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Genome-wide identification of DNA methylation
QTLs in whole blood highlights pathways for
cardiovascular disease
Tianxiao Huan1,2,15, Roby Joehanes1,2,15, Ci Song1,2,3,4, Fen Peng5, Yichen Guo 6,7, Michael Mendelson1,2,8,

Chen Yao 1,2, Chunyu Liu9, Jiantao Ma1,2, Melissa Richard 5, Golareh Agha10, Weihua Guan11,

Lynn M. Almli 12, Karen N. Conneely13, Joshua Keefe1,2, Shih-Jen Hwang1,2, Andrew D. Johnson1,2,

Myriam Fornage5, Liming Liang 7,14 & Daniel Levy1,2

Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-

associated variants from genome-wide association studies (GWAS) may illuminate func-

tional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS

of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7

million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Inde-

pendent replication is performed in 1347 participants from two studies. By linking cis-meQTL

variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively

causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene

expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In

addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find

that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional reg-

ulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA

methylation involvement in human diseases.
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D
NA methylation (DNAm), the covalent binding of a
methyl group to the 5’ carbon of cytosine occurring
mainly at CpG dinucleotide sequences in the genome, is

an important epigenetic regulatory mechanism, and plays a cri-
tical role in the regulation of gene expression1. Site-specific
DNAm is associated with many complex human diseases and
traits2. DNAm variability is genetically influenced3,4, accrues with
human aging5, and can be altered by environmental exposures
such as smoking6 and alcohol consumption7. Epigenome-wide
association studies (EWAS) have identified differentially methy-
lated CpGs associated with numerous clinical traits. The strongest
CpGs identified by EWAS, however, seldom reflect a causal role
in disease (i.e., CpG → disease), but rather reflect downstream
effects of disease processes on the methylome (i.e., disease →
CpG)8,9. Nevertheless, CpGs can serve as useful biomarkers of
disease, and the identification of a subset of CpGs that have causal
roles in disease can provide insights into disease etiology and
potential therapeutic targets.

Genome-wide association studies (GWAS) have recently
identified genetic loci associated with site-specific DNAm of
CpGs, known as DNA methylation quantitative trait loci
(meQTLs)10–14. We hypothesized that identifying meQTL var-
iants and linking them to disease-associated genetic variants from
GWAS would pinpoint molecular mechanisms underlying genetic
susceptibility to human diseases that are due, at least in part, to
altered epigenetic regulation. Additionally, it could help explain
the molecular consequences of non-protein-coding, disease-
associated genetic variants from GWAS.

To this end, we perform genome-wide association testing of
genetic variants with whole blood DNAm from 4170 European
ancestry (EA) participants in the Framingham Heart Study (FHS)
and comprehensively map cis- and trans-meQTLs. External
replication is performed in 963 EA participants in the Athero-
sclerosis Risk in Communities (ARIC) study and 384 African-
American ancestry (AA) participants in the Grady Trauma Pro-
ject (GTP). We link cis-meQTL single nucleotide polymorphisms
(SNPs) with GWAS results for cardiovascular disease (CVD) and
its metabolic risk factors and employ Mendelian randomization
(MR) to identify putatively causal CpGs for CVD and its risk
factors. We further integrate gene expression, gene expression-
associated CpGs, and gene expression-associated QTLs (eQTLs),
to reveal causal genomic regulatory pathways for CVD traits. We
also report trans-meQTL hotspots, each targeting 30 or more
CpGs and demonstrate their influence on cis transcriptional
regulatory genes.

Results
Heritability of global DNAm in peripheral blood. The clinical
characteristics of the 4170 FHS participants in this study are
summarized in Supplementary Table 1, including 2648 partici-
pants from the FHS offspring cohort (mean age 66 years, 54%
women), and 1522 participants from the FHS third generation
cohort (mean age 45 years, 52% women). Among the study
participants, 456 are unrelated individuals, and 3,714 are from
511 families of varying sizes (Supplementary Table 2). Figure 1a
displays the distribution of heritability estimates (h2CpG) for
415,318 CpGs. The average heritability of DNAm across all CpGs
was estimated to be 0.09 ± 0.02 (mean ± SD) and 105,622 CpGs
(25.4%) were found to have h2CpG>0.1 (Supplementary Data 1),
39,090 (9.4%) have h2CpG>0.3, and 5416 (1.3%) have h2CpG>0.6.
Genomic features enrichment analysis revealed that CpGs with
h2CpG>0.1 were highly enriched for location in enhancer regions
(fold enrichment= 1.24, P < 1E−16, hypergeometric test), and
depleted in promoter, 0–200 bases upstream of transcription start

sites (TSS200), CpG island, and high-CpG dense regions (fold
enrichment < 0.8, P < 1E−16, hypergeometric test, Fig. 1b).
Household effects were positively associated with h2CpG, with
Pearson correlation r= 0.44. There were 6,212 CpGs with
household effects >0.1 (Supplementary Data 2) that showed
enrichment for location in 3’UTR regions (fold enrichment=
1.26, P < 1E−16, hypergeometric test) and depletion in promoter,
TSS200, CpG Islands, and high-CpG dense regions (fold
enrichment <0.8, P < 1E−16, hypergeometric test, Supplementary
Fig 1).

Identification and replication of cis- and trans-meQTLs. Pair-
wise association analyses were performed for 8.5 million SNPs
and 415 thousand CpGs measured in whole blood samples from
4170 FHS participants. cis-meQTLs were defined as SNPs residing
within 1Mb upstream or downstream of a CpG site. The dis-
tribution of cis-meQTLs in relation to distance from the corre-
sponding CpGs suggested that a 2Mb window is a reasonable
window for mapping cis-meQTLs (Supplementary Fig 2). We
identified 4.7 million cis- (for 121.6 thousand CpGs, 26.8 million
pairs) and 706 thousand trans-meQTL SNPs (for 13.5 thousand
CpGs, 2 million pairs) at Bonferroni-corrected P < 0.05 (P < 2E
−11 for cis associations for 2.5 × 109 pairs, and P < 1.5E−14 for
trans associations for 3.5 × 1012 pairs). Among trans-meQTL
SNPs, 33% reside on the same chromosome as the corresponding
CpGs, i.e., intrachromosomal trans-meQTLs, and 67% were
interchromosomal trans-meQTLs. Among intrachromosomal
trans-meQTLs SNPs, 70% reside within 5Mb of the corre-
sponding CpGs. This indicates that many presumed intrachro-
mosomal trans-meQTLs are not true trans-meQTLs but instead
long-range cis-meQTLs. We, therefore, excluded long-range cis-
meQTLs (i.e., SNPs > 1Mb but within 5Mb of CpGs), leaving 630
thousand trans-meQTL SNPs (for 10.6 thousand CpGs, 1.6 mil-
lion pairs). After pruning redundant SNPs at a given locus by
limiting linkage disequilibrium [LD] to r2 < 0.2, there remained
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Fig. 1 Heritability analysis of CpGs genome-wide. a Heritability (h2CpG)

distribution of 415,318 CpGs; b enrichment of CpGs with h2CpG > 0.1 in

different genomic regions
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394 thousand independent cis- and 21 thousand trans-
meQTL SNPs.

