a
novel TF for which only a binding site motif is available. As features,
the framework used motif scanning data (Supplementary Fig. S2)
along with subsets of seven non-TF-specific features selected for
their potential association with TFBSs. As shown in Figure 1A and
Supplementary Table S1, the features consisted of HAc (acetylated
H4) ChIP-Seq data from activated and non-activated macrophages;
VS derived from the HAc data; and three features based on
genomic sequence (GC content, vertebrate species conservation and
a nucleosome occupancy prediction score). A peak in the HAc VS
signal corresponds to a local minimum in the HAc ChIP-Seq signal.
As a ground-truth TFBS dataset, we used ChIP-Seq data, from
activated macrophages, for five TFs (Supplementary Table S2). In
keeping with the study goals, the ChIP-Seq data were not used to
improve the motifs, and model performance was tested using binding
data for a TF that was not used in the model training. Performance
measurements obtained using such a TF-based cross-validation are,
in our view, more relevant to this application (library-based motif
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scanning) than are results from chromosome-based cross-validation.
Importantly, HAc was measured in LPS-stimulated macrophages,
consistent with the conditions for TF binding measurements.

TF binding site predictions were made in adjacent 100 bp intervals
spanning 10 kb promoter regions of genes that are expressed in
murine macrophages. A value for each TF prediction feature was
computed within each 100 bp interval, from the feature’s raw data.
A weighted, thresholded linear model class was used to combine the
motif scanning feature with zero, one or two additional features to
predict binding for the five TFs. This model class divides the range of
each feature’s values into three regimes: below minimum threshold
(value changes within this regime are not informative), above the
maximum threshold (saturated; changes are also not informative)
and within the linear response range. Fifteen models, each using a
different combination of features (Supplementary Table S3), were
trained using the ground-truth dataset. Because the model using HAc
ChIP VS performed the best among the two-feature models, the
three-feature model analysis was restricted to models with motifs,
HAc ChIP VS and one additional feature. For training, each model’s
parameters were optimized to maximize the average prediction
performance for a set of four TFs, with the performance metric
being the area under the sensitivity versus false positive rate (FPR)
curve. The performance of the model, with the best parameter set
from the training, was then tested on the fifth TF, and averaged over
the leave-one-out cross-validation.

3 METHODS
Complete methods are described in Supplementary Material, Section S1.
Ground-truth dataset: ChIP-Seq assays were performed for the TFs
ATF3, C/EBPδ, IRF1, NFκB/p50 and NFκB/p65 in macrophages activated
through treatment with purified Toll-like receptor agonists for 1–6 h (see
Supplementary Table S2 and Section S1.4). Binding locations were identified
from above-threshold locations in the ChIP-Seq signal, as described in
Supplementary Section S1.7.
Prediction features: TF predictions were made in 100 bp intervals (as used
in Won et al., 2010) of transcript-proximal regions comprising ∼7% of the
genome, selected as described in Supplementary Section S1.2. Combinations
of eight features, individually listed in Supplementary Table S1 and labeled
by index f , were used for TF binding prediction. Feature f =1, which
conferred TF specificity to the predictions, was based on motif scanning.
For each TF, motif position-weight matrices (PWMs) corresponding to
the TF were obtained from TRANSFAC (Supplementary Table S2 and
Section S1.3). Sequences were scanned for motif matches using a likelihood-
based algorithm (Lähdesmäki et al., 2008), and combined to obtain, within
each interval and for each TF, a score representing the strength of the best
match for any motif corresponding to that TF, at any position within the
interval. Features 2–5 of Supplementary Table S1 were derived from HAc
ChIP-Seq assays of unstimulated macrophages or macrophages stimulated
for 1, 4 or 6 h with LPS (Supplementary Sections S1.4–1.5). VS for HAc local
minima were computed as described in Supplementary Section S1.6. Features
6–8 were based on genomic sequence, and thus are not macrophage specific.
For the stimulated-cell HAc ChIP-Seq features (Supplementary Table S1,
rows 2 and 4), the time point for the HAc dataset that was used was always
the same as the time point of the ground-truth dataset for the TF for which
predictions were being made.
Prediction model: within each interval i, the model integrates a set F of up
to three features (always including the motif feature, f =1) by a weighted
sum of thresholded feature values. Feature values may depend on the TF t,
as is the case for motif scanning, or on the cellular condition for which TF
binding predictions are being made (as is the case for HAc-derived features).
The value for feature f at interval i and TF t is therefore denoted by vfit .

The feature value vfit is passed through a piecewise-linear function θf that is
defined by feature-specific thresholds λf and µf ,

θf (v)=
⎧⎨
⎩

0, v<λf ,

(v−λf )/(µf −λf ), λf ≤v≤µf ,

1, v>µf .

