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Abstract
Although approved programmed cell death protein (PD)-1 inhibitors show durable responses, clinical benefits to these
agents are only seen in one-third of patients in most cancer types. Therefore, strategies for improving the response to
PD-1 inhibitor for treating various cancers including non-small cell lung cancer (NSCLC) are urgently needed.
Compared with genome and transcriptome, tumor DNA methylome in anti-PD-1 response was relatively unexplored.
We compared the pre-treatment methylation status of cis-regulatory elements between responders and non-
responders to treatment with nivolumab or pembrolizumab using the Infinium Methylation EPIC Array, which can
profile ~850,000 CpG sites, including ~350,000 CpG sites located in enhancer regions. Then, we analyzed differentially
methylated regions overlapping promoters (pDMRs) or enhancers (eDMRs) between responders and non-responders
to PD-1 inhibitors. We identified 1007 pDMRs and 607 eDMRs associated with the anti-PD-1 response. We also
identified 1109 and 1173 target genes putatively regulated by these pDMRs and eDMRs, respectively. We found that
eDMRs contribute to the epigenetic regulation of the anti-PD-1 response more than pDMRs. Hypomethylated pDMRs
of Cytohesin 1 Interacting Protein (CYTIP) and TNF superfamily member 8 (TNFSF8) were more predictive than
programmed cell death protein ligand 1 (PD-L1) expression for anti-PD-1 response and progression-free survival (PFS)
and overall survival (OS) in a validation cohort, suggesting their potential as predictive biomarkers for anti-PD-1
immunotherapy. The catalog of promoters and enhancers differentially methylated between responders and non-
responders to PD-1 inhibitors presented herein will guide the development of biomarkers and therapeutic strategies
for improving anti-PD-1 immunotherapy in NSCLC.

Introduction
Immune checkpoint inhibitors, including programmed

cell death protein (PD)-1 inhibitor, are effective for
anticancer treatment1. In non-small cell lung cancer
(NSCLC), PD-1 inhibitors show tremendous efficacy and

have been approved as both first-line and subsequent
treatments2. Approved PD-1 inhibitors such as nivolumab
and pembrolizumab show durable responses, but only
one-third of patients show clinical benefits in most cancer
types3. Therefore, with respect to PD-1 inhibitors, stra-
tegies for increasing the response rate are urgently
needed.
The anti-PD-1 response rate can be improved by either

stratifying patients4 or inflaming non-responsive tumors5.
Understanding the molecular mechanisms regulating the
therapeutic effects will guide both the discovery of
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biomarkers for predicting responsive tumors6 and the
development of therapeutics that can make tumors reac-
tive to anti-PD-1 therapy7.
Epigenetic modulation of tumors, particularly via DNA

methylation, is a key regulatory strategy in the immune
evasion of cancer cells, restoring the immunogenicity of
tumors8. Understanding the methylomic features and how
they modulate the tumor–immune axis may provide new
strategies for predicting therapeutic effects and aug-
menting the responsiveness of tumors to anti-PD-1
therapy. PD-L1 expression is the only predictive bio-
marker for the anti-PD-1 efficacy approved by US Food
and Drug Administration (FDA) in multiple cancer types
to date. For example, the use of pembrolizumab for
advanced NSCLC requires detection of PD-L1 expression
from >50% of tumor cells for the first-line setting9.
However, a recent study via systematic evaluation of 45
FDA approvals of immune checkpoint inhibitors from
2011 to 2019 showed that PD-L1 was predictive in only
28.9% of the approvals, indicating the limitation of PD-L1
as a predictive biomarker10. Pursuing development novel
biomarkers for PD-1 checkpoint inhibitors, genomic and
transcriptomic features associated with the response to
anti-PD-1 therapy have been investigated11,12, revealing
tumor mutation burden13,14 and several transcriptional
signatures12 as potential biomarker of the anti-PD-1
response. However, compared with the genome and
transcriptome, tumor methylomes under anti-PD-1
treatment have not been widely examined. Moreover,
methylation-based biomarkers have several advantages
over genomic and transcriptomic biomarkers, including
high stability and tolerance to heterogeneity of the sam-
ples15. Therefore, systematic cataloging of tumor methy-
lomic features of the anti-PD-1 response will be useful for
improving cancer immunotherapy.
A recent study analyzed publicly available genome-wide

methylation profiles of patients with melanoma from The
Cancer Genome Atlas (TCGA), and PCR-based validation
using an independent cohort showed that hypomethyla-
tion of the cytotoxic T-lymphocyte associated protein 4
(CTLA4) promoter correlates with the response to anti-
PD-1 therapy16. Subsequently, a study of the genome-
wide methylation profiles of an NSCLC cohort identified
301 CpG sites at which the methylation levels were sig-
nificantly associated with the response to anti-PD-1 in
NSCLC17. The same study also described a classifier based
on the methylation signature and unmethylated forkhead
box protein P1 (FOXP1) as a single predictor for the anti-
PD-1 response. However, the study reported differentially
methylated CpG sites rather than differentially methylated
regions (DMRs) between responders and non-responders.
The identification of DMRs provides more robust findings
than individual CpG differences18,19. Moreover, although
the study used a microarray platform that can obtain the

methylation profiles of ~850,000 CpG sites, including
~350,000 CpG sites located in enhancers that are distal
regulatory DNA regions, it did not investigate the effect of
methylation for such regions. Enhancers play essential
roles in controlling cellular states. Therefore, in order to
comprehensively understand the epigenetic regulation of
the anti-PD-1 response, it is necessary to profile the
DNA methylation status of both promoters and enhan-
cers. The first step of this task would be cataloging all
DMRs overlapping promoters (pDMRs) and enhancers
(eDMRs) between responders and non-responders to
PD-1 inhibitors.
We conducted this study to identify the methylomic