Our study, with the largest sample size in a single-site meQTL
investigation to date, provides obvious benefits in terms of greater
statistical power for discovery (Supplementary Fig 3 displays a
flowchart for the identification and replication of meQTLs). We
did not observe inflation of the genomic control factor (λ= 0.93,
Supplementary Fig 4). By overlapping our meQTL SNP-CpG
pairs with previously published results identified in whole
blood10,11,13 (Supplementary Fig 5), we estimated that our
meQTL SNP-CpG pairs cover 80–90% of significant meQTL
SNP-CpG pairs reported in two prior studies10,13. Because of the
much larger sample size in our study, we detected 3.5 times more
cis- and 10 times more trans-meQTL SNPs. A total of 6.9 million
cis-meQTL SNP-CpG pairs (27%) and 206 thousand trans- pairs
(13%) identified in our study were reported in at least one of the
previous meQTL studies.

We further validated our meQTLs by performing indepen-
dent external replication analysis based on 963 EA samples
from the ARIC study and 384 AA samples from GTP. We
found that more than 99% of cis- and trans-meQTL SNP-CpG
pairs showed consistent allelic direction of effect in relation to
methylation in ARIC vs. FHS (Fig. 2a, b), and 81% of cis- and
trans- pairs showed consistent directions of effect in GTP vs.
FHS (Fig. 2c, d). Thirty-six percent of cis- and 39% of trans-
meQTL SNP-CpG pairs replicated at Bonferroni-corrected P <
0.05 (corrected for the 26.8 million cis- pairs and 2 million
trans- pairs), and 91% of cis and 94% of trans pairs replicated at
nominal P < 0.05 in ARIC. 10% of cis- and 6% of trans- meQTL
SNP-CpG pairs from FHS replicated at Bonferroni-corrected

P < 0.05, and 51% of cis- and 41% of trans- pairs replicated at
nominal P < 0.05 in GTP.

Characteristics of cis- and trans-meQTLs. Figure 3a shows that
CpGs with higher heritability (h2CpG) are more likely to be asso-
ciated with cis- and trans-meQTL SNPs. Among the CpGs with
h2CpG >0.1, 73% have at least one cis-meQTL SNP, and 7% have at
least one trans-meQTL SNP. Among the CpGs with h2CpG >0.6,
76% have at least one cis-meQTL SNP, and 8% have at least one
trans-meQTL SNP. The mean (±SD) proportions of inter-
individual variation in CpGs explained by the most significant
single cis-meQTL SNP (h2cis�meQTL) is 0.08 ± 0.10 and for the most
significant single trans-meQTL SNP (h2trans�meQTL) it is 0.05 ±
0.06. The proportions of inter-individual variation in CpGs
explained by all of its corresponding cis-meQTL SNPs in aggre-
gate (h2cis�meQTLs) is 0.22 ± 0.25 and by all of its corresponding
trans-meQTL SNPs (h2trans�meQTLs) is 0.18 ± 0.21 (Fig. 3b).
h2cis�meQTLs and h2trans�meQTLs are positively correlated with h2CpG,
with Pearson correlations r= 0.57 and r= 0.25, respectively
(Fig. 3c). For some meQTLs, h2meQTL estimates were large. For
example, h2meQTL for the cis-meQTL-CpG pair
rs62396312–cg03644281 is 0.6. rs62396312 with minor allele
frequency (MAF)= 0.11 is 23 Kb from cg03644281, which is in
the 3’UTR of NFYA (Fig. 3d). h2meQTL for trans-meQTL-CpG pair
rs2296406–cg04657470 is 0.57. rs2296406 (MAF= 0.38) is on
Chromosome 16, and cg04657470 is in the first exon of HSPE1
and the 5’UTR of HSPD1 on Chromosome 2 (Fig. 3e).
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Figure 4a shows that cis-meCpGs are enriched in promoter
and enhancer regions (fold enrichment >1.2, P < 1E−16,
hypergeometric test) and depleted in 5’UTR, TSS200, CpG
islands, and high-CpG dense regions (fold enrichment <0.8,
P < 1E−16, hypergeometric test). In contrast, trans-meCpGs
are enriched for high-CpG dense regions (fold enrichment=
1.29, P < 1E−16, hypergeometric test) and depleted in 3’UTR
and gene body regions (fold enrichment <0.8, P < 1E−16,
hypergeometric test). Overlapping meQTL SNPs with Road-
map project data15 measured in primary cells and cell lines
from peripheral blood and in many other tissues (see Methods)
showed that the cis- and trans-meQTL SNPs are enriched for

active chromatin regions, such as transcription start site (TSS)
active regions, transcription regions, enhancer regions, and
ZNF genes and repeats regions, and highly depleted in
heterochromatin and quiescent regions (FDR < 0.05 based on
1000 permutations; Fig. 4b, c and Supplementary Fig 6). The
cis- and trans-meQTL SNPs are also enriched for eQTL
SNPs16,17 (P < 1E−16, hypergeometric test), protein QTL
(pQTLs) SNPs18,19 (P < 1E−7, hypergeometric test), and
GWAS Catalog SNPs20 (P < 1E−16, hypergeometric test). We
found that 87% of cis-eQTL SNPs, 82% of cis-pQTL SNPs, and
59% of GWAS Catalog SNPs are also cis-meQTL variants
(Supplementary Table 3).
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Using cis-meQTLs to identify causal CpGs for CVD risk. A
large proportion (59%) of GWAS Catalog index SNPs were found
to be cis-meQTL SNPs, indicating that a majority of phenotype-
associated SNPs may contribute to disease pathways via effects on
local DNAm. We further illustrated in two-sample MR analyses
that cis-meQTL variants can be used as instrumental variables
(IVs) to identify causal epigenetic mechanisms contributing to
CVD and its metabolic risk factors (Fig. 5a). To derive IVs, we
identified 159 thousand independent cis-meQTL SNPs pruned by
LD r2 < 0.01. By overlapping independent cis-meQTL SNPs with
results from GWAS of CVD and its risk factors21–25, we identified
14,910 CpGs, each of which has at least three independent cis-
meQTL SNPs that were suitable instruments for MR to test for
causal effects of DNAm on coronary heart disease (CHD)21,
myocardial infarction (MI)21, type-II diabetes (T2D)22, systolic
(SBP) and diastolic blood pressure (DBP)25, and 9921 CpGs
suitable to test causality of DNAm on lipids traits including high-
density lipoprotein (HDL) cholesterol, low-density lipoprotein
(LDL) cholesterol, total cholesterol (TC), triglycerides (TG)24,
and body mass index (BMI)23.

CpGs located within 2Mb and highly correlated with each
other (r2 ≥ 0.5) shared nearly 100% of their cis-meQTLs and were
considered likely to affect the outcome trait through the same
biological mechanism. We, therefore, pruned these CpGs and
reported results for the CpG with the lowest P-value in MR
testing as the index or putative causal CpG for a given window. In
contrast, CpGs located close to each other (< 2Mb) but with
moderate correlations (0 < r2 < 0.5) might be more likely to
contribute through different regulatory mechanisms and were
considered as independent epigenetic sites, even though they
shared a partial set of cis-meQTL variants. We used multivariable
MR methods to simultaneously estimate the independent causal
effect of such CpGs on the outcome.

After correction for multiple testing (P < 0.05/14,910 or 0.05/
9921), MR analysis identified 92 putatively causal CpGs for CVD

and its risk factors, including 12 putatively causal CpGs for CHD
and MI, four for BMI, 33 for lipids traits, 37 for BP, and eight for
T2D. Table 1 shows CHD and MI results and Supplementary
Data 3 shows the full list (Supplementary Table 4 shows the
multivariable MR results). Among the 12 putatively casual CpGs
for CHD and MI, we found five CpGs that were positively
associated with CHD/MI risk (e.g., cg24267699 in ABO, OR=
2.89, PMR= 1.34E−6), and seven CpGs inversely associated with
CHD/MI risk (e.g., cg09803321 in NT5C2, OR= 0.28, PMR=

3.75E−15). Figure 5b lists 30 CpGs that were causal for more
than two CVD phenotypes. A striking example is cg16306978
(APOB), which tested causal (positive direction of effect) for
CHD (OR= 2.46, PMR= 2.1E−9), LDL (β= 1.08, PMR= 2.9E
−24), TC (β= 0.98, PMR= 3.3E−22), and TG (β= 0.31, PMR=

2.6E−6). Another example was cg00908766 (CESLR2), which
tested causal (positive direction of effect) for CHD (OR= 2.18,
PMR= 4.3E−8) and MI (OR= 2.01, PMR= 2.3E−6) and inver-
sely causal for HDL (β=−0.29, PMR= 2.0E−13).