(1)

The prediction score σit that the TF t binds within interval i is obtained by a
weighted sum of thresholded contributions, but with a multiplicative factor
enforcing a minimum TF-specific motif match value for a non-zero σit ,

σit =µ(θ1(v1it))
(∑

f ∈F
ωf θf (vfit)

)
, (2)

where the weight vector �ω has unit L1 norm (a negative component would
represent a feature that is anti-correlated with TF binding), and where µ is
defined by µ(x)=0 if x≤0 and µ(x)=1 if x>0. Importantly, a given model
instance M, defined by the tuple {F,�λ, �µ, �ω}, is TF independent.
Performance metric: for a given model M, TF t, and prediction score cutoff
σ, the set of intervals �(σ,t) for which σit ≥σ were predicted to contain
binding sites for t (remaining intervals were predicted to have no t binding).
The set of intervals containing ground-truth binding sites (based on ChIP-
Seq) is denoted by �(t). Because the typical ChIP-Seq fragment size was
∼160 bp, some TF binding locations appeared as adjacent intervals in �(t);
these were counted as single binding sites. The number of ground-truth
binding sites B(t) was counted (Supplementary Table S2), and the fraction
of these binding sites that coincided with at least one interval i∈�(σ,t), was
computed as the sensitivity S(σ,t). The FPR E(σ,t) was computed by dividing
the number of intervals in the set difference �(σ,t)\�(t) by the number of
intervals not contained in �(t). The cutoff σ was varied and the resulting
(E(σ,t),S(σ,t)) function [receiver operating characteristic (ROC) curve] was
numerically integrated over the range 0<E ≤0.01 to obtain the TF-specific
performance score A(t). For model training (Supplementary Section S1.12),
the cost function used was C(t)=1−A(t)/0.01. During training, cases where
it was not possible to obtain a sufficient number of (S,E) samples were
handled using a penalty, as described in Supplementary Section S1.11.
Model training: groups of four TFs at a time were selected for model
training, and for a given model M, the cost was averaged over the four
TFs, C =〈C(t)〉t . Model parameters were varied to minimize C subject
to constraints on �λ, �µ and �ω, using a two-stage optimization process
(Supplementary Section S1.12), to obtain the best parameter set for the model
with features F.
Model testing: for both training and testing purposes, the performance A(t′)
of the model with the best parameter set from the training, was measured on
the fifth TF t′ using leave-one-out cross-validation. The five values for A(t′)
were compared between different feature groups F using a paired t-test, and
summarized in terms of the mean and SD (Supplementary Table S3).

4 RESULTS
Feature distributions: first, the TF specificity of the motif
scanning was investigated. Across all five TFs, the motif scanning
score distribution from TFBSs was significantly higher than the
distribution from non-binding sites (Supplementary Fig. S2). Next,
HAc VS representing local minima were computed, and the
distributions of VS at TFBSs and non-binding sites were compared.
In LPS-stimulated cells, HAc VS were significantly higher at TFBSs
than at non-binding sites (Fig. 1B); this motivated the use of HAc
ChIP data to improve predictions. Furthermore, LPS-dependent
TFBSs were correlated with LPS-inducible HAc local minima
(Supplementary Table S4 and Fig. S3).
Model performance: first, two-feature models (motifs plus one
other feature) were compared with a motifs-only reference model.
Based on the area under the sensitivity versus FPR curve (Fig. 2,
Supplementary Fig. S4 and Table S3), the model with HAc VS from
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Fig. 2. HAc data improve motif scanning-based TFBS predictions. (A) Prediction performance (area under the sensitivity versus FPR curve, or ‘ROC’ curve)
for models with motif scanning and one additional feature, and a motifs-only reference model (data for models with three features are shown in Supplementary
Fig. S4). Larger bar values correspond to better cross-validation-average performance on the test dataset. The performance for the reference model is shown in
the blue bar (and vertical dotted line), and a random model is shown as a negative control (black bar). The motifs-only model outperformed the random model,
∼27-fold. Each green bar represents a model that used motif information plus a specific sequence-based feature (GC content, etc.). Each cyan bar represents
a model that used motif information plus a HAc ChIP-Seq-based feature (Supplementary Table S3). Each error bar represents the cross-validation-wide SD
of the performance difference between the indicated model and the reference model (Section 3). ∗P<0.05; ∗∗∗P<0.001. For the cyan bars, a dashed border
indicates that HAc data are from LPS-stimulated cells; a solid border means the HAc data were from unstimulated cells. In the top two bar labels, ‘VS’
stands for the ‘valley score’ for local minima in the HAc ChIP-Seq signal. (B) ROC curves, for predictions by the models shown in (A) (see Supplementary
Fig. S4 for the complete FPR range). The model with HAc VS (from stimulated cells; gray curve) outperforms the other models. ROC curves were obtained
by varying the prediction score cutoff (Section 3). The lack of improvement for the nucleosome occupancy-based model is consistent with the very weak
association between this feature and TF binding (Supplementary Fig. S6).

stimulated cells had the highest performance improvement relative
to the reference model (52% increase, P < 10−3). The HAc ChIP-
Seq signal also improved prediction performance (by 14%), but
the improvement was highly variable from TF to TF (coefficient
of variation = 27%; see Supplementary Table S5). The model using
the stimulated-cell HAc VS also outperformed the unstimulated-
cell HAc VS data (by 31%, P<0.01). In contrast to the HAc
ChIP-derived datasets, the three genomic features (GC content,
conservation and nucleosome occupancy score) did not substantially
improve prediction performance. However, the improvements due
to GC content (5% increase) and conservation (3%) were more
consistent from TF to TF, and thus in both cases were statistically
significant (P<0.05). Next, models with motifs plus two other
features were compared with the best previous model (motifs + HAc
VS). None of the models gave a statistically significant improvement
over the best two-feature model (Supplementary Fig. S5). These
findings suggest that more TF binding data would be required to
discriminate prediction performances of three-feature models.

5 CONCLUSIONS
Using cell type-specific HAc ChIP-Seq data improves motif
scanning-based prediction of TFBSs in primary macrophages. This
prediction strategy could be applied to any cell type in which HAc
can be globally measured. Overall, these findings suggest that within
histone-acetylated regions, local minima of HAc ChIP-Seq signal
may indicate sites of active transcriptional regulation.
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