features associated with the anti-PD-1 response using
tissue specimens obtained from NSCLC patients treated
with anti-PD-1 immunotherapy. We identified 1007
pDMRs and 607 eDMRs associated with the anti-PD-1
response by comparing the pre-treatment methylation
status between 6 responder and 12 non-responder
patients treated with nivolumab or pembrolizumab. We
also identified 1109 and 1173 target genes putatively
regulated by pDMRs and eDMRs, respectively. We found
that genes regulated by DMRs in the anti-PD-1 response
are enriched for pathways related to cancer immunomo-
dulation. We also found that the epigenetic regulation of
these pathways was mediated by eDMRs rather than
pDMRs. Moreover, we demonstrated that hypomethy-
lated pDMRs of Cytohesin 1 Interacting Protein (CYTIP)
and TNF superfamily member 8 (TNFSF8) predict the
response to anti-PD-1 therapy with higher accuracy than
that of a widely used biomarker, programmed cell death
protein ligand 1 (PD-L1) expression, in a validation cohort
of 56 patients.

Materials and methods
Patient cohorts
The study cohort of NSCLC patients was established by

recruiting patients from Yonsei Cancer Center, Seoul,
Korea. Eighteen patients were in the discovery cohort,
whereas 56 were in the validation cohort. Each patient
was administered either nivolumab or pembrolizumab.
Patients were classified as responders if they showed
partial response (PR) or stable disease (SD) for >6 months
according to Response Evaluation Criteria in Solid
Tumors (RECIST) ver. 1.120. Patients who showed pro-
gressive disease (PD) or SD for ≤6 months were classified
as non-responders by RECIST ver. 1.121. Computed
tomography (CT) studies were independently read by
radiologists. All tumor samples were obtained from
patients before immunotherapy.

DNA methylation analysis for the discovery cohort
Eighteen fresh tumor tissue specimens from the dis-

covery cohort were selected from the archives of
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Severance Hospital. DNA methylation profiles of the
discovery cohort were obtained by using the Infinium
Methylation EPIC Array (850 K CpG sites).

(1) Genomic DNA quantitation
DNA samples were assessed for their quality using a

NanoDrop® ND-2000 UV-Vis Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The
samples were separated in agarose gels. Those with intact
genomic DNA, showing no smear in the gel, were selected
for subsequent experiments. Intact genomic DNA was
diluted to 50 ng/µL based on Quant-iT PicoGreen (Invi-
trogen, Carlsbad, CA, USA) quantitation. Concentrations
were adjusted according to these results.

(2) Bisulfite conversion
For bisulfite conversion, 600 ng of input gDNA was

required. Bisulfite-modified gDNA was prepared using the
EZ DNA Methylation kit (Zymo Research) according to
the manufacturer’s instructions. Conversion reagent was
added, followed by subsequent incubation in a thermo-
cycler to denature the samples. CT-converted DNA was
washed and de-sulfonated with de-sulfonation buffer,
after which the DNA was washed again and eluted with
12 µL elution buffer.

(3) Sample amplification and hybridization for BeadChips
The whole-genome amplification process required

250 ng of input bisulfite-converted DNA (MA1) and
created a sufficient quantity of DNA (1000× amplifica-
tion) for use on a single BeadChip in the Infinium
methylation assay (Illumina RPM and MSM). After
amplification, the product was fragmented using a pro-
prietary reagent (FMS), precipitated with 2-propanol
(plus precipitating reagent; PM1), and re-suspended in
formamide-containing hybridization buffer (RA1). The
DNA samples were denatured for 20min at 95 °C and
placed in a humidified container for a minimum of 16 h at
48 °C, allowing CpG loci to hybridize with the 50-mer
capture probes.

(4) Allele-specific single-base extension and staining on
BeadChips
Following hybridization, the BeadChip/Te-Flow cham-

ber assembly was placed on a temperature-controlled
Tecan flow-through chamber rack, and subsequent
washing, extension, and staining were performed by
adding reagents to the Te-Flow chamber. For the allele-
specific single-base extension assay, primers were exten-
ded by polymerase and labeled nucleotide mix (TEM),
and then stained by repeated application of STM (staining
reagent) and ATM (anti-staining reagent). After staining,
the slides were washed with low-salt wash buffer (PB1),

immediately coated with XC4, and imaged using the iScan
System (Illumina).

(5) Imaging the BeadChip and data analysis
The iScan System has a two-color (532 nm/658 nm)

confocal fluorescent scanner with 0.54 μm pixel resolu-
tion. The scanner excited the fluorophores generated
during signal amplification/staining of the allele-specific
(one color) extension products on the BeadChips. Image
intensities were extracted using Illumina’s GenomeStudio
Software.