There were 2951 cis-meQTL SNPs that also were reported to be
cis-eQTL variants in GTEx for multiple tissues26 (fold enrich-
ment= 1.2, P < 1E−16, hypergeometry test). Pathways analysis
by FUMA (Functional mapping and annotation of GWAS)27

revealed that the cis-meQTLs for the 92 putatively causal CpGs
for CVD traits were over-represented with genes involved in
sterol metabolic process, regulation of lipoprotein lipase activity,
and glycine, serine, and threonine metabolism (Supplementary
Data 4).

Identify mRNAs involved in the causal pathways for CVD. We
performed comprehensive association analyses of 415 thousand
CpGs with expression of ~18,000 mRNAs measured in 3,684
individuals (Chen Y. et al Unpublished) and found that cis
associated CpG-mRNA pairs were replicable in independent
external studies, whereas the trans pairs were not. Therefore, in
this study, we only focused on mRNAs that were associated in cis
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with the 92 CpGs that tested positive in MR analyses. Among the
92 CpGs, 26 were associated in cis with 29 mRNAs in 3,684
individuals, including 35 CpG-mRNA pairs. Colocalization ana-
lysis revealed eight cis-associated CpG-mRNA pairs (including
eight CpGs and eight mRNAs) for which DNAm and gene
expression changes were driven by the same causal genetic var-
iant, i.e., the causal cis-meQTL variant was also the causal cis-
eQTL variant with a probability of >80%.

For these eight mRNAs, we used cis-eQTL SNPs as IVs in MR
analysis to test if the expression changes are causal for CVD traits.
At P < 0.05/8, we identified five genes whose expression was
causal for CVD traits in whole blood using FHS-eQTL variants16

(Supplementary Data 5), and five genes reflecting multiple tissues
using GTEx eQTL variants26 (Supplementary Table 5). Our
results show for example that cg12555086, located in the
LIPA gene body region, is associated in cis with expression of
LIPA (β=−4.4, and P= 1E−277). A cis-meQTL variant
associated with cg12555086 colocalized with a cis-eQTL variant
associated with LIPA expression at a probability >0.99. LIPA
expression tested causal for both CHD (OR= 0.42, and PMR=

1.4E−11) and MI (OR= 0.36, and PMR= 6.1E−12) in whole
blood (Fig. 6a, b and Supplementary Fig 7a, b). The expression
levels of LIPA were also tested casual for CHD and MI in many
other tissues including adrenal gland, aorta, and liver. Another
example is cg06882058 located in the gene body region of
SDCCAG8; it is associated in cis with expression of SDCCAG8
(β= 1.72, and P= 1E−22). A cis-meQTL variant associated with
cg06882058 colocalized with a cis-eQTL variant associated with
expression of SDCCAG8 (colocalization probability > 0.99).
SDCCAG8 expression tested causal for both SBP (β= 13.46,
and PMR= 7.2E−8,) and DBP (β= 10.40, and PMR= 1.6E−7) in
whole blood (Fig. 6c, d and Supplementary Fig 7c, d). The
expression levels of SDCCAG8 also tested casual for SBP and DBP
in many other tissues including tibial artery, heart atrial
appendage, aorta, and brain. These results highlight many
putatively causal pathways for CVD traits involving both DNAm
and gene expression changes. Further experimental validation is
needed to definitively prove causality.

trans-meQTLs target local gene expression. The molecular
mechanism underlying trans-meQTLs is unknown. In a previous
study, Shi et al reported a SNP (rs12933229) that was associated
with five CpGs residing on different chromosomes12. In another
study, Bonder et al explored trans-meQTL variants among 6111
GWAS Catalog SNPs and proposed that some genetic variants
that affect the activity of a transcription factor in cis were asso-
ciated in trans with DNAm changes at its binding sites11. In the

present study, we identified 630 thousand trans-meQTL variants
(6 million SNP-CpG pairs) genome-wide (Supplementary Fig 8)
and demonstrated that trans-meQTLs are replicable in indepen-
dent external studies.

Among the 630 thousand trans-meQTL variants that we report,
547 thousand (89%) also were cis-meQTL variants, and 178
thousand (28%) were cis-eQTL variants (enrichment test at P < 1E
−16, hypergeometry test). The multiple roles of meQTLs lead us
to hypothesize that SNPs with trans-acting effects on remote CpGs
may do so via effects on nearby genes. We detected 22 trans-
meQTL hotspots (denoted as H1 to H22), defined on the basis of
an index SNP associated with at least 30 trans-meCpGs
(Supplementary Data 6 and Fig. 7a). The 22 trans-meQTL
hotspots targeted a total of 1701 trans-meCpGs. A total of 28%
(875/3077) of the trans-meQTL hotspots variants were also cis-
eQTLs associated with expression levels of 74 nearby genes (cis-
eGenes). There were 146 cis-eGene-trans-meCpG associated pairs
(at multiple testing corrected P < 0.05, including 19 cis-eGenes
linked to 130 trans-meCpGs) in 3684 FHS participants. A
hypergeometric test suggested that among all CpGs (n= 901)
associated with cis-eGenes, there was enrichment for trans-
meCpGs (n= 130, P < 1E−16, hypergeometry test). Gene ontol-
ogy enrichment analysis showed that the 74 eGenes were enriched
for transcription regulatory genes (24 genes, H2: TCF7L1; H13:
ZNF200, ZNF75A; H14: INO80E; H19: ZNF177, ZNF266, ZNF561;
H20: ZNF333; H21; ZNF100, ZNF208, ZNF429, ZNF492, ZNF493,
ZNF738; H22: HKR1, ZFP30, ZNF260, ZNF540, ZNF566, ZNF573,
ZNF585B, ZNF607, ZNF781, ZEN793) and DNA binding genes
(22 genes, H3: SP140L; H13: ZNF75A; H17: E2F4; H19: ZNF177,
ZNF266; H20: ZNF333; H21; ZNF208, ZNF429, ZNF493; ZNF738;
H22: HKR1, ZNF260, ZNF781, ZNF607, ZNF540, ZNF566,
ZNF573; Supplementary Table 6). One possible explanation for
this observation is that the trans-meQTL SNPs may affect
transcription regulatory genes in cis, and these transcription
regulatory genes interact with trans-meCpGs to regulate their
target genes (Fig. 7b). Further functional experiments are needed
to prove this hypothesis.