(6) Methylation data analysis
Raw methylation data (IDATs) were processed by

RnBeads22 and Minfi23 packages. Before data processing,
the getQC function of the Minfi package was used to
evaluate sample quality, followed by functional normal-
ization. Using RnBeads, we filtered out non-informative
CpG sites by removing the sites with detection P value >
0.01 using “remove.sites.” Thereafter, the rnb.execute.low.
coverage.masking, rnb.execute.sex.removal, rnb.execute.
context.removal, rnb.execute.cross.reactive.removal, rnb.
execute.snp.removal, and rnb.execute.greedycut functions
were applied. Because the patients were from a Korean
population, we additionally removed Korean SNPs with
minor allele frequencies higher than 0.01, as per KOVA24

and KRGDB (http://152.99.75.168/KRGDB/menuPages/
intro.jsp) databases. As a result, 641,035 of 866,895 CpG
sites remained. DMRs were identified by the DMRcate25

package. Each DMR was annotated for a gene if there
were pre-defined promoters. We also assigned each DMR
having sequence overlap with an enhancer in the lung
cancer EPI network26. For each differentially methylated
enhancer, target genes were mapped by the same EPI
network. Finally, target genes were filtered with the
Consensus Coding gene sequence27 database.

mRNA expression data analysis
In the discovery cohort, RNA-sequencing was per-

formed for 5 responders and 11 non-responders. Among
the tumor samples, 11 were fresh samples and 5 were
formalin-fixed paraffin-embedded (FFPE) samples. Each
sample was subsequently applied for sequencing library
preparation, which was conducted using TruSeq RNA
Access Library Prep Guide Part # 15049525 Rev. B with
the TruSeq RNA Access Library Prep Kit (Illumina). RNA
sequencing was performed with HiSeq 2500 (Illumina),
and the obtained sequencing data were processed
according to the manufacturer’s procedure. STAR-
2.5.2a28 was applied for read mapping to the reference
genome (GENCODE, h19 (GRCh37.p13, release 19))29.
FeatureCounts30 was used for transcript quantification.
We assessed the correlation of the read count values of
genes between fresh samples and FFPE samples using
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Pearson’s correlation coefficient. The results showed no
significant difference between intra-fresh sample corre-
lation, intra-FFPE sample correlation, and fresh-FFPE
sample correlation as per Wilcoxon’s rank sum test. Dif-
ferentially expressed genes were analyzed using DESeq231.

DMR selection for biomarkers
Among the differentially methylated promoters filtered

for meanbetaFC > 0.15, we defined a functional DMR as
that showing a negative correlation between its direction
of change in methylation level and gene expression level.
Genes with positive methylation changes should show a
fold-change < 1/2 with a q value < 0.01 in differentially
expressed gene analysis, and the P value of Pearson cor-
relation coefficient should be < 0.05. Negative methylation
changes would show the opposite values. Accordingly, we
selected pDMRs for CYTIP, TNFSF8, and C11orf21 as
candidate biomarkers.

DNA methylation analysis for the validation cohort
(1) DNA extraction from FFPE samples
FFPE tumor tissues from 56 patients were obtained

from the archives of the Institute of Pathology, Severance
Hospital. The micro-dissected tissue fragments were
transferred into a micro-centrifuge tube and incubated in
1.5 mL of xylene for 60 min. After centrifugation at
16,000 × g for 3 min, the supernatant was removed. This
step was repeated, and the tissue samples were washed in
1mL of 99% ethanol. After centrifugation at 8500 × g for
3 min, the supernatant was discarded. The washing pro-
cedure was repeated five times. The samples were air-
dried at ambient temperature (20–30 °C) for 30min.
DNA was extracted using the QiaAmp DNA Micro kit
(Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions. The eluted DNA samples were
stored at −20 °C.

(2) Sodium bisulfite modification
Bisulfite-modified gDNA was prepared using the EZ

DNA Methylation-LightningTM kit (Zymo Research)
according to the manufacturer’s instructions. The bisulfite
reaction was carried out using 500 ng gDNA, and the
reaction volume was adjusted to 20 µL with sterile water,
to which 130 µL of CT conversion reagent was added. The
sample tubes were placed in a thermal cycler (MJ
Research, Waltham, MA, USA), and the following steps
were performed: 8 min at 98°C, 60 min at 54 °C, and 4 °C
for up to 20 h.
DNA was purified using the reagents provided with the

EZ DNA Methylation-LightningTM kit according to the
manufacturer’s protocol. The converted gDNA was eluted
by adding 20 µL of M-Elution Buffer to the column, fol-
lowed by centrifugation. DNA samples were stored at
−20°C until further use.

(3) Pyrosequencing analysis
We conducted bisulfite pyrosequencing to quantify the

methylation levels of pDMRs for three genes, CYTIP,
TNFSF8, and C11orf21. Each primer was designed using
Pyrosequencing Assay Design Software v2.0 (Qiagen).
The primer sequences are shown in Table S1. PCR was
carried out in a volume of 20 µL with >20 ng of converted
gDNA, PCR pre-mixture (Enzynomics, Daejeon, Korea)
and 1 µL each of 10 pmole/µL Primer-S and biotinylated
Primer-As with the following steps: denaturation at 95 °C
for 10min; 45 cycles of 95 °C for 30 s, each primer-specific
temperature for 30 s, and 72 °C for 30 s; and a final
extension at 72 °C for 5 min. Product amplification (2 µL)
was confirmed by electrophoresis in a 2% agarose gel and
visualized by ethidium bromide staining.
The ssDNA template was prepared from 16 to 18 µL

biotinylated PCR product using streptavidin Sepharose®
HP beads (Amersham Biosciences, Amersham, UK) fol-
lowing the PSQ 96 sample preparation guide using mul-
tichannel pipets. Fifteen picomoles of the respective
sequencing primers were added for analysis. Sequencing
was performed on a PyroMark ID system with the Pyro-
Mark Gold reagent kit (Qiagen) according to the manu-
facturer’s instructions, without further optimization. The
methylation percentage was calculated as the average
degree of methylation at 1–4 CpG sites formulated in
pyrosequencing.