Discussion
Using a large single-site community-based cohort, we identified
over 4.7 million cis- and 630 thousand trans-meQTL variants,
roughly 3.5 times (cis-) and 10 times (trans-) more than
the previous studies10,11,13. Independent external replication
revealed that a large proportion of cis- and trans-meQTLs
are replicable and the majority of our meQTL-CpG
pairs showed directional concordance in independent
external cohorts of participants of EA (99%) and AA (81%)

Table 1 Mendelian randomization results of coronary heart disease and myocardial infarction

CpG Phenotype Chr Gene Number of
independent cis-
meQTLs

IVW MR
test OR

IVW MR
test 95% CI

IVW MR
test P-
value

IVW MR test
Bonferroni-corrected
P-value

Heterogeneity
test P-value

Pleiotropy
test P-value

cg09803321 CHD /MI 10 NT5C2 3 0.28 0.20–0.38 3.75E−15 5.59E−11 0.98 0.83
cg12555086 CHD /MI 10 LIPA 4 0.42 0.32–0.54 1.41E−11 2.10E−07 0.62 0.37
cg18534077 CHD 10 AS3MT 8 0.14 0.08–0.26 6.02E−11 8.98E−07 0.26 0.50
cg02493740 CHD 2 VAMP5 7 0.33 0.23–0.48 1.91E−09 2.85E−05 0.53 0.81
cg16306978 CHD 2 APOB 3 2.46 1.83–3.30 2.09E−09 3.12E−05 0.73 0.48
cg00908766 CHD /MI 1 CELSR2 5 2.18 1.66–2.87 4.34E−08 6.47E−04 0.12 0.55
cg00540400 CHD /MI 15 3 3.00 2.03–4.45 5.99E−08 8.93E−04 0.38 0.57
cg16513277 CHD /MI 17 SMG6 3 0.06 0.02–0.17 1.99E−07 2.97E−03 0.62 0.43
cg21433558 CHD 17 CNTNAP1 5 2.69 1.82–3.98 6.73E−07 1.00E−02 0.70 0.36
cg14037218 CHD 1 ADAMTSL4 3 0.14 0.07–0.31 1.20E−06 1.79E−02 0.81 0.53
cg24267699 CHD 9 ABO 4 2.89 1.88–4.44 1.34E−06 2.00E−02 0.61 0.47
cg21692620 MI 17 CNTNAP1 4 0.26 0.15–0.45 1.41E−06 2.10E−02 0.57 0.57

For CpGs that tested causal for both MI and CHD, only the MR results for CHD are shown in this table. The full MR results are shown in Supplementary Data 3

Bonferroni-corrected P-value is corrected for the number of CpGs having ≥3 independent cis-meQTLs (N= 14,910)

Independent cis-meQTLs were defined using LD r2 < 0.01
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ancestry. The comprehensive meQTL resources provided by
our study reveal a new richness of detail regarding
genetic effects on DNAm patterns and the potential causal
relation of epigenetic influences on various disease phenotypes.
In this way, we help bridge a GWAS gap regarding disease-
associated SNPs.

Our study is a well-powered multi-generational study. Thus,
we were able to report accurate heritability estimates of DNAm
in peripheral blood. We found that the average h2CpG of all
415 thousand CpGs is 0.09, which is comparable to the values
reported in a twins study (0.18–0.19)28 and two family-based
studies (0.13–0.14)29,30. Mapping of meQTLs suggested that
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CpGs with higher h2CpG were more likely to have cis- and trans-
meQTL SNPs. The proportion of interindividual variation in
methylation of CpGs explained by cis- and trans-meQTL SNPs
increased proportionally with h2CpG.

The meQTLs identified in the FHS show excellent replicability
in independent studies. As shown in Fig. 2, meQTLs from
the FHS show 99% concordance in the ARIC EA cohort and 81%
in the GTP AA cohort. Because the sample sizes in ARIC (n=
963) and GTP (n= 384) were much smaller than in the FHS
(n= 4170), the trend for T values of meQTLs was skewed and
reflects the obvious benefits of using a large cohort in terms of
greater statistical power to identify novel meQTLs. It is also the
primary reason that our study identified many more cis- and
trans-meQTLs than previous studies. Our study replicated the
majority of meQTL SNP-CpG pairs identified in prior stu-
dies10,11,13 (Supplementary Fig 5, 87% of cis- reported by Bonder
et al.11, 91% of cis- and 89% trans-pairs reported by Gaunt
et al.13, and 81% of trans-pairs reported by Lemire et al.10). Our
study only replicated 36% of reported peak cis-meQTLs from
Lemire et al. This low value might be because the peak cis-
meQTLs in Lemire et al may not be as robust as others that could
be largely replicated in our study. We acknowledge this as a
limitation of our study that genotypes were from 1000 Genomes
imputation data. Whole-genome sequencing methods for deter-
mining true genotypes rather than imputation will offer higher
resolution and reduce the imputation uncertainty. Our study only
replicated 10% of trans-meQTLs from Bonder et al, perhaps
because they only focused on trans-meQTLs for GWAS Catalog
SNPs and used a much lower P-value threshold (P < 2.6E−7) in
their study versus P < 1.5E−14 in our study. The failure to
replicate the remaining 10–20% cis- and trans-meQTLs identified
in those previous studies might be due to different cohorts,
genotype imputation accuracy, different statistical significance
thresholds for meQTLs, or hidden confounding in the methyla-
tion data. Another limitation in our study is the limited coverage
of the Illumina HumanMethylation450 platform, which may
result in many missed meQTLs for CpGs that were not measured.

To demonstrate the utility of our meQTL resource, we
explored several key CVD-related traits and performed MR to
identify examples of CpGs that are putatively causal for CVD,
which remains the leading cause of death worldwide31. Recently,
several EWAS have reported CpGs associated with CVD risk
factors8,32–34, but the reported associations might not reflect
causal effects owing to the inability to exclude possible alternative
mechanisms, such as downstream effects of disease on methyla-
tion, or unexplained confounding factors. In fact, the vast
majority of trait-associated CpGs from EWAS are more likely to
reflect effects of the trait on DNA methylation rather than causal
effects of methylation on disease8,9,35. A large database of meQTL
variants enabled us to conduct systematic MR analyses using cis-
meQTL variants as IVs to identify causal effects of DNAm on
CVD traits. A similar recent study by Richardson et al36 reported
MR analysis using single cis-meQTL variants as IVs by focusing
on 10 CpGs pre-selected based on EWAS and GWAS. Richardson
et al acknowledged that the single IV MR method cannot separate
causality from horizontal pleiotropy where genetic variants affect
the exposure and outcome simultaneously36. In our study,
because of the large number of meQTLs discovered, we were able
to explore the direction of causality for more than 14 thousand
candidate CpGs on CVD risk factors using multiple independent
cis-meQTL variants (≥3) as IVs. In comparison with single-IV
MR methods, the multiple-variant IV method increased the
proportion of the variance in CVD traits explained versus a single
variant and reduced the bias of horizontal pleiotropy that can
affect single cis-meQTL MR analysis. Therefore, our approach has
greater power to identify causal CpGs. Among all CpGs that

tested causal for CVD traits, 24% have cis-meQTL variants that
also are genome-wide significant (P < 5E−8) in GWAS of CVD
traits (Table 1 and Supplementary Data 7). cis-meQTLs for the
other causal CpGs were moderately associated with CVD and its
risk factors in GWAS.

Some of the causal CpGs identified in this study reside in
known CVD-related genes. For example, we identified
cg12555086 for LIPA as being causal for CHD and MI. LIPA
encodes lipase A, which is also known as cholesterol ester
hydrolase. This enzyme functions in the lysosome to catalyze the
hydrolysis of cholesteryl esters and triglycerides. Loss-of-function
mutations in LIPA result in accelerated atherosclerosis37. Another
example is six CpGs at the ABO locus that we found to be casual
for CHD, MI, and total cholesterol levels (Supplementary Data 3).
The ABO locus has been reported to be associated with CVD
traits in previous studies21,38. ABO blood type has previously
been linked to CVD risk in the FHS39. These published studies
support our findings. In addition, our study provides evidence
that changing expression levels for these genes may contribute to
CVD risk. Some CpGs that tested positive by MR have not pre-
viously been reported to play a causal role in CVD. For example,
we identified cg06882058 in SDCCAG8 as causal for both SBP
and DBP. CpG cg06882058 is associated in cis with expression of
SDCCAG8, which we found to be causal for both SBP and DBP
(Supplementary Data 5 and Supplementary Table 5). Previous
studies found that SDCCAG8 causes nephronophthisis type 10,
characterized by retinal and renal degeneration, mild intellectual
disability, obesity, hypogonadism, and recurrent respiratory
infections in humans40,41. Sdccag8 knockout mice develop late-
onset nephronophthisis and severely increased BP42. This evi-
dence leads us to hypothesize that dysregulation of cg06882058
may affect expression of SDCCAG8 and thereby cause hyper-
tension and contribute to CVD risk. Further experimental vali-
dation is necessary to prove this hypothesis.

There is considerable merit for using meQTLs along with other
molecular QTLs, such as eQTLs to reveal much broader and more
complex gene networks underlying genetic variant-disease asso-
ciations. We show in the colocalization analysis that CpGs and
their cis-associated gene expression are driven by the same causal
variants. This suggests the presence of “vertical causal pathways”
linking genetic variants, DNAm, and gene expression to human
diseases.

Previous studies have revealed that DNAm patterns are highly
tissue specific43. An important limitation of our study is that we
may not detect many causal CpGs for CVD in whole blood-
derived DNA when their contributions to disease is due to altered
methylation in other tissues that are relevant to CVD. By over-
lapping meQTL SNPs with Epigenome Roadmap Project data
(Fig. 4 and Supplementary Fig 6), our results show that the cis-
and trans-meQTLs are enriched in transcription active regions
and depleted in heterochromatin and quiescent regions in mul-
tiple tissues. It seems plausible that the putatively causal pathways
derived by CpGs identified from whole blood are shared across
tissues. MR testing utilizing GTEx eQTL variants26 further con-
firms that many mRNAs lying on the CpG-derived pathways for
CVD in whole blood were also causal for CVD traits in multiple
tissues, including heart, liver, adipose, and others (Supplementary
Data 5 and Supplementary Table 5).

Our study did not find causal CpGs among the top reported
results of recently published EWAS of BP34, lipids33, and BMI8,32.
As discussed above, CpGs reported by EWAS are more likely to
reflect downstream effects of the trait on DNAm rather than
causal effects of DNAm on disease8,9,35. Published EWAS may
also have limited power to observe associations of causal CpGs
with traits, perhaps because causal effects of CpGs on disease are
smaller than the effects of disease on methylation of CpGs. One of
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the most promising results of our study is for cg16306978 in
APOB, an LDL particle ligand, which tested causal for CHD, LDL,
TC, and TG (Supplementary Data 3). APOB protein has been
linked to long-term CVD risk18. We found 12 of the 92 causal
CpGs to be associated with smoking6, and six CpGs were asso-
ciated with alcohol consumption7 (at P < 0.05/92; Supplementary
Table 7). Our results may bridge a knowledge gap by explaining
how environmental influences can alter epigenetic patterns that
in turn affect diseases.

Our trans-meQTL results revealed an abundance of trans-
meQTL hotspots and illustrated their putative activity on prox-
imal nuclear binding genes and transcriptional regulatory genes.
Our results are consistent with findings reported by Bonder
et al.11 and by Lemire et al.10. However, the trans-meQTLs
reported by Bonder et al were limited to trans-meQTL variants
that also are GWAS Catalog SNPs11. Lemire’s study identified
fewer than 2000 trans-meQTL SNP-CpG pairs due to a smaller
sample size36. In contrast, we systematically mapped 22 trans-
meQTLs hotspots that targeted more than 30 CpGs on different
chromosomes. We replicated Shi et al.’s trans-meQTL hotspot
finding (H14 in our results)12. Another promising example in our
study, H17 (with a peak SNP rs7203742 located in an intron of
CTCF on chromosome 16, Fig. 7a) is cis-acting on 17 genes,
including several transcription regulatory genes, E2F4, NUTF2,
and NFATC3, targeting 343 CpGs across the genome. rs7203742
was also identified by Lemire et al. as a trans-meQTL targeting 14
CpGs10. We speculate that these transcriptional regulatory genes
may either coincide with their trans-associated CpGs to regulate
downstream gene expression or involve direct regulation of
DNAm of trans-associated CpGs. Further functional experiments
are needed to explore molecular mechanisms underlying such
trans phenomena. In our previous study, we identified 13 trans-
eQTL hotspots that affected hundreds of genes44. Our previously
reported trans-eQTLs hotspots did not overlap with the trans-
meQTL hotspots identified in the present study, and the cis-
eGenes affected by trans-eQTL hotspots did not show enrichment
of transcriptional regulatory genes. Instead, the trans-eQTL hot-
spots were enriched for platelet SNPs and platelet eQTL variants.
This finding indicates that trans-eQTLs are highly tissue specific,
in contrast to the trans-meQTLs, which reflect remote control by
transcriptional regulatory genes.

Methods
Study populations. The discovery study used 4170 EA participants from the FHS,
a community-based study of cardiovascular disease and its risk factors45. In 1971,
the Offspring Generation cohort was recruited, consisting of the immediate des-
cendants (and their spouses) of the Generation 1 cohort46. From 2002 to 2005, the
Third Generation cohort was recruited, consisting of immediate descendants of the
Offspring Generation cohort participants47. In this study, eligible participants
included participants from the Offspring Generation cohort who attended their
eighth examination cycle (Exam 8, 2005–2008, N= 2648), and Third Generation
cohort participants who attended their second examination cycle (Exam 2,
2008–2011, N= 1522). This study was approved under Boston University Medical
Center protocol H-27984. Written informed consent was obtained from each
participant.

DNA methylation profiling and data normalization. DNA samples were
extracted from whole blood buffy coat samples using the Gentra Puregene DNA
extraction kit (Qiagen, Venlo, Netherland) and subsequently underwent bisulfite
conversion using the EZ DNA methylation kit (Zymo Research, Irvine, CA).
Samples underwent whole-genome amplification, fragmentation, array hybridiza-
tion, and single-base pair extension. DNA methylation levels were measured using
the Illumina Infinium Human Methylation450 BeadChip (450 K). FHS offspring
cohort samples were run in two laboratory batches at the Johns Hopkins Center for
Inherited Disease Research (lab batch #1) and University of Minnesota Biomedical
Genomics Center (lab batch #2). DNA methylation arrays of the FHS Third
Generation cohort samples (lab batch #3) were run by Illumina (San Diego,
CA, USA).

For each lab batch, DNAm β were normalized using the DASEN methodology
implemented in the wateRmelon R package, and the output β values for each CpG

were used in downstream analysis48. For sample quality control, we excluded (1)
samples with missing methylation values (detection P > 0.01) at > 1% CpGs, (2)
samples with poor matching between the 65 single nucleotide polymorphisms
(SNPs) on the Illumina 450 K array and the GWAS array, and 3) samples
containing outliers at the multi-dimensional scaling plot. A total of 4170 samples
passed final QC, including 2648 Offspring Generation cohort samples and 1522
Third Generation cohort samples. For QC at the probe level, we excluded probes
with missing methylation values (detection P > 0.01) at >20% samples, probes
previously identified to map to multiple locations49 on sex chromosomes, and
probes with an underlying SNP (minor allele frequency [MAF] > 5% in EA 1000
Genomes Project data) at the CpG site or within 10 bp of the single-base
extension50. A total of 415,318 CpGs were retained for further analysis.