Patient stratification by PD-L1 expression level
We measured PD-L1 expression levels by immunohis-

tochemistry with the anti-PD-L1 antibody (Ventana
SP263) and classified patients into two groups: PD-L1
positives (if the expression level was ≥1%) and PD-L1
negatives (if the expression level was <1%).

Survival analysis
Patients were divided into two groups based on the

threshold value for each marker. Progression-free survival
(PFS) was measured from the first day of PD-1 inhibitor to
tumor progression or death, whereas overall survival (OS)
was measured from the date of PD-1 inhibitor until the
date of death. Kaplan–Meier analyses for PFS and OS
were performed with the log-rank test. Statistical sig-
nificance was set to P <0.05 for all analyses.

Results
Genome-wide profiling of methylomic features associated
with the anti-PD-1 response
The procedure used to catalog pDMRs and eDMRs

associated with the anti-PD-1 response is summarized in
Fig. 1a. We first determined the methylation profiles of
~850,000 CpG sites based on the Infinium Methylation
EPIC Array (EPIC chip, Illumina, San Diego, CA, USA)
from 18 NSCLC patients at Yonsei Cancer Center, before
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anti-PD-1 therapy with nivolumab or pembrolizumab. In
all, 6 patients were classified as responders, whereas 12
patients were classified as non-responders, based on
RECIST ver. 1.120 (detailed patient information is avail-
able in Table 1 and Table S2a). Filtration of non-
informative CpG sites and data normalization were per-
formed using the Minfi23 and RnBeads22 packages. After
pre-processing the EPIC array data, we identified the
genomic regions differentially methylated between
responder and non-responder groups using DMRcate25

for the de novo identification of DMRs, revealing 1437
DMRs by thresholding the minimum false discovery rate
(minFDR) at 0.01 (Table S3a).
We assigned de novo DMRs to known cis-regulatory ele-

ments by sequence overlap. We used 16,880 promoters
associated with genes annotated by the Consensus Coding
Gene Sequence database27 and enhancers from a previously
published enhancer–promoter interaction (EPI) network for
a human lung cancer cell line26, as subsequent analysis of the
functional significance of methylation should be conducted
using their target genes. We further filtered promoters and
enhancers to detect those containing CpG sites that can be
profiled for methylation by EPIC array, resulting in 16,880
promoters and 21,676 enhancers. We found that 1007 of
1437 DMRs overlapped with the promoter regions, which
were assigned as pDMRs (Table S3b). Based on sequence
overlap between the 1437 DMRs and enhancers, we identi-
fied 607 eDMRs (Table S3c). The discrepancy between the

total number of DMRs identified by DMRcate (1437) and the
sum of pDMR and eDMR (1614) is attributable to promoters
that also display enhancer activity32.
We next identified 1109 genes located downstream of 1007

pDMRs as pDMR target genes (Tables S3d) and 1173 genes
whose promoter regions physically interacted with 607
eDMRs based on the EPI network for a human lung cancer
cell line as eDMR target genes (Table S3e). We identified
proportionally more target genes regulated by enhancers
compared with those detected by promoters, because of the
multiple interacting promoters for each enhancer in chro-
matin three-dimensional structures. The proportions of
pDMRs and eDMRs associated with the anti-PD-1 response
compared with the total promoters and enhancers of each
chromosome, respectively, are summarized in Fig. 1b. In
total, 2065 genes were identified as DMR target genes
putatively regulated via DMR methylation (Table S3f).
Notably, only 217 genes overlapped between pDMR targets
and eDMR targets (19.6% of pDMR targets and 18.5% of
eDMR targets). Thus, DNA methylation of promoters and
enhancers may be involved in epigenetic regulation of dif-
ferent cellular processes in anti-PD-1 response.

Genes regulated via DNA methylation in the anti-PD-1
response are enriched for cancer immunomodulation
pathways
Although the proportion of enhancers that overlap with

DMRs (i.e., eDMRs) is smaller than that of promoters that
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EPI network
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Fig. 1 Methylomic features of the anti-PD-1 response in NSCLC patients. a Overview of the study design and summary of the results.
b Proportion of differentially methylated promoter or enhancer regions normalized by the total number of promoters or enhancers for each
chromosome.
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overlap with DMRs (i.e., pDMRs) (Fig. 2a), the number of
eDMR-regulated genes (1173) is similar to that of pDMR-
regulated genes (1109) (Fig. 2b). To evaluate the func-
tional effect of the differential methylation of these
promoters and enhancers between responders and non-
responders, we performed a KEGG pathway33 gene set
enrichment analysis for DMR target genes, showing that
immune-related, oncogenic, and metabolic-regulation
pathways are significantly enriched for DMR targets
(q value < 0.01) (Fig. 2c). Given that PD-1 inhibitors
augment immune activity to attack cancer cells by mod-
ulating immune–cancer interactions, the immune status

of a tumor should contribute to the efficacy of immu-
notherapy. Therefore, it is not surprising that immune-
related pathways are major targets of epigenetic regula-
tion via DNA methylation.
Other major categories of pathways that associated with

DMR targets were oncogenic and metabolic-regulation
pathways. Alterations in oncogenic pathways, such as
MAPK and PI3K-Akt-mTOR signaling, influence
responses to immune checkpoint therapies34,35. Rapid
proliferation of cancer cells by metabolic reprogramming
leads to nutrient dearth in the tumor microenvironment.
This metabolic stress negatively affects T-cell prolifera-
tion and function. Metabolic reprogramming pathways,
such as mTOR and AMPK signaling in T cells, thus,
modulate interactions between cancer and immune cells,
modulating anticancer immunity36. Hypoxia-inducible
factor-1 (HIF-1) is a master transcription factor regu-
lated by mTOR signaling37. Hypoxic conditions increase
vascular endothelial growth factor, which may induce
T-cell death38. Interestingly, we observed insulin signaling
pathways to be enriched among DMR targets. The rela-
tionship between insulin signaling and the anti-PD-1
response can be explained by a recent report of insulin-
mediated modulation of T-cell metabolism39. We also
observed that longevity-regulating pathways comprising
metabolic-regulation pathways were enriched for DMR
targets. Taken together, the significant association
between DMR targets and cancer immunomodulation
pathways supports the reliability of detected DMRs and
their putative targets in anti-PD-1 response.

eDMRs contribute to the epigenetic regulation of anti-PD-
1 efficacy more than pDMRs
pDMRs and eDMRs may differ in their contribution to

epigenetic regulation of the anti-PD-1 response. There-
fore, we next performed KEGG pathway gene set analysis
for pDMR targets and eDMR targets, separately. We
found 45 KEGG pathways to be significantly enriched for
eDMR target genes (q value < 0.01) (Fig. 2d). Out of 30
known immune-related, oncogenic, and metabolic-
regulation pathways enriched for all DMR targets, 27
pathways were enriched for eDMR targets as well. In
addition, a KEGG pathway for type 2 diabetes mellitus
was newly detected to be enriched for eDMR targets; it
was previously demonstrated to be associated with
immunity by immune-mediated anticancer effects of
metformin, a drug commonly used to treat type 2 dia-
betes40. In contrast, we observed only five pathways
enriched for pDMR targets, four of which are known
immune-related, oncogenic, and metabolic-regulation
pathways (Fig. 2e). Similar analysis for hyper- and hypo-
methylated pDMR targets retrieved only top two and
none of the five enriched pathways for pDMR targets,
respectively. These results suggest that epigenetic

Table 1 Baseline clinicopathological characteristics.

Discovery set

(N= 18)

Validation set

(N= 56)

P value

Median age in years

(range)

64 (34–64) 65 (39–81) 0.874

Sex 0.364

Male 15 (83.3%) 39 (69.6%)

Female 3 (16.7%) 17 (30.4%)

Smoking history 0.155

Never smoker 3 (16.7%) 20 (35.7%)

Current/former smoker 15 (83.3%) 36 (64.3%)

ECOG performance status 0.927

≤1 16 (88.9%) 49 (87.5%)

>1 2 (11.1%) 7 (12.5%)

Number of previous treatments

≤2 12 (66.6%) 33 (58.9%)

>2 6 (33.4%) 26 (41.9%)

Histology 0.129

Adenocarcinoma 9 (50%) 39 (69.6%)

Squamous cell

carcinoma

9 (50%) 17 (30.4%)

PD-L1 positivity 0.023

Positive 6 (33.3%) 44 (78.6%)

Negative 10 (55.6%) 12 (21.4%)

N/A 2 (11.1%) 0 (0%)

Driver mutation for target

therapy

0.589

EGFR mutation 2 (11.1%) 11 (19.6%)

ALK rearrangement 0 (0%) 1 (1.8%)

Types of drug 0.097

Nivolumab 17 (94.4%) 41 (73.2%)

Pembrolizumab 1 (5.6%) 15 (26.8%)

ECOG Eastern Cooperative Oncology Group, N/A not available.
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regulation of pathway genes implicated in the anti-PD-1
response is mediated via methylation of eDMRs rather
than pDMRs.
We could verify the importance of eDMR in epigenetic

regulation of the anti-PD-1 response with a recently
published independent cohort of NSCLC patients with
methylation profiles by EPIC chip, recruited by Samsung
Medical Center (referred to as SMC cohort)41 (detailed
information is described in Supplementary Methods and

Table S6). We found that although both pDMR and
eDMR are significantly overlap between our cohort
(referred to as YCC cohort) and SMC cohort, con-
cordance for eDMR between two independent cohorts
was substantially more significant (Fig. S1). Furthermore,
we found that eDMR target genes are significantly enri-
ched for immune-related, oncogenic, and metabolic-
regulation pathways, but not for pDMR in SMC cohort
(Fig. S2). These consistent results from two independent
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cohorts confirmed that eDMR has bigger roles in epige-
netic regulation via methylation than pDMR in anti-PD-1
efficacy.

Methylation status of MHC-II enhancers is associated with
the anti-PD-1 response
We found that the most significantly associated KEGG

pathway term with eDMR target genes was “Antigen
processing and presentation”. Given that tumor-derived
antigen processing and presentation on MHC molecules
are critical for the recognition of cancer cells by T cells,
we hypothesized that antigen presentation is modulated
by epigenetic regulation of HLA genes via differential
methylation of enhancer regions. We found that most
HLA genes targeted by DMRs were MHC class II mole-
cules (e.g., HLA-DM, HLA-DO, HLA-DP, HLA-DQ, and
HLA-DR) and showed significantly higher expression
levels in responders compared with non-responders
(Table S4a). Notably, most promoters of HLA genes
showed no significant differences in methylation levels
between responders and non-responders (Table S4b),
suggesting that epigenetic regulation of HLA genes, par-
ticularly those encoding MHC-II molecules, via DNA
methylation is mediated by enhancers rather than by
promoters. Regulatory interactions between enhancers
(eDMRs) and promoters of target HLA genes were
visualized using Integrative Genomics Viewer (Fig. 3a).
Multiple studies have shown that the expression of MHC-
II molecules in melanoma is associated with the anti-PD-1
therapeutic effect42,43. Collectively, these results suggest
that the methylation status of MHC-II enhancers in
tumors modulates the anti-PD-1 therapeutic effect.
Super-enhancers are highly active enhancers bound by