Genotyping and genotype imputation. Genotyping was performed using the
Affymetrix 500 K mapping array and the Affymetrix 50K gene-focused MIP array.
Quality control was conducted as described previously51. Genotypes were imputed
from the 1000 Genomes Project panel phase 2 consisting of approximately 36.3
million SNPs using MACH / Minimac software52. SNPs with MAF > 0.01 and
imputation quality ratio >0.3 were retained, resulting in approximately 8.5 million
SNPs that were used for further meQTL mapping.

meQTL mapping. Because of the computational burden of running linear mixed
effects (LME) models for 8.5 million SNPs × 415K CpGs, we adapted a two-step
analysis strategy. Step one consisted of pre-adjusting the normalized DNAm β
values for age, sex, top 50 methylation principle components (PC), predicted blood
cell fraction53, and pedigree by LME implemented in the R package Pedegreemm54,
from which the resulting residuals were retained. Then, linear regression was
implemented using a Java script to test the associations between DNAm residuals
and the imputed SNP dosage. The top 50 methylation PCs were chosen to max-
imize the internal replication rate across discovery-validation split samples
(50–50%) in FHS. SNP-DNAm pairs residing within 1 Mb (cis) and those residing
more than 1Mb apart (trans) were identified separately. We used liberal P-value
thresholds to pre-filter the meQTLs at P < 1E−6 for cis and P < 1E−10 for trans.
Step two consisted of using the LME model implemented in the lmekin() function
from the kinship2 R package55 to re-calculate the associations between SNPs and
DNAm for the pre-selected SNP-DNAm pairs by modeling the SNP as the inde-
pendent variable, DNAm as the outcome, and adjusting for the same covariates as
in step 1 as well as familial relatedness. The coefficients of co-ancestry were 0.5
between parent and offspring, 0.5 between siblings, and 0 between all other indi-
viduals. Bonferroni correction was used to maintain an experiment-wide type I
error rate of 0.05 for 2.5 × 109 cis SNP-DNAm pairs and (415 K CpGs × 8.5 M
SNPs – 2.5 × 109 cis-pairs) trans pairs, respectively, based on the CpGs and SNPs
from the February 2009 assembly of the human genome (hg19, GRCh37 Genome
Reference Consortium Human Reference 37). The corresponding significance
thresholds are P < 2E−11 [0.05/(2.5 × 109)] for cis- and P < 1.5E−14 [0.05/3.5 ×
1012] for trans-meQTLs.

The estimates of h2cis�meQTLs (i.e. the proportion of the total variance in a CpG
explained by all of its cis-meQTL variants) and h2trans�meQTLs (i.e. the proportion of
the total variance in a CpG explained by all of its trans-meQTL variants) were
calculated using 779 independent individuals by selecting one individual from each
family in the FHS. To reduce the computational burden, we only used cis- and
trans-meQTL SNPs that were genotyped. h2cis�meQTLs and h2trans�meQTLs were
calculated using the GREML function in the GCTA package56, adjusting for age,
sex, top 50 methylation PCs and predicted blood cell fraction.

Determination of the genomic control factor. The genomic control factor (λ) was
defined previously57. In our study, due to extensive storage requirements (i.e.,
storage of at least half of the raw results) to compute λ, we computed λ based on
associations of 415 K CpGs with a random subsample of 100,000 SNPs selected
from the 1000 Genomes Project panel with MAF > 0.01 and imputation quality
ratio >0.3 and also within the HapMap2 SNP set.

mRNA expression data. Whole blood samples (2.5 ml) were collected in PAX-
gene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland). mRNA expression was
profiled using the Affymetrix Human Exon 1.0 ST GeneChip platform. Raw gene
expression data were first normalized using the RMA (robust multi-array average)
from Affymetrix Power Tools (APT, thermofisher.com/us/en/home/life-science/
microarray-analysis/affymetrix.html#1_2) with quantile normalization. Then out-
put expression values of 17,318 genes were extracted by APT based on NetAffx
annotation version 3158. The gene expression values were adjusted for a set of
technical covariates, e.g. chip batch, by fitting LME models as described pre-
viously59. mRNA expression data were available for 5626 individuals from the FHS
Offspring cohort (Exam 8, N= 2446) and Third Generation cohort (Exam 2, N=
3180).

Estimating the heritability of DNAm. The narrow-sense heritability, estimated
for the methylation level of individual CpGs (denoted as h2CpG), was the proportion
of total phenotypic genetic variance (σ2CpG) due to the additive polygenic genetic
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variance (σ2A): h
2
CpG ¼ σ

2
A=σ

2
CpG . σ

2
CpG = σ

2
A þ σ

2
h þ σ

2
e , where σ

2
h is the household

variance and σ
2
e is the environmental variance. LME regression models (using the

lmekin() function of the kinship2 R Package55) were used to estimate h2CpG by
modeling methylation values from the familial relatedness matrix with age, sex, top
50 methylation PCs, cell type fractions, and a household matrix as covariates. The
coefficients of co-ancestry in the familial relatedness matrix are 0.5 between parent
and offspring, 0.5 between siblings, and 0 between all other individuals. The
household effect defined as the proportion of variances in a CpG was attributed to
the individuals sharing household. The coefficient of shared household is 1 between
individuals in the same family, and 0 between all other individuals.

MR tests for the relations of DNAm and CVD. Two-sample Mendelian rando-
mization (MR) was used to identify putatively causal CpGs for CVD and its risk
factors using a multi-step strategy. Estimated associations and effect sizes between
SNPs and traits were based on the latest published meta-analysis GWAS of coronary
heart disease (CHD)21; myocardial infarction (MI)21; type-II diabetes (T2D)22; body
mass index (BMI)23; lipids traits including high-density lipoprotein (HDL) choles-
terol, low-density lipoprotein (LDL) cholesterol, total cholesterol (TC), and trigly-
cerides (TG)24; systolic blood pressure (SBP); and diastolic blood pressure (DBP)25.
Instrumental variables (IVs) for each CpG site were composed of independent cis-
meQTLs pruned at LD r2 < 0.01, retaining only the cis-meQTL variant with the
lowest SNP-CpG P-value in each LD block. The LD proxies were defined using 1000
genomes European samples60. Inverse variance weighted (IVW) MR tests were
performed on CpGs with at least three independent cis-meQTL variants, which is the
minimum number of IVs needed to perform multi-instrument MR. For CHD, MI,
SBP, DBP, and T2D GWAS results based on 1000 Genome Project reference panels,
MR tests were performed on 14,910 CpGs. For lipid traits and BMI, with GWAS
results based on the Metabochip genotyping platform, MR tests were performed on
9,921 CpGs, with at least 3 independent cis-meQTLs on the Metabochip. A large
proportion of meQTLs were not measured on the Metabochip genotyping platform,
which limits MR analyses for BMI and lipid traits. When the manuscript was under
preparation, a new GWAS for CHD was published that was not incorporated in the
MR analysis61.

To test the validity of IVW-MR results, we performed heterogeneity and MR-
EGGER pleiotropy tests for all IVs62. We used a step-wise strategy to select valid
IVs for MR. If either Pheter or Ppleio were less than 0.05, we excluded the top outlier
IV. IVW-MR, heterogeneity, and pleiotropy tests were repeated using the
remaining IVs. Finally, significant causal CpGs for a trait were required to meet the
following restrictions: (1) have at least 3 independent SNPs, (2) Bonferroni-
corrected PMR < 0.05, corrected for 14,910 for CHD, MI, SBP, DBP, and T2D, or
Bonferroni-corrected PMR < 0.05, corrected for 9,921 for lipids traits and BMI, and
3) both Pheter and Ppleio > 0.05.

Because the cis-meQTLs were identified using a 2Mb window, it is possible that
CpGs located within 2Mb shared cis-meQTLs (IVs). CpGs located in close
proximity may be highly correlated and involved in the similar biological pathways.
The remaining CpGs, although partially influenced by same set of genetic variants,
exhibited only moderate correlation (r2 < 0.5), and should be considered as
independent epigenetic loci, raising the question of “horizontal pleiotropy IVs” for
traditional MR analysis. To overcome this problem, we further applied
multivariable MR methods63 to moderately correlated CpGs located within 2 Mb of
each other, and tested against the same outcome to simultaneously estimate the
causal effect of each CpG on the outcome. The multivariable MR method is
analogous to the simultaneous assessment of several treatments in a factorial
randomized trial, and was successfully applied to simultaneously estimate causal
effects of different lipid fractions on CVD63. MR analyses were conducted using the
MRbase package in R64.

Identification of associations of gene expression and DNAm. Association tests
of DNAm and gene expression were performed in 3684 FHS participants with
available DNAm and mRNA data. DNAm β values were adjusted for age, sex,
predicted blood cell fraction, top 2 PCs of DNAm, and 25 surrogate variables
(SVs), with DNAm as fixed effects, and batch as random effects by fitting LME
models. Residuals (DNAm_resid) were retained. The gene expression values
(RMA, see “mRNA expression data” section) were adjusted for age, sex, predicted
blood cell fraction, a set of technical covariates59, the two top PCs and 25 SVs, with
gene expression as fixed effects, and batch as random effects by LME, and residuals
(mRNA_resid) were retained. Then, linear regression models were used to assess
pair-wise associations between DNAm_resid and mRNA_resid. SVs were calcu-
lated using the SVA package in R65. The significant threshold is Bonferroni-
corrected P < 0.05 (0.05/[415 K CpGs x 18 K mRNAs]= 6.2 × 10–12). A cis-CpG-
mRNA pair was defined as a CpG residing ± 1Mb of the TSS of the corresponding
gene encoding the mRNA (cis-eQTM). The annotations of CpGs and transcripts
were obtained from annotation files of the HumanMethylation450K BeadChip and
the Affymetrix exon array S1.0 platforms.

Colocalization analysis. Colocalization analysis was performed on cis-CpG-
mRNA pairs (see Identification of associations of gene expression and DNAm) for
the 92 putatively causal CpGs for CVD traits identified by MR (see Mendelian
randomization test for relationships of CpGs and CVD phenotypes). Colocalization

tests were performed on each cis-CpG-mRNA pair using corresponding cis-meQTL
and cis-eQTL variants. A Bayesian colocalization method implemented in the coloc
R package was used to test the probability of one distinct variant being causal for
both the CpG and gene expression66, by assigning each cis-SNP-CpG-mRNA pair
to one of the five hypothesis. H0: there exist no causal variants for either the CpG
or the mRNA; H1: there exists a causal variant for the CpG only; H2: there exists a
causal variant for the mRNA only; H3: there exist two distinct causal variants, one
for the CpG and one for the mRNA; or H4: there exists a single causal variant for
both the CpG and the mRNA. The result of this procedure is five posterior
probabilities (PP0, PP1, PP2, PP3 and PP4) for each hypothesis. In this study, the
association results between SNPs and DNAm (at P < 1E−6), and between SNPs
and gene expression (at P < 1E−4) within a 2 Mb region were used as input. Prior
probabilities were set as suggested by previous studies18,67 –the probability of a
SNP being associated with trait 1 only (p1) was 2E−11, the probability of a SNP
being associated with trait 2 only (p2) was 1E−7, the probability of a SNP being
associated with both traits (p12) was p1 multiplied by 10%. The p12= p1 × 10%
indicates the probability of a causal SNP for DNAm also being the causal SNP for
gene expression at 10%. Those parameters revealed almost the same results when
p1 and p2 are both set to 1E−4, and p12 is set to 1E−5. A SNP was considered to
be colocalized for CpG and mRNA if the posterior probability (PP4) was greater
than or equal to 80%.

MR tests for the relations of gene expression to CVD. To evaluate if gene
expression is causal for CVD phenotypes in whole blood, independent cis-eQTLs
(pruned by LD r2 < 0.01, n ≥ 3) form FHS eQTL resource16 were used as IVs and
IVW-MR was performed to test if changes in gene expression levels were causal for
CVD phenotypes. To carefully select IVs unconfounded by heterogeneity and
pleiotropy, we used the same strategy as described in the Mendelian randomization
test for the relationships between CpG and CVD phenotypes section.

In order to test if gene expression in other tissues is causal for CVD phenotypes,
we used cis-eQTL variants identified from 44 tissues by GTEx26 as IVs. IVW-MR
tests were used in relation to gene expression when more than three independent
cis-eQTL variants (LD r2 < 0.01) were available. If there were fewer than three
independent cis-eQTL variants for gene expression available, we used the top cis-
eQTL variant as an IV for MR testing. The statistical significance threshold was
PMR < 0.05/8.

Functional annotation of CpGs and meQTLs. Mapping and annotation of CpGs
on the HumanMethylation450K BeadChip has been described previously49.
Genomic features of CpGs were annotated, including CpGs located in CpG Islands,
low or high CpG regions, promoter, enhancer, gene body, 3 prime untranslated
region (3’UTR), 5’UTR, 0–200 bases upstream of transcription start sites (TSS200),
and TSS1500. Hypergeometric tests were used to evaluate if the identified cis- and
trans-meQTL CpGs showed enrichment for CpGs annotated with those genomic
features. The significance threshold was defined by a fold change of >1.2 or <0.8
and a Bonferroni-corrected P < 0.05/10.

Epigenome Roadmap Project data15 were used to determine whether the
detected cis- and trans-meQTL SNPs were enriched for functional regions in the
genome. We used data from primary cell lines of peripheral blood, including E029
monocytes, E032 B-cells, E034 T-cells, E037 T-helper memory cells, E038 T-helper
naive cells, E039 T-helper naive cells, E040 T-helper memory cells, E043 T-helper
cells, E044 T-regulatory cells, E045 primary T-cells effector/memory enriched,
E046 natural killer cells, E047 T-CD8+ naive cells, E048 T-CD8+ memory cells,
and E062 mononuclear cells, and from other CVD relevant tissues including E063
adipose nuclei, E065 aorta, E066 liver, E067 brain angular gyrus, E068 brain
anterior caudate, E069 brain cingulate gyrus, E071 brain hippocampus middle,
E072 brain inferior temporal lobe,E073 brain dorsolateral prefrontal cortex, E074
brain substantia nigra, E087 pancreatic islets, E095 left ventricle, E096 lung, E098
pancreas, E100 psoas muscle, E104 right atrium, E105 right ventricle, and
E108 skeletal muscle. Eighteen chromatin states included active transcription start
site (TssA), flanking transcription start site (TssFlnk), upstream flanking
transcription start site (TssFlnkU), downstream flanking transcription start site
(TssFlnkD), strong transcription (Tx), weak transcription (TxWk), genic enhancer
(EnhG1 and EnhG2), active enhancer (EnhA1 and EnhA2), weak enhancer
(EnhWk), zinc finger genes and repeats (ZNF_Rpts), heterochromatin (Het),
bivalent/poised transcription start site (TssBiv), bivalent enhancer (EnhBiv),
repressed polycomb (RepPC), weak repressed polycomb (RepPCWk), and
quiescent (Quies).