very large numbers of transcription factors that have key
roles in determining cell identity44. Aberrant DNA
methylation has been observed on the super-enhancers of
several human cancer types45, and disease-associated var-
iants are enriched in super-enhancers46. These implicate
the engagement of super-enhancer methylation in reg-
ulating cancer cell differentiation, involving different
responsiveness to immunotherapy. Thus, we examined
whether differentially methylated enhancers targeting HLA
genes are super-enhancers. We found that super-enhancers
identified from lung tissues46 overlapped with eDMRs
targeting HLA genes, particularly MHC-II molecules (Fig.
3b IV and V), suggesting that the methylation of super-
enhancers regulating the expression of MHC-II molecules
contributes to the anti-PD-1 response in NSCLC.
We found that MHC-II targeting eDMRs are sig-

nificantly more differentially methylated in responders
compared with non-responders (Fig. 3c). Therefore, we
hypothesized that in responders, the upregulation of
MHC-II molecules on cancer cells may augment their
interactions with CD4+ T cells, subsequently increasing

the infiltration of CD4+ and CD8+ T cells. To test this
hypothesis, we enumerated tumor-infiltrated T cells from
responders and non-responders by xCell47 analysis of bulk
transcriptome data. We obtained transcriptome profiles
based on the RNA sequencing of 5 of 6 responders and 11
of 12 non-responders (Fig. 1a). We observed significantly
higher infiltration of CD4+ effector memory T cells (Tem)
and CD8+ T cells in responders compared to non-
responders (Fig. 3d–e). Notably, this observation of higher
infiltration of CD4+ and CD8+ T cells with concurrent
upregulation of MHC-II molecules in responders to anti-
PD-1 therapy was consistent with the results of previous
studies in melanoma42,43.

Hypomethylation of CYTIP or TNFSF8 pDMRs predicts the
anti-PD-1 response
Methylomic features might be applicable as biomarkers

for patient stratification for the anti-PD-1 response. To
achieve high reproducibility and cost efficiency, bio-
markers in clinical practice use one or more molecular
features. The methylation status of a genomic DNA region
can be profiled by various methods such as methylation-
specific PCR and pyrosequencing, which can achieve
reliable outcomes at a low cost. Thus, we filtered DMRs
using stringent criteria to select candidates with strong
predictive power. First, we filtered DMRs for meanbetaFC
> 0.15. Next, we selected for functionally more relevant
DMRs (functional DMRs) by integrating DNA methylation
and mRNA expression data (Table S3g). Functional DMR
was defined as that showing a negative correlation between
its direction of change in methylation level and gene
expression level. Thus, genes with hypomethylated
pDMRs should show concurrent upregulation or those
with hypermethylated pDMRs should show concurrent
downregulation by more than twofold-change with a
q value < 0.01 in differentially expressed gene analysis, and
the P value of Pearson correlation coefficient should be
<0.0548. Finally, we selected pDMRs for CYTIP, TNFSF8,
and C11orf21 as candidate biomarkers for follow-up vali-
dation (Table S5).
To evaluate the ability of the candidate pDMRs to

predict the outcomes of anti-PD-1 therapy, we performed
pyrosequencing to quantitatively analyze DNA methyla-
tion49 in formalin-fixed paraffin-embedded biopsied
samples from the validation cohort of 56 NSCLC patients
(25 responders and 31 non-responders) at Yonsei Cancer
Center (patient information in Table 1 and Table S2b).
The baseline clinicopathological characteristics of the
validation cohort were comparable with those of the
discovery cohort (Table 1). Among 56 samples derived
from the validation cohort, we could obtain methylation
profiles for 51 samples for pDMR of CYTIP and 52 sam-
ples for pDMR of TNFRSF8 using pyrosequencing. We
failed to determine the methylation levels for C11orf21

Cho et al. Experimental & Molecular Medicine (2020) 52:1550–1563 1557

Official journal of the Korean Society for Biochemistry and Molecular Biology



using pyrosequencing in most samples for a pilot test;
thus, this gene was excluded from the rest of the
validation test.

Analysis of the validation cohort showed that methyla-
tion levels for pDMRs for CYTIP and TNFSF8 significantly
differed between the responder and non-responder groups

Fig. 3 Differential methylation of HLA gene enhancers for the anti-PD-1 response. a Integrative genomic view showing HLA gene clusters of
human chromosome 6. Arches represent enhancer–promoter interactions. b Megascopic views of enhancer-containing regions (I–V) to highlight
sequence region overlap among HLA genes, DMRs, enhancers, and super-enhancers. c Comparison of mean beta values of eDMRs targeting MHC-II
between responders (R) and non-responders (NR). d, e Comparison of xCell scores between responders (R) and non-responders (NR) for CD4+