To test whether the detected cis- and trans-meQTLs SNPs were enriched for
SNPs residing in genomic regions annotated with chromatin states (“chromatin
states SNPs”), we used a permutation-based strategy by randomly selecting equal
numbers of MAF-matched SNPs 1000 times. Fold change was calculated as the
ratio of the overlap between the tested-SNPs (i.e., cis- or trans-meQTL) and
chromatin states SNPs to the overlap between the permutation-SNPs and
chromatin states SNPs. The pools of candidate SNPs were from 1000-genomes
imputed SNPs with MAF > 0.01 and imputation quality ratio >0.3 as described
above. To match the distribution of MAFs of the permutation-SNP set with the
tested-SNP set, we categorized MAF into four categories: MAF of (0.01, 0.05),
(0.05, 0.1), (0.1, 0.2), and (0.2, 0.5). For each MAF category, we kept the proportion
of SNPs in the permutation SNP set equal to the proportion of SNPs in the tested
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SNP set. For cis-meQTLs, the proportions of SNPs in the four MAF categories were
18, 14, 21, and 47%, respectively. For trans-meQTLs, the proportions of SNPs in
the four MAF categories were 12, 12, 21, and 55%, respectively. The statistical
significance threshold was permutation-based FDR < 0.05 from 1000 permutation.

Pathway analysis. To investigate possible pathways underling the associations
between meQTLs and CVD traits, we used FUMA (Functional mapping and
annotation of GWAS)27 on the cis-meQTLs for the putatively causal CpGs iden-
tified by MR analysis. FUMA included all loci with cis-meQTLs at LD > 0.8 based
on the 1000 Genomes references panel as input. Hypergeometric tests on genes
from those loci were used to investigate over representations of genes from mul-
tiple pathways. To improve focus in this study, we only use results of KEGG68 and
Gene Ontology—biological process (GO-BP) terms69. The SNP-to-Gene mapping
was used on associations between SNPs and genes from positional mapping in
Grch37/hg19, eQTLs in GTEx26, and chromatin interaction mapping in Hi-C
databases70. The significant threshold for the pathway analysis used a corrected P <
0.05/tests pathways in FUMA.

Replication of cis- and trans-meQTLs in independent studies. For the sig-
nificant cis- and trans-meQTLs identified in FHS, we attempted replication of the
SNP-CpG pairs in 963 ARIC EA participants and 384 GTP AA cohort participants.
Due to lower numbers of samples in these cohorts, we excluded SNPs with MAF <
0.05 in ARIC and GTP.

ARIC Study is a prospective cohort conducted in four US communities to
investigate atherosclerosis and clinical atherosclerotic diseases71. A total of 15,792
men and women aged 45 to 64 years (baseline) were recruited in 1987 and 1989
(visit 1) from four communities: Forsyth County, North Carolina; Jackson,
Mississippi; suburbs of Minneapolis, Minnesota; and Washington County,
Maryland. The ARIC study protocol was approved by the institutional review
board of each participating university. Four subsequent follow-up exams were
carried out in 1990–1992 (visit 2), 1993–1995 (visit 3), 1996–1998 (visit 4), and
2011–2013 (visit 5). DNA methylation was measured for samples from visit 2 or
visit3. Genomic DNA was extracted from peripheral whole blood samples using the
Gentra Puregene Blood Kit (Qiagen; Valencia, CA, USA). Bisulfite-conversion of
DNA samples was performed using the EZ-96 DNA Methylation Kit (Deep Well
Format) (Zymo Research; Irvine, CA, USA), and then measured for methylation
status using the Illumina HumanMethylation 450K beadarray (Illumina, Inc., San
Diego, CA, USA). Probe intensities were extracted using Illumina GenomeStudio
software (version 2011.1, Methylation module 1.9.0). Poor-quality samples with
pass rate less than 95% were excluded. Samples were further excluded based on
gender mismatch, SNP discordance with previous genotyping, and outliers in PC
analysis. At the target level, poor-quality CpG sites missing in ≥5% samples were
excluded. Beta values, representative of the methylation score for each CpG, were
normalized using the Beta MIxture Quantile dilation (BMIQ) method72. Blood cell
types were imputed using the Houseman method73. Genotyping was performed
with Affymetrix SNP array 6.0. Imputation of missing genotypes was performed
using IMPUTE274 using 1000G Phase 1 version 3 reference. We first fit LME
models, where the BMIQ normalized beta values were the response variables, the
covariates age, sex, visit number, blood cell counts, and the top 50 methylation PCs
were fitted via fixed effects, and the batch factors chip ID, chip position, plate
number were fitted as random effects. Residuals extracted from the fitted model
were tested for associations with SNPs using linear regression models. All analysis
were carried out in R.

GTP is a population-based prospective study to assess trauma exposure and
stress-related outcomes in an urban, predominantly AA population75. Participants
were recruited prospectively from the waiting rooms of primary care and
obstetrics-gynecology clinics of Grady Memorial Hospital in Atlanta, GA. Since its
inception in 2005, over 5000 participants have been interviewed for the study; 384
AA participants had both genotype data and whole blood DNA methylation
measurements. Genotyping and DNA methylation profiling of GTP samples are
described in the previous study76. Missing data points were defined by (1) a
detection p-value greater than 0.001, or (2) a combined signal less than 25% of the
total median signal and less than both the median unmethylated and median
methylated signal. Individual samples were removed if they were outliers using a
hierarchical clustering analysis, or had (1) a mean total signal less than half of the
median of the overall mean signal or 2000 arbitrary units and (2) a missingness rate
above 5%. Similarly, CpG probes were removed if the missingness rate was above
10% or the probes overlapped with SNPs (for Infinium I probes, SNPs at the site of
single-base extension; for Infinium II probes, SNPs at CpG site; for both probes,
SNPs located within 10 bp from site of single-base extension) with MAF > 0.05 in
1000 Genomes Project 20110521 release for African population (AFR)50. To
remove the effect of outliers and ensure normality, DNAm β values were first
inverse-normal transformed before analysis77. Associations between 437,229 CpGs
and 9,892,561 SNPs (imputed allele dosage) were then estimated using linear
regression adjusting age, gender and top 20 PCs of DNAm. The number of DNAm
PCs was determined to achieve the highest power for cis-meQTLs mapped by at
least one SNP (P < 10–6, cis-meQTL was defined as CpG-SNP distance <1Mb). All
meQTL analyses were performed using the R package MatrixEQTL78. Associations
between cis- and trans- SNP-DNAm pairs were identified and reported separately.
The Institutional Review Boards of Emory University School of Medicine and

Grady Memorial Hospital approved the study protocol for the Grady Trauma
Project.

We calculated the ratio of meQTLs replicated in ARIC and GTP at P < 0.05, P <
0.001, and at Bonferroni-corrected P < 0.05, corrected for 26.8 M tests for cis and 2
M tests for trans. We also compared the T-values of SNP-CpG pairs identified in
FHS with T-values in ARIC and GTP.

Data resources for eQTLs and pQTLs. To examine the overlap of meQTLs with
eQTLs and pQTLs, we used published resources of whole blood eQTLs identified in
the FHS16 and in a prior meta-analysis of European cohorts17. Plasma pQTLs were
previously identified in the FHS18 and KORA19.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The complete set of DNAm data and mRNA expression data for FHS participants have
been deposited in and are available from dbGaP under the study accession phs000724.v7.
p11 (DNAm data) (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000724.v7.p11) and phs000363.v17.p11 (mRNA expression data) (https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v17.p11).
The meQTL resources developed for this study are freely accessible via the NCBI
Molecular QTL Browser (https://preview.ncbi.nlm.nih.gov/gap/eqtl/studies/) and via the
NCBI ftp site (https://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_meQTLs/).
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