effector memory T cells d and CD8+ T cells. e The significance of difference between two groups was tested by a Wilcoxon one-sided rank sum test.
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(P= 0.0346 and P= 0.0378 by the Wilcoxon rank sum
test, Fig. 4a, b), indicating a significant association
between the methylation level of these regions and the
anti-PD-1 response. At present, tumor PD-L1 expression
measured by immunohistochemistry is a commonly used
biomarker for anti-PD-1 therapy in routine clinical
practice, but the prediction accuracy is not high enough to
confirm drug efficacy50. As expected, we observed an
association between PD-L1 expression and the anti-PD-1
response, but with a slightly lower significance level (P=
0.0414 by the Wilcoxon rank sum test, Fig. 4c), in our
validation cohort. These results collectively suggest that
the methylation levels of pDMR for CYTIP or TNFSF8
can provide a higher predictive power for anti-PD-1
therapeutic efficacy. In addition, we found no significant
correlation between PD-L1 expression and methylation of
pDMR for CYTIP or TNFSF8, which confirmed that the
predictive effect of the methylation for CYTIP or TNFSF8
promoter is not a surrogacy for PD-L1 expression
(Fig. S3). Next, we evaluated predictions for anti-PD-1
response by methylation level of pDMR for CYTIP or
TNFSF8 and PD-L1 expression based on receiver oper-
ating characteristic (ROC) analysis, which also can be
summarized as the area under ROC curve (AUC) scores.

Notably, the methylation level of pDMR for CYTIP or
TNFSF8 turned out to be better predictor than PD-L1
expression for the anti-PD-1 response (Fig. S4). To use
the continuous methylation level value as a diagnostic
classifier, we dichotomized it for each pDMR. We deter-
mined the cutoff point of methylation level by testing
every 5% to achieve an optimal positive predictive value
(PPV; number of true responders/number of predicted
responders) and negative predictive value (NPV; number
of true non-responders/number of predicted non-
responders). We chose 40% and 50% methylation as
optimal cutoff points for CYTIP and TNFSF8, respec-
tively. Finally, using the dichotomized methylation value,
the classifier based on the methylation of pDMR for
CYTIP showed a PPV of 60.7% (17/28) (Fig. 4d), and that
of TNFSF8 showed 61.8% (21/34) (Fig. 4e). These PPVs
were substantially higher than that of the classifier based
on PD-L1 expression (47.7%, 21/44) (Fig. 4f), which is
consistent with the previously reported PPV (15–45%)50.
Furthermore, the NPVs of the classifier based on the
methylation of pDMR for CYTIP (73.9%, 17/23) (Fig. 4d)
and TNFSF8 (77.8%, 14/18) (Fig. 4e) were higher than that
of the classifier based on PD-L1 expression (66.7%, 8/12)
(Fig. 4f). We observed increased PPV (14/20= 70%) but
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decreased NPV (20/29= 69%) by the combined use of
both pDMRs for CYTIP and TNFSF8 (Fig. 4g) compared
with that using individual pDMRs. Consequently, we
could achieve substantial improvement in PPV for pre-
dicting the anti-PD-1 response from 47.7% to 70% by
combined use of the two DMRs rather than the use of
PD-L1 expression for similar NPV (66.7% vs. 69%).

Hypomethylation of CYTIP or TNFSF8 pDMRs predicts
survival after anti-PD-1 therapy
Next, we tested the association between PFS and

methylation statuses of pDMRs for CYTIP and TNFSF8
in our validation cohort. Patients with hypomethylation
of pDMRs for CYTIP showed significantly longer PFS
than other patients (median PFS; 6.1 vs. 1.9 months;
P= 0.0076) (Fig. 5a). Patients with hypomethylation of
pDMRs for TNFSF8 also showed prolonged PFS com-
pared with the others (median PFS; 6.1 vs. 1.65 months;
P= 0.015) (Fig. 5b). In contrast, PD-L1 expression
showed no significant association with PFS (median
PFS; 4.2 vs. 1.55 months; P= 0.063) (Fig. 5c). The
association of PFS and simultaneous hypomethylation
of both pDMRs for CYTIP and TNFSF8 showed slightly
higher significance than that for CYTIP or TNFSF8
alone (median PFS; 15.9 vs. 1.9 months; P= 0.0044)
(Fig. 5d).
We also tested the association between OS and the

methylation status of pDMRs for CYTIP and TNFSF8.
Patients with hypomethylation of pDMRs for CYTIP
showed significantly longer OS compared with other
patients (median OS; 11.7 vs. 6.5 months; P= 0.023)
(Fig. 5e). Patients with hypomethylation of pDMRs for
TNFSF8 also showed prolonged OS compared with others
(median OS; 18.4 vs. 5 months; P= 0.015) (Fig. 5f). In
contrast, the expression of PD-L1 showed no significant
association with OS (OS; 16.1 vs. 7.45 months; P= 0.15)
(Fig. 5g). The association of OS and concurrent hypo-
methylation of both pDMRs for CYTIP and
TNFSF8 showed much higher significance than that for
CYTIP or TNFSF8 alone (median OS; NA vs. 6.5 months;
P= 0.0043) (Fig. 5h). In a Cox proportional hazard model
adjusted for sex, age, smoking and PD-L1 expression,
hypomethylation of CYTIP and TNFSF7 was associated
with a longer PFS and OS in NSCLC patients treated with
anti-PD-1 therapy ([CYTIP]: PFS; AHR, 0.453, 95% CI,
0.214–0.958, P= 0.038, OS; AHR, 0.434; 95% CI,
0.198–0.949; P= 0.037, [TNFSF8]: PFS; AHR, 0.454, 95%
CI, 0.218–0.944, P= 0.034, OS; AHR, 0.372; 95% CI,
0.170–0.812; P= 0.013) (Table S7).
In summary, we found that the hypomethylation of

pDMRs for CYTIP and TNFSF8 predict the anti-PD-1
response and prognosis after anti-PD-1 therapy, and their
ability to predict the clinical outcome is superior to that of
the commonly used biomarker PD-L1.

Discussion
Given that DNA methylation can modulate disease

conditions via epigenetic regulation of gene expres-
sion45,51, we predicted that the tumor methylome status
would also affect the therapeutic response to cancer
immunotherapy, including PD-1 inhibitor-based ther-
apy. We identified over 1400 genomic regions at which
methylation levels differed significantly between
responders and non-responders to anti-PD-1 treatment.
Based on the currently annotated cis-regulatory ele-
ments, we present a catalog of pDMRs and eDMRs for
the anti-PD-1 response. At present, most tumor
methylomes available to the public are based on
~450,000 CpG sites (450 K) of the Infinium methylation
microarray, which covers only a small fraction of CpG
sites in the distal cis-regulatory regions. In contrast, the
Methylation EPIC Array (EPIC chip) used in this study
can profile ~850,000 CpG sites, including >90% of the
450 K sites and an additional ~350 K CpG sites located in
enhancer regions52, enabling the identification of over
600 eDMRs. Enhancers play critical roles in the spatio-
temporal control of gene expression and are enriched for
disease-associated variants53. Thus, the identification of
enhancer regions for epigenetic regulation via methyla-
tion is essential for understanding disease progression
and therapeutic responses.
To determine the functional impact of DMRs, we uti-

lized their regulatory target genes whose functions are
better annotated. Through pathway enrichment analysis
of these target genes, we found that immune-related,
oncogenic, and metabolic-regulation pathways were
associated with the epigenetic regulation of the anti-PD-1
response via DNA methylation. Given that these pathways
are involved in tumor immunomodulation, our results
validate the reliability of the detected DMRs and their
target genes. Unexpectedly, we observed that the immu-
nomodulatory pathways were mostly regulated by eDMRs
rather than pDMRs in the anti-PD-1 response. Through
more in-depth analysis, we demonstrated that enhancers
for HLA genes, which encode major antigen presentation
molecules, are located within DMRs in the anti-PD-1
response. We also found that these eDMRs for HLA
overlap with super-enhancers, which are highly active
enhancers with key roles in determining cellular char-
acteristics44. As several treatments targeting diseases
involving super-enhancers are under clinical trials54, these
eDMRs would be potential therapeutic targets for
improving the anti-PD-1 response.
Recently, sequence divergence of HLA was reported to

be associated with anti-PD-1 efficacy55. In the present
work, we demonstrated association between methylation
of eDMRs targeting HLA and anti-PD-1 efficacy. Sequence
variation for eDMRs would affect their methylation level.
These observations together suggest that genetic variations
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of both coding and regulatory regions for HLA molecules
are major contributors to anti-PD-1 efficacy.
Previously, the FOXP1 promoter was the only

methylation-based biomarker validated in a European
cohort for NSCLC17. Interestingly, we did not identify the
FOXP1 promoter to be differentially methylated for the
anti-PD-1 response in our Korean cohort for NSCLC.
Instead, we could identify pDMRs for CYTIP and TNFSF8
as potential biomarkers for the anti-PD-1 response and
validate them using a much larger cohort (n= 56).
Interethnic differences in epigenetic regulation, including
DNA methylation, has been observed in both healthy
individuals and diseases such as cancer56. Therefore, the
differences in the identified biomarkers might be attri-
butable to ethnic disparities. For example, the incidence of
EGFR mutations in Asian populations is significantly
higher, up to 62% than in 20% of Caucasian populations,
suggesting that the genetic traits of NSCLC would vary by
ethnicity.
Both genes upregulated by the hypomethylation of

associated pDMRs in responders might be involved in
modulating interactions among cancer cells and immune

cells. CYTIP was previously reported to mediate T-cell
detachment from dendritic cells (DCs), which are pro-
fessional antigen-presenting cells, during the course of T-
cell priming57. T cells must detach from DCs to scan
more DCs for clonal expansion. It is possible that CYTIP
similarly mediates T-cell detachment from cancer cells,
allowing the scanning of more cancer cells. TNFSF8
(CD30L) is a ligand of CD30, which is a co-stimulatory
receptor of T cells. Cancer cells may upregulate CD30L by
hypomethylating its promoter to activate T cells via
agonistic interactions with CD30, enhancing immu-
notherapy efficacy. Further mechanistic studies of CYTIP
and TNFSF8 in cancer-immune interactions will facilitate
our understanding of anticancer immunomodulation in
the future.
Although our genome-wide pathway enrichment

analysis for regulatory target genes suggests significant
association of eDMRs with anti-PD-1 response, we
could not identify any eDMR-based biomarker. Identi-
fication of only two pDMR-based biomarkers from the
genome-wide search and existence of substantially more
pDMR than eDMR for anti-PD-1 response in the
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genome (1007 pDMRs and 607 eDMRs) are plausible
explanations for our failure in discovery of eDMR-based
biomarker. We expect that future association studies
with much larger cohorts will increase statistical power
and enable to discover eDMR-based biomarkers for
response to anti-PD-1 immunotherapy.
Our current study has limitations to be overcome in the

future. First, despite finding of importance of epigenetic
regulation for enhancer regions in anti-PD-1 response, we
could not identify enhancer-derived single-loci methyla-
tion biomarker with sufficient predictive power. Second,
all the methylation analyses have been conducted at the
level of genomic regions rather than CpG site, which
resulted in an epigenetic landscape with low resolution. In
fact, both limitations were owing to the insufficient sta-
tistical power with the given size of the discovery cohort.
We may overcome these limitations by expanding cohort
size in the future.
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